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(a) I1 and I2, captured light stage images for adjacent lights ℓ1 and ℓ2 (b) Blended images (I1 + I2)/2 (c) Our rendering I((ℓ1 + ℓ2)/2)

Fig. 1. Though the light stage is a powerful tool for relighting human subjects, its renderings suffer because adjacent lights of the stage are separated by some
distance (a). Using conventional image blending techniques to reconstruct the image corresponding to a “virtual” light that lies between the stage’s actual
lights therefore results in ghosting in shadowed and specular regions (b), seen here on the subject’s eyes and cheek. By training a deep neural network to
regress from a light direction to an image, our model is able to synthesize accurate renderings of the subject under arbitrary virtual light directions — as the
light moves, highlights and shadows move smoothly instead of incorrectly blending together, thereby enabling realistic high-frequency relighting effects (c).
These images have been manually but uniformly brightened and color-corrected, and are rendered with insets to highlight detail.

The light stage has been widely used in computer graphics for the past two
decades, primarily to enable the relighting of human faces. By capturing
the appearance of the human subject under different light sources, one
obtains the light transport matrix of that subject, which enables image-based
relighting in novel environments. However, due to the finite number of lights
in the stage, the light transport matrix only represents a sparse sampling on
the entire sphere. As a consequence, relighting the subject with a point light
or a directional source that does not coincide exactly with one of the lights in
the stage requires interpolation and resampling the images corresponding to
nearby lights, and this leads to ghosting shadows, aliased specularities, and
other artifacts. To ameliorate these artifacts and produce better results under
arbitrary high-frequency lighting, this paper proposes a learning-based
solution for the “super-resolution” of scans of human faces taken from a
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light stage. Given an arbitrary “query” light direction, our method aggregates
the captured images corresponding to neighboring lights in the stage, and
uses a neural network to synthesize a rendering of the face that appears to
be illuminated by a “virtual” light source at the query location. This neural
network must circumvent the inherent aliasing and regularity of the light
stage data that was used for training, which we accomplish through the use
of regularized traditional interpolation methods within our network. Our
learned model is able to produce renderings for arbitrary light directions that
exhibit realistic shadows and specular highlights, and is able to generalize
across a wide variety of subjects. Our super-resolution approach enables
more accurate renderings of human subjects under detailed environment
maps, or the construction of simpler light stages that contain fewer light
sources while still yielding comparable quality renderings as light stages
with more densely sampled lights.
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1 INTRODUCTION
A central problem in computer graphics and computer vision is that
of acquiring some observations of an object, and then producing
photorealistic relit renderings of that object. Of particular interest
are renderings of human faces, which have many practical uses
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within consumer photography and the visual effects industry, but
also serve as a particularly challenging case due to their complexity
and the high sensitivity of the human visual system to facial ap-
pearance. A light stage represents an effective solution for this task:
by programmatically activating and deactivating several LED lights
arranged in a sphere while capturing synchronized images, the light
stage acquires a full reflectance field for a human subject, which
we refer to as a “one-light-at-a-time” (OLAT) image set. Because
light is additive, this OLAT scan represents a lighting “basis”, and
the subject can be relit according to some desired environment map
by simply projecting that environment map onto the light stage
basis [Debevec et al. 2000].
Though straightforward and theoretically elegant, this classic

relighting approach has a critical limitation. The lights on the light
stage are usually designed to be small and distant from the subject,
so that they are well-approximated as directional light sources. As
a consequence, realistic high-frequency effects such as sharp cast
shadows and specular highlights are present in the captured OLAT
images. In order to achieve photorealistic relighting results under
all possible lighting conditions, the lights must be placed closely
enough on the sphere of the stage such that shadows and speculari-
ties in the captured images of adjacent lights “move” by less than
one pixel. However, practical constraints (the cost and size of each
light, and the difficulty of powering and synchronizing many lights)
discourage the construction of light stages with very high densities
of lights. Even if such a high-density light stage could be built, the
time to acquire an OLAT increases linearly with the number of
lights, and this makes human subjects (which must be stationary
during OLAT acquisition) difficult to capture. For these reasons,
even the most sophisticated light stages in existence today contain
only a few hundred lights that are spaced many degrees apart. This
means that the OLAT scans from a light stage are undersampled
with respect to the angular sampling of lights, and the rendered
images using conventional approaches will likely contain ghosting.
Attempting to render an image using a “virtual” light source that
lies in between the real lights of the stage by applying a weighted
average on adjacent OLAT images will not produce a soft shadow or
a streaking specularity, but will instead produce the superposition
of multiple sharp shadows and specular dots (see Fig. 1b).

This problem can be mitigated by imaging subjects that only ex-
hibit low-frequency reflectance variation, or by performing relight-
ing using only low-frequency environment maps. However, most
human subjects have complicated material properties (speculari-
ties, scattering, etc. ) and real-world environment maps frequently
exhibit high-frequency variation (bright light sources at arbitrary
locations), which often results in noticeable artifacts as shown in
Fig. 1b. To this end, we propose a learning based solution for super-
resolving the angular resolution of light stage scans of human faces.
Given an OLAT scan of a human face with finite images and the
direction of a desired “virtual” light, our model predicts a complete
high-resolution RGB image that appears to have been lit by a light
source from that direction, even though that light is not present in
our light stage (see Fig. 1c). Our robust solution for “upsampling” the
number of lights, which we refer to as light stage super-resolution,
can additionally enable the construction of simpler light stages with
fewer lights, thereby reducing cost and increasing the frame rate

at which subjects can be scanned. Our algorithm can also produce
better rendered images for applications that require light stage data
for training, such as portrait relighting or shadow removal. Casual
users can then utilize these algorithms on a single cellphone without
requiring capture inside a light stage. Note that we focus only on
human face relighting within a light stage. While we believe the
methods herein could be applied more broadly, a comprehensive
system for general object relighting remains a topic of future work.

