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Spatiotemporal Blue Noise2D Blue Noise
  RMSE ↓: 0.25
1-SSIM ↓: 0.21
  FLIP ↓: 0.10

  RMSE ↓: 0.16
1-SSIM ↓: 0.12
  FLIP ↓: 0.07

Figure 1: All images rendered using an exponential moving average (EMA) with α = 0.1. Left: The Disney Cloud [Dis20] rendered using
stochastic single scattering, where free-flight distances are sampled using a series of blue noise masks over time. Traditional 2D blue noise
masks (far left) are easy to filter spatially, but exhibit a white noise signal over time, making the underlying signal difficult to filter temporally.
Middle: Our spatiotemporal blue noise (STBN) masks also exhibit blue noise in the temporal dimension, resulting in a signal that is easier
to filter over time. Right: Crops of the main image and corresponding discrete Fourier transforms over both space (DFT(XY)) and time
(DFT(ZY)). The ground truth is shown in the insets in the large image (upper and lower right corners). This rendering uses scalar valued
masks but we are also able to create uniform and nonuniform (importance-sampled) vector valued masks.

Abstract
Blue noise error patterns are well suited to human perception, and when applied to stochastic rendering techniques, blue noise
masks can minimize unwanted low-frequency noise in the final image. Current methods of applying different blue noise masks
to each rendered frame result in either white noise frequency spectra temporally, and thus poor convergence and stability, or
lower quality spatially. We propose novel blue noise masks that retain high quality blue noise spatially, yet when animated
produce values at each pixel that are well distributed over time. To do so, we create scalar valued masks by modifying the
energy function of the void and cluster algorithm. To create uniform and nonuniform vector valued masks, we make the same
modifications to the blue-noise dithered sampling algorithm. These masks exhibit blue noise frequency spectra in both the
spatial and temporal domains, resulting in visually pleasing error patterns, rapid convergence speeds, and increased stability
when filtered temporally. Since masks can be initialized with arbitrary sample sets, these improvements can be used on a large
variety of problems, both uniformly and importance sampled. We demonstrate these improvements in volumetric rendering,
ambient occlusion, and stochastic convolution. By extending spatial blue noise to spatiotemporal blue noise, we overcome the
convergence limitations of prior blue noise works, enabling new applications for blue noise distributions. Usable masks and
source code can be found at https://github.com/NVIDIAGameWorks/SpatiotemporalBlueNoiseSDK.

CCS Concepts
• Computing methodologies → Rendering;
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1. Introduction

In real-time and complex stochastic rendering scenarios, sample
counts per frame are constrained. As a result, many modern vi-
sual effects depend on amortizing sampling expense over space
and time to achieve higher-quality images at an acceptable perfor-
mance. Blue noise has long been desired over white noise for error
patterns in computer graphics [Yel83], but few attempts have been
made to extend spatial blue noise along the temporal domain to
gain similar benefits.

In addition to spatial filtering, current real-time techniques often
use temporal antialiasing (TAA) [YLS20] to filter rendered images
over time. Samples that are more evenly distributed over the time
axis make the exponential moving average (EMA) within TAA be
more accurate and more stable. Techniques also often seek to inte-
grate over multiple samples per pixel, while still maintaining blue
noise error properties spatially. Computer displays—and even hu-
man perception—can also perform some amount of implicit inte-
gration over time, especially at high frame rates [ANS∗19]. These
situations motivate the need for good sampling patterns over time
in addition to space.

There has been considerable effort to generate high qual-
ity spatial blue noise patterns—made popular in rendering by
Mitchell [Mit91]. Patterns can broadly be divided into two cat-
egories: sets of blue noise distributed sample points [BH08,
LNW∗10, dGBOD12], and masks containing values in an im-
age [Uli93, GF16]. We focus on the latter. These blue noise masks
can be used by stochastic rendering algorithms as a source of
pseudorandom random numbers that produce perceptually uniform
noise in the resulting image.

Our paper extends blue noise masks to account for the tempo-
ral domain as well. We generate an array of two-dimensional blue
noise masks, where each pixel also has blue noise properties over
the time dimension. These masks could be used to make renders
that when combined with algorithms like TAA [YLS20] would pro-
duce higher quality, more temporally stable results for the same
rendering costs.