Our algorithm (Sec. 3) must work with the inherent aliasing and
regularity of the light stage data used for training. We address this
by combining the power of deep neural networks with the effi-
ciency and generality of conventional linear interpolation methods.
Specifically, we use an active set of closest lights within our net-
work (Sec. 3.1) and develop a novel alias-free pooling approach
to combine their network activations (Sec. 3.2) using a weighting
operator guaranteed to be smooth when lights enter or exit the
active set. Our network allows us to super-resolve an OLAT scan of
a human face: we can take our learned model and repeatedly query
it with thousands of light directions, and treat the resulting set of
synthesized images as though they were acquired by a physically-
unconstrained light stage with an unbounded sampling density. As
we will demonstrate, these super-resolved “virtual” OLAT scans
allow us to produce photorealistic renderings of human faces with
arbitrarily high-frequency illumination content.

2 RELATED WORK
The angular undersampling from the light stage relates to much
work over the past two decades on a frequency analysis of light
transport [Ramamoorthi and Hanrahan 2001; Sato et al. 2003; Du-
rand et al. 2005], and can also be related to analyses of sampling
rate in image-based rendering [Chai et al. 2000] for the related prob-
lem of view synthesis [Mildenhall et al. 2019]. This problem also
bears some similarities to multi-image super-resolution [Milanfar
2010] and angular super-resolution in the light field [Kalantari et al.
2016; Cheng et al. 2019], where aliased observations are combined
to produce interpolated results. In this paper, we leverage priors
and deep learning to go beyond these sampling limits, upsampling
or super-resolving a sparse input light sampling on the light stage
to achieve continuous high-frequency relighting.

Recently, many approaches for acquiring a sparse light transport
matrix have been developed, including methods based on compres-
sive sensing [Peers et al. 2009; Sen and Darabi 2009], kernel Nys-
trom [Wang et al. 2009], optical computing [O’Toole and Kutulakos
2010] and neural networks [Ren et al. 2013, 2015; Kang et al. 2018].
However, these methods are not designed for the light stage and
are largely orthogonal to our approach. They seek to acquire the
transport matrix for a fixed light sampling resolution with a sparse
set of patterns, while we seek to take this initial sampling resolu-
tion and upsample or super-resolve it to much higher-resolution
lighting (and indeed enable continuous high-frequency relighting).
Most recently, [Xu et al. 2018] proposed a deep learning approach
for image-based relighting from only five lighting directions, but
cannot reproduce very accurate shadows. While we do use many
more lights, we achieve significantly higher-quality results with
accurate shadows.
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The general approach of using light stages for image-based re-
lighting stands in contrast to more model-based approaches. Tra-
ditionally, instead of super-resolving a light stage scan, one could
use that scan as input to a photometric stereo algorithm [Wood-
ham 1980], and attempt to recover the normal and the albedo maps
of the subject. More advanced techniques were developed to pro-
duce a parametric model of the geometry and reflectance for even
highly specular objects [Tunwattanapong et al. 2013]. There are also
works that focus on recovering a parametric model from a single im-
age [Sengupta et al. 2018], constructing a volumetric model for view
synthesis [Lombardi et al. 2018], or even a neural representation of
a scene [Tewari et al. 2020]. However, the complicated reflectance
and geometry of human subjects is difficult to even parameterize
analytically, let alone recover. Though recent progress may enable
the accurate capture of human faces using parametric models, there
are additional difficulties in capturing a complete portrait due to the
complexity of human hair, eyes, ears, etc. Indeed, this complexity
has motivated the use of image-based relighting via light stages in
the visual effects industry for many years [Tunwattanapong et al.
2011; Debevec 2012].

Interpolating a reflectance function has also been investigated in
the literature. Masselus et al. [2004] compare the errors of fitting
the sampled reflectance function to various basis functions and con-
clude that multilevel B-Splines can preserve the most features. More
recently, Rainer et al. [2019] utilize neural networks to compress
and interpolate sparsely sampled observations. However, these algo-
rithms interpolate the reflectance function independently on each
pixel and do not consider local information in neighboring pixels.
Thus, their results are smooth and consistent in the light domain,
but might not be consistent in the image domain. Fuchs et al. [2007]
treat the problem as a light super-resolution problem, and is the
most similar to our work. They use heuristics to decompose the cap-
tured images into diffuse and specular layers, and apply optical-flow
and level-set algorithms to interpolate highlights and light visibility
respectively. This approach works well on highly reflective objects,
but as we will demonstrate, it usually fails on human skin which
contains high frequency bumps and cannot be well modeled using
only diffuse and specular terms.
In recent years, light stages have also been demonstrated to be

invaluable tools for generating training data for use in deep learning
tasks [Meka et al. 2019; Guo et al. 2019; Sun et al. 2019; Nestmeyer
et al. 2019]. This enables user-facing effects that do not require ac-
quiring a complete light stage scan of the subject, such as “portrait
relighting” from a single image [Sun et al. 2019; Apple 2017] or VR
experiences [Guo et al. 2019]. These learning-based applications
suffer from the same undersampling issue as do conventional uses of
light stage data. For example, Sun et al. [2019] observe artifacts when
relighting with environment maps that contain high-frequency illu-
mination. We believe our method can provide better training data
and significantly improve many of these methods in the future.

3 MODEL
An OLAT scan of a subject captured by a light stage consists of n
images, where each image is lit by a single light in the stage. The
conventional way to relight the captured subject with an arbitrary

light direction is to linearly blend the images captured under nearby
lights in the OLAT scan. As shown in Fig. 1, this often results in
“ghosting” artifacts on shadows and highlights. The goal of this work
is to use machine learning instead of simple linear interpolation to
produce higher-quality results. Our model takes as input a query
light direction ℓ and a complete OLAT scan consisting of a set of
paired images and light directions {Ii , ℓi }, and uses a deep neural
network Φ to obtain the predicted image I,

I (ℓ) = Φ
(
{Ii , ℓi }ni=1 , ℓ

)
. (1)

This formalization is broad enough to describe some prior works on
learning-based relighting [Xu et al. 2018; Meka et al. 2019]. While
these methods usually operate by training a U-Net [Ronneberger
et al. 2015] to map from a sparse set of input images to an output
image, we focus on producing as high-quality as possible render-
ing results given the complete OLAT scan. However, feeding all the
captured images into a conventional CNN network is not tractable
in terms of speed or memory requirements. In addition, this naive
approach seems somewhat excessive for practical applications in-
volving human faces. While complex translucency and interreflec-
tion may require multiple lights to reproduce, it is unlikely that
all images in the OLAT scan are necessary to reconstruct the im-
age for any particular query light direction, especially given that
barycentric interpolation requires only three nearby lights to pro-
duce a somewhat plausible rendering. Our work attempts to find
an effective and tractable compromise between these two extremes,
in which the power of deep neural networks is combined with the
efficiency and generality of nearest-neighbor approaches. This is
accomplished by a linear blending approach that (like barycentric
blending) ensures the output rendering is a smooth function of the
input, where the blending is performed on the activations of a neural
network’s encoding of our input images instead of on the raw pixel
intensities of the input images.

Our complete network structure is shown in Fig. 2. Given a query
light direction ℓ, we identify the k captured images in the OLAT scan
whose corresponding light directions are nearby the query light
direction, which we call active set A(ℓ). These OLAT images Ii and
their corresponding light directions ℓi are then each independently
processed in parallel by the encoder Φe (·) of our convolutional neu-
ral network (or equivalently, they are processed as a single “batch”),
thereby producing a multi-scale set of internal neural network acti-
vations that describe all k images. After that, the set of k activations
at each layer of the network are pooled into a single set of activa-
tions at each layer, which is performed using a weighted averaging
where the weighting is a function of the query light and each input
light W(ℓ, ℓi ). This weighted average is designed to remove the
aliasing introduced by the nearest neighbor sampling in the active
set selection stage. Together with the query light direction ℓ, these
pooled feature maps are then fed into the decoder Φd (·) by means of
skip links from each level of the encoder, thereby producing the final
predicted image I (ℓ). Formally, our final image synthesis procedure
is:

I (ℓ) = Φd
©­«
∑

i ∈A(ℓ)
W(ℓ, ℓi )Φe (Ii , ℓi ) , ℓ

ª®¬ . (2)

ACM Trans. Graph., Vol. 39, No. 6, Article 261. Publication date: December 2020.



261:4 • Sun et al.

� � � � � � ����

��[��

����

���

���
�

����

���

���

���[��� ��[��

����

���

���

���[���

F Q

�

�N�[�N��&RQY
/D\HU

&RQFDWHQDWLRQ

�

N
$OLDV�)UHH
3RROLQJ

/RVV

� ����

���

���

�

�� �

����[����

���

���

���

����[����

6SDWLDO�5HVROXWLRQ

�� � �� �

����[����

��

��

� �

��

��

�

�

�

���[���

$FWLYDWLRQV�ZLWK�F�FKDQQHOV
DQG�Q�LPDJHV��RU���LPDJH�

F Q

,QSXW�RU�ODEHO�ZLWK�F�FKDQQHOV
DQG�Q�LPDJHV��RU���LPDJH�

F F������������������
�[�ELOLQHDU
XSVDPSOLQJ

Ĺ

��

�

�

ĹĹ

��

���

���

���

���

�

�

(QFRGHU

'HFRGHU

�

�

Fig. 2. A visualization of our model architecture. The encoder of our model Φe (·) takes as input a concatenation of the nearby OLAT images in the active set
and their light directions, which are processed by a series of stride-2 conv layers. The resulting encoded activations of these 8 images at each level are then
combined using the alias-free pooling described in Section 3.2, and skip-connected to the decoder. The decoder Φd (·) takes as input the query light direction ℓ,
processes it with fully connected layers and then upsamples it (along with the skip-connected encoder activations), and decodes the image using a series of
stride-2 transposed conv layers. Whether or not a conv or transposed conv changes resolution is indicated by whether or not its edge spans two spatial scales.

This hybrid approach of nearest-neighbor selection and neural net-
work processing allows us to learn a single neural network that
produces high quality results, and generalizes well across query
light directions and across subjects in our OLAT dataset.
Our active set construction approach is explained in Section 3.1,

our alias-free pooling is explained in Section 3.2, the network ar-
chitecture is described in Section 3.3, and our progressive training
procedure is discussed in Section 3.4.

3.1 Active Set Selection
Light stages are conventionally constructed by placing lights on a
regular hexagonal tessellation of a sphere (with some “holes” for
cameras and other practical concerns), as shown in Fig. 3. As dis-
cussed, at test time ourmodel works by identifying the OLAT images
and lights that are nearest to the desired query light direction, and
averaging their neural activations. But this natural approach, when
combined with the regularity of the sampling of lights in the light
stage, presents a number of problems for training our model. First,
we can only supervise our super-resolution model using “virtual”
lights that exactly coincide with the real lights of the light stage, as
these are the only light directions for which we have ground-truth
images (this will also be a problem when evaluating our model, as
will be discussed in Sec. 4). Second, this regular hexagonal sampling
means that, for any given light in the stage, the distances between
it and its neighbors will always exhibit a highly regular pattern
(Fig. 3a). For example, the 6 nearest neighbors of every point on a
hexagonal tiling are guaranteed to have exactly the same distance
to that point. In contrast, at test time we would like to be able to
produce renderings for query light directions that correspond to
arbitrary points on the sphere, and those points will likely have ir-
regular distributions of neighboring lights (Fig. 3c). This represents
a significant deviation between our training data and our test data,
and as such we should expect poor generalization at test time if we
were to naively train on highly-regular sets of nearest neighbors.

Fig. 3. The OLAT images taken from a light stage have a uniform hexagonal
pattern, which means that the distances between each light and its nearest
neighbors is highly regular (a). In contrast, at test time we want to synthe-
size images corresponding to unseen light directions that do not lie on this
hexagonal grid, and whose neighboring distances will therefore be irregular
(c). During training we therefore sample a random subset of nearest neigh-
bors for use in the active set of our model (b), which forces the network to
adapt to challenging and irregular distributions of neighbor-distances that
better match those that will be seen at test time.