Our methods realize that desire, as shown in Fig. 1, while also
supporting arbitrary probability distribution functions (PDFs) of
the values within the masks, allowing for importance sampled spa-
tiotemporal blue noise masks. Where other methods focus on good
convergence first and blue noise quality second, we focus on blue
noise quality first, and convergence second, enabling higher-quality
renders at the lowest of sample counts, i.e., targeting real-time ren-
dering. Note that it has already been shown that denoising methods
such as SVGF [SKW∗17, SPD18] benefit from spatial blue noise,
and we show that denoising algorithms can provide further image
quality improvements with our spatiotemporal blue noise masks.
The renders in this paper use the values in the masks directly as the
point sets used for sampling, and do not use the masks to Cranley-
Patterson rotate other sampling sequences such as Sobol or Halton.

A limitation of our work is that at one sample per pixel, conver-
gence is only better than white noise for pixels that are not moving.
This is a limitation of all work which attempts to combine better
convergence (over time) with blue noise error because when a pixel
moves, it can either stay with the sequence at the old pixel location

- which would destroy the spatial blue noise - or it can start using
the sequence at the new pixel location - which would destroy the
temporal blue noise.

Our contributions include:

• An algorithm that generates scalar valued spatiotemporal masks
in Section 4.1, and uniform or nonuniform vector valued spa-
tiotemporal masks in Section 4.2.

• Practical analysis of frequency spectrum and convergence speeds
of our masks in Section 5.

• Evaluations of our masks when applied to rendering techniques
in Section 6.

• Source code for generating Blue noise masks of various types at
https://github.com/NVIDIAGameWorks/Spatiot
emporalBlueNoiseSDK.

• Generated masks ready for use at https://github.com/N
VIDIAGameWorks/SpatiotemporalBlueNoiseSDK/
blob/main/STBN.zip.

2. Previous Work

The most prevalent method for generating scalar valued blue noise
masks is the void and cluster algorithm by Ulichney [Uli93].
Georgiev and Fajardo [GF16] are the most prevalent for vector val-
ued masks. These are the algorithms we extend in this work, as
neither deals with the axis of time.

Heitz and Belcour [HB19] point out that the improvements of
blue noise dithered sampling are quickly lost as sample count and
sample dimensionality increase. Their alternative method reorga-
nizes per-pixel random seeds such that the rendered image approx-
imately follows a blue noise pattern. This exhibits white noise tem-
porally but it is meant to be a purely spatially filtered technique.

Ahmed and Wonka [Ahm20] propose a method for spatial blue
noise with better convergence. They use a locality-preserving map-
ping of 2D pixel coordinates into a 1D pixel sequence, and then use
1D low discrepancy sequences across those pixels. This results in a
trade-off between spatial and temporal quality.

Heitz et al. [HBO∗19] also aim to use a faster converging se-
quence while retaining spatial blue noise using precomputed per-
mutations of the Sobol sequence. The multiple samples per pixel
could be distributed over time, but this comes at the cost of spatial
image quality and temporal strobing as shown in Fig. 3.

Gjoel and Svendsen [GS16] present an in depth study of blue
noise for real-time rendering, but animate it as white noise over
time. 3D blue noise is unfortunately neither blue over space,
nor time as can be seen in Fig. 3. A completely different
method [BWP∗20] for better renders at low sample counts mod-
ifies samples at runtime for better results at the same costs, but also
does not explicitly address the sampling pattern over the time axis.

While spatial blue noise has been a goal for some time [Uli88],
our use of temporal blue noise is to improve convergence rates
without damaging the noise spatially. Other work listed above ei-
ther increases convergence while damaging the noise spatially, or
has equal quality spatially, but worse convergence temporally. If
one is ever able to generate masks which are blue spatially but have
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a faster convergence rate, those masks should likely be prefered -
although there is evidence in this paper that temporal blue noise has
increased stability when temporally filtered.

3. Background

We briefly provide background on the methods by Ulichney [Uli93]
and Georgiev and Fajardo [GF16], on which our algorithm builds.

3.1. Void and Cluster Algorithm

For scalar valued masks, we extend the void and cluster (V&C)
method [Uli93] to handle the temporal domain in Section 4.1. To
generate a mask M, V&C stores a boolean per pixel specifying if
the pixel was turned on and an integer index per pixel specifying the
order that this pixel was turned on in. This index is used to compute
the final output color for that pixel, where index 0 is black and the
highest index is white. Every pixel p, that is turned on emits energy
to every pixel q in an energy field with total energy calculated as

E(M) = ∑
p,q∈M

E(p,q) = ∑exp

(
−∥p−q∥2

2σ2

)
, (1)

where p and q are integer coordinates and distances are computed
on wrapped toroidal boundaries. σ controls energy falloff over
distance—Ulichney [Uli93] recommends σ = 1.5.

The V&C algorithm uses three ordering phases. In the first
phase, V&C generates an initial binary pattern where less than half
of the pixels are chosen to be turned on randomly. V&C transforms
these pixels into an initial blue noise set by repeatedly turning off
the tightest cluster pixel—defined as argmaxp∈M E(p)—and turn-
ing on the largest void pixel—defined as argminp∈M E(p). This
process is repeated until the same pixel is found for both opera-
tions. The energy at a pixel p is defined as

E(p) = ∑
q∈M

E(p,q). (2)

Next, V&C converts the blue noise set into a progressive sequence.
It iteratively turns off the tightest cluster pixel and assigns an in-
dex equal to the number of pixels that remain on. This process is
repeated until all pixels are turned off, at which point the initial
binary pattern is turned back on.

In the second phase, V&C iteratively turns on the largest void
pixel, assigning the next ordering number, until half of the pixels
are on and ordered.

In the third phase, V&C reverses the state of all pixels, turning
off pixels on and vice versa. V&C iteratively turns off the current
tightest cluster pixel, giving each pixel the next ordering number
until all pixels are off and ordered.

Once all pixels are ordered, this ordering is used to compute the
final pixel values in the output image. For floating-point images,
per-pixel values can be found by dividing the order of each pixel
by the total number of pixels in the image. For k-bit images, these
pixel values must be remapped to 0 to 2k −1.

3.2. Swap Algorithm

For vector valued masks, we extend the work of Georgiev and Fa-
jardo [GF16], to handle the temporal domain in Section 4.2. To
generate a mask M, with vectors of dimension d, the mask is ini-
tialized to uniform white noise, then randomly selected pairs of
pixels are repeatedly swapped if doing so decreases the energy of
the mask E(M). The total energy is computed as

E(M) = ∑E(p,q) = ∑exp

(
−∥p−q∥2

σ2
i

− ∥Vp −Vq∥d/2

σ2
s

)
,

(3)
where p and q are the integer coordinates, and distances are com-
puted on wrapped toroidal boundaries. Vp and Vq are the vectors
stored at those pixels. σi and σs control the strength of the energy
field over space and between the vector values respectively. The pa-
per recommends σi = 2.1 and σs = 1.0. The d/2 exponent is meant
to correct for the difference in the average distance between points
in the d-dimensional vectors and the 2D mask.

4. Spatiotemporal Blue Noise Masks

We first discuss our algorithm to make scalar valued masks, based
on the faster void and cluster algorithm. We then significantly ex-
tend the swap algorithm, which is slower, but can enable general
vector and importance-sampled masks.

While these scalar and vector valued masks are the main focus of
our work, the algorithms can be further customized to make other
types of masks. Please see the supplemental material for exposi-
tions including masks which are blue over space but stratified over
time, as well as a higher dimensional generalization of spatiotem-
poral blue noise.

The modifications described below can be seen as simple, but
the simplicity is beneficial; spatiotemporal blue noise (STBN) is
easy to implement and adopt, especially where blue noise masks
are already being used.

4.1. Scalar Valued Masks

Scalar masks have a scalar value per pixel and are useful in render-
ing algorithms that want random scalar values per pixel, such as the
volumetric rendering in Section 6.1 and Fig. 1. To generate them,
we reformulate the void and cluster algorithm from Section 3.1
such that noise generation is driven by a novel energy function, in
the spirit of Equation 2. We distribute energy in three dimensions,
but only return nonzero energy between two pixels if they are from
the same two-dimensional spatial layer, or if they are the same pixel
at different points in time. This is expressed as

E(p,q) =

{
exp
(
−∥p−q∥2

2σ2

)
, if pxy = qxy or pz = qz

0, otherwise,
(4)

where a pixel in the three-dimensional spatiotemporal blue noise
texture is denoted as p = (pxy, pz) = (px, py, pz).

The first condition ensures spatial blue noise, while the second
condition ensures that each pixel will exhibit blue noise properties
over time. This energy function is illustrated in Fig. 2. We used an
initial binary pattern density of 10% of pixels, σ = 1.9 for all axes.
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Figure 2: Energy functions of blue noise masks. 2D blue noise is
made independently of other slices. 3D blue noise is fully aware of
all slices. Our Spatiotemporal Blue Noise adds temporal awareness
to each pixel in 2D blue noise.
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Figure 3: Spatiotemporal frequencies of various masks. Only ours
(STBN) has blue noise over space and time (z-axis). Golden ratio
animated blue noise (GR) and Heitz Belcour (HB LDBN) show
specific frame numbers where the blue noise is much lower quality.