To address this issue, we adopt a different technique for sampling
neighbors for use in our active set than what is used during test time.
For each training iteration, we first identify a larger set ofm nearest
neighbors near the query light (which in this case is identical to one
of the real lights in the stage), and among them randomly select
only k < m neighbors to use in the active set (in practice, we use
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Fig. 4. Varying the query light direction will cause OLAT images to leave
and enter the active set of our model, which introduces aliasing that, if un-
addressed, results in jarring temporal artifacts in our renderings. To address
this, we use an “alias-free pooling” technique to ensure that the network
activations of each OLAT image are averaged in a way that suppresses this
aliasing. We use a weighted average where the weights are smooth, and are
exactly zero at the point where lights enter and leave the active set.

m = 16 and k = 8). As shown in Fig. 3b, this results in irregular
neighbor sampling patterns during training, which simulates our
test-time scenario wherein the query light is at a variety of locations
in between the real input light sources. This approach shares a
similar motivation as that of dropout [Srivastava et al. 2014] in
neural networks, in which network activations are randomly set to
0 during training to prevent overfitting. Here we instead randomly
remove input images, which also has the effect of preventing the
model from overfitting to the hexagonal pattern of the light stage
while training our network, by forcing it to operate on more varied
inputs. Notice that the query light itself is included in the candidate
set, to reflect the fact that during test-time the “virtual” query light
may be next to a real light source. As we will show in Sec. 4 and in
the supplementary video, this active set selection approach results in
a learned model whose synthesized shadows move more smoothly
and at a more regular rate than is achieved with a naive nearest-
neighbor sampling approach.

3.2 Alias-Free Pooling
A critical component in our model is the design of the skip links
from each level of the encoder of our model to its corresponding
level in the decoder. This model component is responsible for the
network activations corresponding to the 8 images in our active
set and reducing them to one set of activations corresponding to
a single output, which will then be decoded into an image. This
requires a pooling operator for these 8 images. This pooling operator
must be permutation-invariant, as the images in our active set may
correspond to any OLAT light direction and may be presented in
any order. Standard permutation-invariant pooling operators, such
as average-pooling or max-pooling, are not sufficient for our case,
because they do not suppress aliasing. As the query light direction
moves across the sphere, images will enter and leave the active set
of our model, which will cause the network activations within our
encoder to change suddenly (see Fig. 4). If we use simple average-
pooling or max-pooling, the activations in our decoder will also
vary abruptly, resulting in unrealistic flickering artifacts or temporal
instability in our output renderings as the light direction varies. In

other words, the point sampled signal should go through an effective
prefiltering process in order to suppess the artifacts.

The root cause of this problem is that our active set is an aliased
observation of the input images, and average- or max-pooling allows
this aliasing to persist. We therefore introduce a technique for alias-
free pooling to address this issue. We use a weighted average as
our pooling operator where the weight of each item in our active
set is a continuous function of the query light direction, and where
the weight of each item is guaranteed to be zero at the moment it
enters or leaves the active set. We define our weighting function
between the query light direction ℓ and each OLAT light direction
ℓi as follows:

W̃(ℓ, ℓi ) = max
(
0, es(ℓ ·ℓi−1) − min

j ∈A(ℓ)
es(ℓ ·ℓ j−1)

)
,

W(ℓ, ℓi ) =
W̃(ℓ, ℓi )∑
j W̃(ℓ, ℓj )

,

(3)

where s is a learnable parameter that adjusts the decay of the weight
with respect to the distance and each ℓ is a normalized vector in 3D
space. During training, parameter s will be automatically adjusted
to balance between selecting the nearest neighbor (s = +∞) and
taking an unweighted average of all neighbors (s = 0).

Our weighting function is an offset spherical Gaussian, similar to
the normalized Gaussian distance between the query light’s Carte-
sian coordinates and those of the other lights in our active set,
but where we have subtracted out the unnormalized weight cor-
responding to the most distant light in the active set (and clipped
the resulting weights at 0). This adaptive truncation is necessary
because the lights in the light stage may be spaced irregularly (due
to holes in the stage for cameras or other reasons), which means
that a fixed truncation may be too aggressive in setting weights to
zero in regions where lights are sampled less frequently. We instead
leverage the fact that when a light exits the active set, a new light
will enter it at exactly the same time with exactly the same distance
to the query light. This allows us to truncate our Gaussian weights
using the maximum distance in the active set, which ensures that
lights have a weight of zero as they leave or enter the active set.
This results in renderings that change smoothly as we move the
query light direction.

3.3 Network Architecture
The remaining components of our model consist of the conventional
building blocks used in constructing convolutional neural networks,
and can be seen in Fig. 2. The encoder of our network consists of
3 × 3 convolutional neural network blocks (with a stride of 2 so as
to reduce resolution by half), each of which is followed by group
normalization [Wu and He 2018] and a PReLU [He et al. 2015]
activation function. The number of hidden units for each layer
begins at 32 and doubles after each layer, but is clipped at 512. The
input to our encoder is a set of 8 RGB input images corresponding
to the nearby OLAT images in our active set, each of which has
been concatenated with the xyz coordinate of its source light (tiled
to every pixel) giving us 8 6-channel input images.
These images are processed along the “batch” dimension of our

network, and so are treated identically at each level of the encoder.
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These 8 images are then pooled down to a single “image” (i.e., a
single batch) of activations using the alias-free pooling approach
of Section 3.2, each of which is concatenated onto the internal
activations of the network’s decoder.

The decoder of the network beginswith a series of fully-connected
(aka “dense”) neural network blocks that take as input the query
light direction ℓ, each of which is followed by instance normaliza-
tion [Ulyanov et al. 2016] and a PReLU activation function. These
activations are then upsampled to 4 × 4 and used as the basis of our
decoder. Each layer of the decoder consists of a 3 × 3 transposed
convolutional neural network block (with a stride of 2 so as to dou-
ble resolution) which is again followed by group normalization and
a PReLU activation function. The input to each layer’s conv block
is a concatenation of the upsampled activations from the previous
decoder level, with the pooled activations from the encoder that
have been “skip” connected from the same spatial scale. The final
activation function before any output image is produced is a sig-
moid function, as our images are normalized to [0, 1]. Because our
network is fully convolutional [Long et al. 2015], it can be evaluated
on images of arbitrary resolution, with GPU memory being the only
limiting factor. We train on 512× 512 resolution images for the sake
of speed, and evaluate and test on 1024 × 1024 resolution images to
maximize image quality.