The reasoning behind the design of this energy function is that
we want noise which is blue over space (the xy plane) and also we
want each pixel individually to be blue over time (the z axis). The
motivation for blue noise on the z axis is only to give better conver-
gence than white noise. While our formulation gives equal weight-
ing to both the spatial and temporal requirements, we’ve found that
this gives good results.

4.2. Vector Valued Masks

Vector masks have a vector value per pixel and are useful in ren-
dering algorithms that want random vector values per pixel, such as
the ambient occlusion in Section 6.2 and Fig. 9. To generate them,
we make the same algorithmic modifications. We distribute energy
in three dimensions, but only return nonzero energy between two
pixels if they are from the same two-dimensional spatial layer, or
if they are the same pixel at different points in time. We set σi to
1.9 and σs to 1.0. The d/2 exponent in Equation 3 becomes d/3
because we are working in three dimensions now. Our energy func-

tion is

E(p,q)=

exp
(
−∥p−q∥2

σ2
i

− ∥Vp−Vq∥d/3

σ2
s

)
, if pxy=qxy or pz=qz

0, otherwise.
(5)

Importance sampling is often desired when rendering, but putting
samples through importance sampling functions distorts the points.
This damages their otherwise desirable properties such as conver-
gence speed or frequency content [CRW09], causing developers to
have to choose between importance sampling or good sampling se-
quences. We realized that the texture can be initialized to nonuni-
form white noise vectors, before the algorithm is executed, allow-
ing for blue noise masks which are also importance sampled. The
PDF of each pixel can either be stored in, e.g., the alpha channel
of the mask, or it can be derived, for instance, by a dot product in
the case of cosine weighted hemispherical samples. This allows a
developer to have both importance sampling and (spatiotemporal)
blue noise sampling properties without compromising on either.

This algorithm is able to generate scalar masks as well, but ex-
ecution time is longer than void and cluster, and stopping is con-
trolled by either an error threshold, or a maximum swap count, both
of which are tuneable parameters. Because of this, void and cluster
is able to make higher-quality scalar masks more quickly, although
it is limited to uniform PDFs.

5. Analysis

We now analyze the spatiotemporal blue noise produced by our
method, and also discuss the use with temporal antialiasing (TAA).

5.1. Scalar Spatiotemporal Blue Noise Analysis

We generated scalar valued masks of resolution 643 of the follow-
ing types: spatiotemporal blue noise (STBN, our method), indepen-
dent 2D blue noise (2DBN), 3D blue noise (3DBN), and the low
discrepancy sampler by Heitz and Belcour [HB19] (HB LDBN).
We also repeatedly added the golden ratio to a single 2D blue noise
mask (GR) to make it low discrepancy over time, which is equiv-
alant to using a spatial blue noise texture to Cranley-Patterson ro-
tate the golden ratio rank 1 lattice.

Figure 3 shows that only our masks have attenuated low frequen-
cies on both the XY spatial plane as well as the Z time axis. 2D
blue noise has spatial blue noise but is white noise temporally due
to each slice being generated independently. 3D blue noise is blue
over neither space nor time. Golden ratio animated blue noise and
HB LDBN both damage the blue noise spatially and their time axes
have pronounced frequency peaks which result in strobing.

To test convergence speeds, we use these types of noise to in-
tegrate simple 1D functions. Figure 4 shows that while our masks
are not always the fastest converging (compared to low-discrepancy
temporal sequences), they are competitive, and are more tempo-
rally stable than the competition. This is because of the low aliasing
property of blue noise, due to it being made from high-frequency
randomization, instead of the structural patterns you see in a low
discrepancy sequence. For more information about the temporal in-
stability, please see Burley’s work [Bur20]. Convergence levels off
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Figure 4: RMSE for sampling simple functions. Each sample is a frame of a 64× 64 noise texture. Samples are combined using EMA
(α = 0.1) (left 3) and Monte Carlo integration (right 3). EMA simulates TAA without reprojection, motion vectors, or history rejection.
Independent slices of 2D blue noise (green) are white noise over time, STBN shows toroidal progressiveness in the offset sequence STBN
1/3 (yellow), and the low discrepancy samples show good but erratic convergence (magenta, teal). Golden ratio animated blue noise (magenta)
has a spike under EMA where the sequence restarts to avoid numerical issues.

to a plateau in EMA because it is a leaky integrator and converges
to a biased value. Leaky integration is desired in dynamic, inter-
active real-time rendering situations, over Monte Carlo integration,
which is appropriate only for static conditions.

Only our noise gives good spatial error distributions while also
giving competitive convergence speeds, and desired temporal sta-
bility. Another important feature of our method is toroidal progres-
siveness, which is discussed in Section 5.3.

5.2. Vector Spatiotemporal Blue Noise Analysis

Fig. 5 shows spatial and temporal frequency content of multiple
types of spatiotemporal blue noise masks, including importance
sampled masks. The scalar mask made with the void and cluster
algorithm stores the same type of data as the Vec 1 mask made with
the swap algorithm, but the quality generated by the void and clus-
ter algorithms is noticeably higher. Note that the void and cluster
algorithm is unable to make vector valued or importance sampled
blue noise masks. Frequency comparisons versus non spatiotempo-
ral masks is omitted as the results are very similar as in Fig. 3. In
all cases of spatiotemporal blue noise shown, the low frequencies
are attenuated on both the XY spatial plane as well as the Z time
axis. While vector valued blue noise masks have been generated by
others [GF16], vector valued spatiotemporal blue noise masks and
nonuniform distributions of vectors within them are novel.

To test convergence speeds, we use two-dimensional vector val-
ued noise types to integrate simple 2D functions in Fig. 6. We com-
pare independently generated 2D blue noise (2DBN), scalar STBN,
which reads at two different pixel offsets to get two values, impor-
tance sampled STBN (IS STBN), which is importance sampled to
the specific function being integrated, and uniform STBN (STBN),
which has uniformly distributed vectors.

Our importance sampled spatiotemporal blue noise generate re-
sults with substantially lower RMSE in all cases in Fig. 6. 2DBN
once again performs the same as white noise over time, due to each
frame being generated independently. A noteworthy result is that
while vector valued STBN beats scalar STBN in both circle and
Gauss, scalar wins when integrating the step function. This is due
to the step function being an inherently scalar function, and it is
well known that single axes of blue noise sample points are not
themselves blue when looked at independently [RRSG16].

5.3. Use with TAA

Temporal antialiasing uses an exponential moving average (EMA)
for each pixel, correlating pixels from frame to frame to account for
motion. When history is determined to be invalid due to events like
disocclusion, a pixel will reject the history and restart the integra-
tion. This is a problem when using a global progressive sequence
because different pixels restart on their own timelines, defeating
the benefits of the progressive sampling by starting sampling in
the middle of a sequence. To counter this, sequences are restarted
fairly often, limiting the number of effective samples a pixel can in-
tegrate, and thus limiting image quality [YLS20]. Our masks avoid
this by being toroidally progressive, providing a seamless, progres-
sive sampling sequence for each pixel starting at any index. This al-
lows for longer sampling sequences, and thus higher effective sam-
ple counts and image quality. This is demonstrated in Fig. 4, where
“STBN 1/3” shows the masks starting at frame index 11 instead of
0, and resulting in the same convergence rate.

Golden ratio animated blue noise needs to restart the sequence
periodically to keep from hitting numerical problems, and creates
a spike of error and a sampling discontinuity when that happens.
Our noise does not have that problem by being seamless, as can
be seen by the clear frequency content on the DFT in Figure 3,
which assumes infinite repetition of the sampling pattern, and is
thus seamless for the frequencies shown.

The whole purpose of using temporal antialiasing is being able
to have a moving, dynamic scene which is able to amortize render-
ing costs by integrating a render over time. When pixels are under
motion in TAA, pixel history migrates between the pixels but the
sampling sequence does not. If the desire is to have sampling with
specific properties over space, and specific properties over time, a
moving pixel has to choose whether to preserve the spatial or tem-
poral properties after it has moved. As the goal of our work is to
maximize image quality at the lowest of sample counts, we opt to
preserve spatial properties and not migrate the sampling sequence.