3.4 Loss Functions and Training Strategy
We supervise the training of our model using an L1 loss on pixel
intensities. Formally, our loss function is:

Ld =
∑
i
∥M ⊙ (Ii − I (ℓi ))∥1 , (4)

where Ii is the ground truth image under light i , and I (ℓi ) is our
prediction. When computing the loss over the image, we use a
precomputed binary image M to mask out pixels that are known to
belong to the background of the subject.
During training, we construct each training data instance by

randomly selecting a human subject in our training dataset and
then randomly selecting one OLAT light direction i . The image
corresponding to that light Ii will be used as the ground-truth image
ourmodel will attempt to reconstruct, and the “query” light direction
for our model will be the light corresponding to that image ℓi . We
then identify a set of 8 neighboring images/lights to include in our
active set using the selection procedure described in Section 3.1.
Our only data augmentation is a randomly-positioned 512 × 512
crop of all images in each batch.

Progressive training has been found to be effective for accelerat-
ing and stabilizing the training of GANs for high-resolution image
synthesis [Karras et al. 2018], and though our model is not a GAN
(but is instead a convolutional encoder-decoder architecture with
skip connections) we found it to also benefit from a progressive
training strategy. We first inject downsampled image inputs directly
into a coarse layer of our encoder and supervise training by impos-
ing a reconstruction loss at a coarse layer of our decoder, resulting
in a shallower model that is easier to train. As training proceeds,
we add additional convolutional layers to the encoder and decoder,
thereby gradually increasing the resolution of our model until we
arrive at the complete network and the full image resolution. In

total, we train our network for 200,000 iterations, using 8 NVIDIA
V100 GPUs, which takes approximately 10 hours. Please see the
detailed training procedure in the supplementary material.

Our model is implemented in Tensorflow [Abadi et al. 2016] and
trained using Adam [Kingma and Ba 2015] with a batch size of 1 (the
“batch” dimension of our tensors is used to represent the 8 images in
our active set), a learning rate of 10−3, and default hyperparameter
settings (β1 = 0.9, β2 = 0.999, ϵ = 10−7).

4 EVALUATION
We use the OLAT portrait dataset from [Sun et al. 2019], which
contains 22 subjects with multiple facial expressions captured using
a light stage and a 7-camera system. The light stage consists of 302
LEDs uniformly distributed on a spherical dome, and capturing a
subject takes roughly 6 seconds. Each capture process produces an
OLAT scan of a specific facial expression on each camera, which
consists of 302 images, and we treat the OLAT scans from different
cameras as independent OLAT scans. Because the subject is asked
to stay still (and an optical flow algorithm [Wenger et al. 2005] is
applied to correct the small movements) the captured 302 images
in each OLAT are aligned and only differ in lighting directions. We
manually select 4 OLAT scans with a mixture of subjects and views
for use as our validation set, and choose another 16 OLAT scans
with good coverage of gender and diverse skin tones for use as
training data. Our 16 training datasets only covers 5 of 7 cameras,
and the remaining 2 are covered by the validation data. We train our
network using all lights from our OLAT data in a canonical global
lighting coordinate frame, which allows us to train a single network
for all viewpoints in our training data. We train one single model
for all subjects in our training dataset, which we found to match
the performance of training an individual model for each subject.

Empirically evaluating our model presents a significant challenge:
our model is attempting to super-resolve an undersampled scan
from a light stage, which means that the only ground-truth that is
available for benchmarking is also undersampled. In other words, the
goal of our model is to accurately synthesize images that correspond
to virtual lights in between the real lights of the stage — but we do
not have ground-truth images that correspond to those virtual lights.
In addition, the model also needs to generalize to an unseen view
and subject. For these reasons, qualitative results (figures, videos)
are preferred, and we encourage readers to view our figures and
the accompanying video. In the quantitative results presented here,
we use held-out real images lit by real lights on our light stage as
a validation set. When evaluating one of these validation images,
we do not use the active-set selection technique of Section 3.1, and
instead just sample the k = 8 nearest neighbors (excluding the
validation image itself from the input). Holding out the validation
image from the inputs is critical, as otherwise a model could simply
reproduce the input image as an error-free output. This held-out
validation approach is not ideal, as all such evaluations will follow
the same regular sampling pattern of our light stage. This evaluation
task is therefore more biased than the real task of predicting images
away from the sampling pattern of the light stage.

Selecting an appropriate metric for measuring image reconstruc-
tion accuracy for our task is not straightforward. Conventional
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(a) One rendering, for reference (b) Our model (c) Our model w/ naive neighbors (d) Our model w/ avg pooling

Fig. 5. A visualization of how our learned model synthesizes renderings in which shadows move smoothly as a function of light direction. In (a) we show a
rendering from our model for some virtual light ℓ with a horizontal angle of θ , and highlight one image strip that includes a horizontal cast shadow. In (b) we
repeatedly query our model with θ values that should induce a linear horizontal translation of the shadow boundary in the image plane, and by stacking
these image strips we can see this linear trend emerge (highlighted in red). In (c) and (d) we do the same for ablations of our model that do not have our
active-set random selection procedure nor our alias-free pooling, and we see that the resulting shadow boundary does not vary smoothly or linearly.

Table 1. Here we benchmark our model against prior work and ablations
of our model on our validation dataset. We report the arithmetic mean of
each metric across the validation set. The top three results of each metric
are highlighted in red, orange, yellow, respectively. While “Ours w/naive
neighbors“ has the lowest error according to this evaluation, “Our model“
performs better in our real test-time scenario where the synthesized light
does not lie in a regular hexagonal grid (see text and Fig. 5 for details).

Algorithm RMSE H1 DSSIM E-LPIPS
Our model 0.0160 0.0203 0.0331 0.00466
Ours w/naive neighbors 0.0156 0.0199 0.0322 0.00449
Ours w/avg-pooling 0.0203 0.0241 0.0413 0.00579
Linear blending 0.0191 0.0232 0.0366 0.00503
Fuchs et al. [2007] 0.0195 0.0258 0.0382 0.00485
Photometric stereo 0.0284 0.0362 0.0968 0.00895
Xu et al. [2018]
w/ 8 optimal lights 0.0410 0.0437 0.1262 0.01666
w/ adaptive input 0.0259 0.0291 0.1156 0.00916

Meka et al. [2019] 0.0505 0.0561 0.1308 0.01482

image interpolation techniques often result in ghosting artifacts or
duplicated highlights, which are perceptually salient but often not
penalized heavily by traditional image metrics such as per-pixel
RMSE. We therefore evaluate image quality using multiple image
metrics: RMSE, the SobolevH1 norm [Ng et al. 2003], DSSIM [Wang
et al. 2004], and E-LPIPS [Kettunen et al. 2019]. RMSE measures
pixel-wise error, the H1 norm emphasizes image gradient error,
while DSSIM and E-LPIPS approximate an overall perceptual dif-
ference between the predicted image and the ground truth. Still,
images and videos are preferred for comparison.

4.1 Ablation Study
We first evaluate against ablated versions of our model, with results
shown in Tab. 1. In the “Ours w/naive neighbors” ablation we use the
k = 8 nearest neighbors in our active set during training. This setup
leads to a match between our training and validation data, which

results in better numerical performance (as shown in Tab. 1) but also
significant overfitting: this apparent improvement in performance
is misleading, because the validation set of our dataset has the same
overly-regular sampling as the training set. During our real test-
time scenario in which we synthesize with lights that do not lie on
the regular hexagonal grid of our light stage, we see this ablated
model generalizes poorly. In Fig. 5 we visualize the output of our
model and ablations of our model as a function of the query light
direction. We see that our model is able to synthesize a cast shadow
that is a smooth linear function in the image plane of the angle of
the query light (after accounting for foreshortening, etc. ). Ablations
of our technique do not reproduce this linearly-varying shadow,
due to the aliasing and overfitting problems described earlier. See
the supplemental video for additional visualizations.
In the “Ours w/avg-pooling” ablation we replace the alias-free

pooling of our model with simple average pooling. As shown in
Tab 1, ablating this component reduces performance. But more im-
portantly, ablating this component also causes flickering during
our real test-time scenario in which we smoothly vary our light
source, and this is not reflected in our quantitative evaluation. Be-
cause average pooling assigns a non-zero weight to images as they
enter and exit our active set, renderings from this model will con-
tain significant temporal instability. See the supplemental video for
examples.

4.2 Related Work Comparison
We compare our results against related approaches that are capable
of solving the relighting problem. The “Linear blending” baseline
in Tab. 1 produces competitive results, despite being a very simple
algorithm: we simply blend the input images of our light stage
according to our alias-free weights. Because linear blending directly
interpolates aligned pixel values, it is often able to retain accurate
high frequency details in the flat region, and this strategy works
well for minimizing our error metrics. However, linear blending
produces significant ghosting artifacts in shadows and highlights,
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(full image)
(a) Ours (b) Groundtruth (c) Ours blending

(d) Linear
et al. [2007]
(e) Fuchs

stereo
(f) Photometric

optimal sample
et al. [2018] w/

(g) Xu

adaptive sample
et al. [2018] w/

(h) Xu

et al. [2019]
(i) Meka

Fig. 6. Here we present a qualitative comparison between our method and other light interpolation algorithms. Traditional methods (linear blending, Fuchs
et al. [2007], photometric stereo) retain detail but suffer from ghosting artifacts in shadowed regions. Results from Xu et al. [2018] and Meka et al. [2019]
exhibit significant oversmoothing and brightness changes. Our method retains details and synthesizes shadows that resemble the ground truth.

as shown in Fig. 6. Though these errors are easy to detect visually,
they appear to be hard to measure empirically.
We evaluate against the layer-based technique of Fuchs et al.

[2007] by decomposing an OLAT into diffuse, specular, and visibility
layers, and interpolating the illumination individually for each layer.
Although the method works well on specular objects as shown in the
original paper, it performs less well on OLATs of human subjects, as
shown in Tab. 1. This appears to be due to the complex specularities
on human skin not being tracked accurately by the optical flow
algorithm of Fuchs et al. [2007]. Additionally, the interpolation of
the visibility layer sometimes contains artifacts, which results in cast
shadows being predicted incorrectly. That being said, the algorithm
results in fewer ghosting artifacts than the linear blending algorithm,
as shown in Fig. 6 and as reflected by the E-LPIPS metric.

Using the layer decomposition produced by Fuchs et al. [2007], we
additionally perform photometric stereo on the OLAT data by simple
linear regression to estimate a per-pixel albedo image and normal
map. Using this normal map and albedo image we can then use
Lambertian reflectance to render a new diffuse image correspond-
ing to the query light direction, which we add to the specular layer
from [Fuchs et al. 2007] to produce our final rendering. As shown
in Tab. 1, this approach underperforms that of Fuchs et al. [2007],
likely due to the reflectance of human faces being non-Lambertian.
Additionally, the scattering effect of human hair is poorly modeled
in terms of a per-pixel albedo and normal vector. These limiting
assumptions result in overly sharpened and incorrect shadow pre-
dictions, as shown in Fig. 6. In contrast to this photometric stereo
approach and the layer-based approach of Fuchs et al. [2007], our
model does not attempt to factorize the human subject into a pre-
defined reflectance model wherein interpolation can be explicitly
performed. Our model is instead trained to identify a latent vector
space of network activations in which naive linear interpolation

results in accurate non-linearly interpolated images, which results
in more accurate renderings.

The technique of Xu et al. [2018] (retrained on our training data)
represents another possible candidate for addressing our problem.
This technique does not natively solve our problem. In order to
find the optimal lighting directions for relighting, it requires as
input all 302 high-resolution images in each OLAT scan in the first
step, which significantly exceeds the memory constraints of modern
GPUs. To address this, we first jointly train the Sample-Net and the
Relight-Net on our images (downsampled by a factor of 4× due to
memory constraints) to identify 8 optimal directions from the 302
total directions of the light stage. Using those 8 optimal directions,
we then retrain the Relight-Net using the full-resolution images from
our training data, as prescribed in Xu et al. [2018]. Table 1 shows
that this approach works poorly on our task. This may be because
this technique is built around 8 fixed input images and is naturally
disadvantaged compared to our approach, which is able to use any
of the 302 light stage images as input. We therefore also evaluate a
variant of Xu et al. [2018] where we use the same active-set selection
approach used by our model to select the images used to train their
Relight-Net. By using our active-set selection approach (Sec. 3.1)
this baseline is able to better reason about local information, which
improves performance as shown in Tab. 1. However, this baseline
still results in flickering artifacts when rendering with moving lights,
because (unlike our approach) it is sensitive to the aliasing induced
when images leave and enter the active set.

We also evaluate Deep Reflectance Fields [Meka et al. 2019] for
our task, which is also outperformed by our model. This is likely
because their model is specifically designed for fast and approximate
video relighting and uses only two images as input, while our model
has access to the entire OLAT scan and is designed to prioritize
high-quality rendering.
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n = 100 n = 150 n = 200 n = 250 n = 302 Groundtruth Groundtruth (Complete)

(a) Ours

(b) Linear Blending

Fig. 7. Here we compare the performance of our model against linear blending as we reduce n, the number of lights in our light stage. As we decrease the
number of available lights from n = 302 to n = 100, the quality of our model’s rendered shadow degrades slowly. Linear blending, in contrast, is unable to
produce an accurate rendering even with access to all lights.
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Fig. 8. The image quality of relighting algorithms will gradually reduce as
we remove lights from the light stage. However, our algorithm is able to
retain the image quality to a greater extent with fewer lights compared to
naive linear blending.

4.3 Light Stage Subsampling
An interesting question in light transport acquisition is how many
images (light samples) are needed to reconstruct the full light trans-
port function. To address this question, we present an experiment in
which we remove some lights from our training set and use only this
subsampled data during training and inference. We reduce the num-
ber of lights on the light stage n (while maintaining a uniform dis-
tribution on the sphere) to [250, 200, 150, 100], while also changing
the number of candidatesm and the active set size k to [14, 12, 10, 8]
and [7, 6, 5, 4] respectively. Image quality on the complete valida-
tion dataset (with all 302 lights) as a function of the number of
subsampled training/input lights is shown in Fig. 8. As expected,
relighting quality decreases as we remove the lights, but we see that
the rendering quality of our method decreases more slowly than
that of linear blending. This can also be observed in Fig. 7, where
we present relit renderings using these subsampled light stages. We
see that removing lights reduces accuracy compared to the ground

truth, but that our synthesized shadows remain relatively sharp:
ghosting artifacts only appear when n = 100. In comparison, linear
blending produces ghosting artifacts near shadow boundaries for all
values of n. During test time, our model can also produce accurate
shadows and sharp highlights. Please refer to our supplementary
video for our qualitative comparison.

5 CONTINUOUS HIGH-FREQUENCY RELIGHTING
A key benefit of our method is the ability to "super-resolve" an OLAT
scan with virtual lights at a higher resolution than the original light
stage data, thereby enabling continuous high-frequency relighting
with an essentially continuous lighting distribution (or equivalently,
with a light stage whose sampling frequency is unbounded). In this
section, we present three applications of this idea.

Precise Directional Light Relighting. Traditional image-based re-
lighting methods produce accurate results near the observed lights
of the stage, but may introduce ghosting effects or inaccurate shad-
ows when no observed light is nearby. In Fig. 9 we try to interpolate
the image between two lights on the stage. As shown in the second
and the third row, linear blending or Xu et al. [2018] with adaptive
sampling does not produce realistic results and always contains
multiple superposed shadows or highlights. The shadows produced
by Meka et al. [2019] are sharp, but are not moving smoothly when
the light moves. In contrast, our method is able to produce sharp
and realistic images for arbitrary light directions: highlights and
cast shadows move smoothly as we change the light direction, and
our results have comparable sharpness to the (non-interpolated)
groundtruth images that are available.

High Frequency Environment Relighting. OLAT scans captured
from a light stage can be linearly blended to reproduce images that
appear to have been captured under a specific environment. The
pixel values of the environment map are usually distributed to the
nearest or neighboring lights on the light stage for blending. This
traditional approach may cause ghosting artifacts in shadows and
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Captured image under light A ←−−−−−−−− Interpolation between captured lights −−−−−−−−→ Captured image under light B

(a) Ours

(b) Linear Blending

(c) [Xu et al. 2018] w/ adaptive sampling

(d) [Meka et al. 2019]

Fig. 9. Here we use produce interpolated images corresponding to “virtual” lights between two real lights of the light stage. Our model (a) produces renderings
where sharp shadows and accurate highlights move realistically. Linear blending (b) and Xu et al. [2018] with adaptive sampling result in ghosting artifacts
and duplicated highlights. The results from Meka et al. [2019] contain blurry highlights and shadows with unrealistic motion.

(a) With super-resolution (b) Without super-resolution

Fig. 10. Our model (a) is able to produce accurate relighting results under
high-frequency environments by super-resolving the light stage before
performing image-based relighting [Debevec et al. 2000]. Using the light
stage data as-provided (b) results in ghosting.

specularities, due to the finite sampling of light directions on the
light stage. Although this ghosting is hardly noticeable when the
lighting is low-frequency, it can be significant when the environ-
ment contains high frequency lighting, such as the sun in the sky.
These ghosting artifacts can be ameliorated by using our model.
Given an environment map, our algorithm can predict the image
corresponding to the light direction of each pixel in the environment
map. By taking a linear combination of all such images (weighted
by their pixel values and solid angles), we are able to produce a
rendering that matches the sampling resolution of the environment
map. As shown in Fig. 10, this approach produces images with sharp
shadows and minimal ghosting when given a high-frequency envi-
ronment, while linear blending does not. In this example, we use

an environment resolution of 256 × 128, which corresponds to a
super-resolved light stage with 32,768 lights. Please see our video
for more environment relighting results.

We now analyze the relationship between the image quality gain
from our model and the frequency of the lighting. Specifically, we
evaluate for which environments, and at what frequencies, our
algorithm will be required for accurate rendering, and conversely
how our model performs in low-frequency lighting environments
where previous solutions are adequate. For this purpose, we use one
OLAT scan, and render it under 380 high quality indoor and outdoor
environment maps (environments downloaded from hdrihaven.com)
using both our model and linear blending. We then measure the
image quality gain from our model by computing the DSSIM value
between our rendering and that from linear blending. We measure
the frequency of the environmental lighting by decomposing it into
spherical harmonics (up to degree 50), and finding the degree below
which 90% of the energy can be recovered.

As shown in Fig. 11, the benefit of using our model becomes
larger when the frequency of the environment increases. For low-
frequency light (up to degree 15 spherical harmonics), our model
produces almost identical results compared to the traditional lin-
ear blending method. This is a desired property, showing that our
method reduces gracefully to linear blending for low frequency
lighting, and thus produces high quality results for any low or high-
frequency environment. As the frequency of the lighting becomes
higher, the renderings of our model contain sharper and more ac-
curate shadows without ghosting artifacts. Note that there is some
variation among the environment maps as expected; even a very
high-frequency environment could coincidentally have its brightest
lights aligned with one of the light in the light stage, leading to
low error in linear blending and comparable results to our method.
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Our 
Model

Linear 
Blending

Light

Fig. 11. In the top figure, each blue dot represents a lighting environment.
We render a portrait under this environment using both linear-blending and
our method, and measure the image difference using SSIM to evaluate the
quality gain of our algorithm. The image quality improvement produced by
our model becomes more apparent when the environment map has more
high-frequency variation. In the bottom figure, we compare the rendered
images using our model and linear blending under environment maps with
different frequencies. Our model produces similar results to linear blending
when the lighting variation is low frequency (left columns). As the lighting
variation becomes higher frequency, our model produces better renderings
with fewer artifacts and sharper shadows (right columns).

Nevertheless, the trend is clear in Fig. 11 with many high-frequency
environments requiring our algorithm for lighting super-resolution.
According to the plot, we conclude that our model is necessary

when the light frequency is equal or larger than about 20, which
means more than 212 = 441 basis functions are needed to recover
the lighting. This number has the same order as the number of
lights in the stage (n = 302). This observation agrees with intuition
and frequency analysis. If the environment cannot be recovered
using the limited lighting basis in the light stage, then light super-
resolution is needed to generate new bases in order to accurately
render the shadow and highlights.

Lighting Softness Control. Our model’s ability to render images
under arbitrary light directions also allows us to control the softness
of the shadow. Given a light direction, we can densely synthesize
images corresponding to the light directions around it, and average
those images together to produce a rendering with realistic soft
shadows (the sampling radius of these lights determines the softness
of the resulting shadow). As shown in Fig. 12, our model is able to

Our full image Increased shadow radius −−−−−−−−→

(a) Our Model

(b) Linear Blending

Fig. 12. Soft shadows can be rendered by synthesizing and averaging images
corresponding to directional light sources within some area on the sphere.
Soft shadows rendered by our method (a) are more realistic and contain
fewer ghosting artifacts than those rendered using linear blending (b).

synthesize realistic shadows with controllable softness, which is not
possible using traditional linear blending methods.

6 CONCLUSIONS AND FUTURE WORK
The light stage is a crucial tool for enabling the image-based re-
lighting of human subjects in novel environments. But as we have
demonstrated, light stage scans are undersampled with respect to
the angle of incident light, which means that synthesizing virtual
lights by simply combining images results in ghosting on shadows
and specular highlights. We have presented a learning-based solu-
tion for super-resolving light stage scans, thereby allowing us to
create a “virtual” light stage with a much higher angular lighting
resolution, which allows us to render accurate shadows and high-
lights in high-frequency environment maps. Our network works by
embedding input images from the light stage into a learned space
where network activations can then be averaged, and decoding those
activations according to some query light direction to reconstruct
an image. In constructing this model, we have identified two critical
issues: an overly regular sampling pattern in light stage training
data, and aliasing introduced when pooling activations of a set of
nearest neighbors. These issues are addressed through our use of a
dropout-like supersampling of neighbors in our active set, and our
alias-free pooling technique. By combining ideas from conventional
linear interpolation with the expressive power of deep neural net-
works, our model is able to produce renderings where shadows and
highlights move smoothly as a function of the light direction.

This work is by no means the final word for the task of light stage
super-resolution or image-based rendering. Approaches similar to
ours could be applied to other general light transport acquisition
problems, to other physical scanning setups, or to other kinds of
objects besides human subjects. Though our network can work on
inputs with different image resolutions, GPU memory has been a
major bottleneck to apply our approach on images with much higher
resolutions such as 4K resolution. A much more memory efficient
approach for light-stage super-resolution is expected for production
level usage in the visual effects industry. Though we exclusively
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pursue the one-light-at-a-time light stage scanning approach, al-
ternative patterns where multiple lights are active simultaneously
could be explored, which may enable a more sparse light stage de-
sign. Though the undersampling of the light stage is self-evident in
our visualizations, it may be interesting to develop a formal theory
of this undersampling with respect to materials and camera reso-
lution, so as to understand what degree of undersampling can be
tolerated in the limit. We have made a first step in this direction
with the graph in Fig. 11. Finally, it would be interesting to extend
our approach to enable the synthesis of novel viewpoints in addition
to lighting directions. We believe that light stage super-resolution
represents an exciting direction for future research, and has the po-
tential to further decrease the time and resource constraints required
for reproducing accurate high-frequency relighting effects.
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