Figure 7 shows that our masks have spatial blue noise quality
under TAA when pixels are in motion, keeping full benefit of spatial
blue noise (including the ability to use importance sampled blue
noise vectors spatially), and that they do better for any pixels which
are not in motion. Any still pixels will converge faster and better,
and that quality will be carried around if those pixels start to move.
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Figure 5: Masks and their spatial (xy) and temporal (xz) frequency content. All masks have uniform distributions except for cosine unit vec 3,
which involved cosine weighted hemispherical unit vectors, and an HDR image which used an HDR skybox image as a source for importance
sampling. Scalar was made with the V&C process while the others were made with the swap process.
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Figure 6: RMSE for sampling simple functions. Each sample is a frame of a 64× 64 noise texture. Samples are combined using EMA
(α = 0.1) (left 3) and Monte Carlo integration (right 3). EMA simulates TAA without reprojection, motion vectors, or history rejection.
Independent blue noise (green) shows the same convergence as white noise (blue), importance sampled STBN (magenta) shows the best
convergence, and scalar STBN (teal) wins for step which is inherently 1D, while vector STBN (red) wins for the other functions that are
genuinely 2D.
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Figure 7: Convergence rate of ray traced AO. STBN (our method)
and White×Sobol have best convergence under Monte Carlo at low
sample counts. Under TAA, STBN has the best convergence for
regions not in motion, but under motion it is equivalent to spatial
blue noise.

5.4. Properties After Spatiotemporal Filtering

Fig. 1 shows that after multiple frames of EMA in a realistic ren-
dering situation, spatiotemporal blue noise retains spatial blue noise
but has a lower error magnitude than animated 2D blue noise. To
answer the question of whether this is a property of the noise or
the rendering algorithm, Fig. 8 shows a more direct evaluation by
integrating a constant function. Note that the DFT of a constant
function consists of zeroes everywhere except at frequency 0 (DC

component). Spatiotemporal blue noise shows a strong blue noise
spectrum for few samples in the figure, but converges substantially
faster to the expected result as can be seen in the bottom right im-
age. This can be seen as evidence that a spatiotemporal blue noise
mask provides a better integral value compared to spatial blue noise
masks. More results supporting this can be seen in the supplemental
material.

6. Results

Our masks have broad applications in a range of rendering and re-
lated problems. We show three representative examples, involving
respectively scalar, vector, and importance sampled masks. As our
masks are meant to be used in animated images, and not still im-
ages, we encourage readers to view the interactive html demos in
the supplemental material.

6.1. Scalar Masks: Volumetric Rendering

We present a simple algorithm for rendering single scattering het-
erogeneous participating media with very low sample counts, sim-
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Figure 8: Top: Integrating a constant function with 64 noise textures using 2D blue noise and spatiotemporal blue noise. Bottom: The discrete
Fourier transform magnitude of those integrated textures. Both types of noise show blue noise spectrum spatially, but spatiotemporal blue
noise converges to the expected result substantially faster.
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Figure 9: Ray traced ambient occlusion under Monte Carlo and TAA. Only our noise is blue over both space and time, and has the best
quality shown for 4 samples under Monte Carlo, and 64 frames under TAA. Columns 2 and 4 are averaged to show expected spectra across
all time slices. The ground truth is shown in the inset in the left image (lower right corner).

ilar to the airlight model by Sun et al. [SRNN05], but computed
numerically for heterogeneous volumes.

First, a camera ray o+ tω⃗o is cast through the bounds of a het-
erogeneous volume, where an enter distance tmin and exit distance
tmax through those bounds are recorded. From here, we use stochas-
tic ray marching to march through the volume at n evenly spaced
locations, where the space between each sample is d

n−1 units and
d = tmax − tmin. The location ps of a sample s ∈ Z[0,n−1] is then

calculated as

ps = o+
(

s
d

n−1
+ tmin

)
ω⃗o. (6)

At each sample point ps, a volumetric density field F is sampled
to get a density fs. This density is assumed to represent the density
for an entire step length of distance. We accumulate this density
and proceed to the next sample point until the following criterion is
met:

∑
s

fs ≥− ln(1−ξ), (7)
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Figure 10: 1 SPP stochastic convolution under Monte Carlo and EMA. STBN converges faster under both, while also showing a blue noise
spectrum over space and over time.
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Figure 11: Convergence rate of stochastic convolution. The results
are very similar for both Monte Carlo and EMA. Uniform white
noise provides the highest RMSE. Importance sampled blue noise
that stores a Vec2 per pixel but is white noise over time generates
a similar results as importance sampled white noise. Our method
(STBN) is the algorithm with the lowest RMSE.

where ξ is a drawn random number, which is read from scalar noise
masks. Once this condition is met, the point on the ray ps will be
approximately located at the sampled free-flight distance, or the
distance at which the ray collides with a particle in the media. For
more information, see the course by Novák et al. [NGHJ18].

At this point, a second ray originating at this collision point is
traced toward a directional light source. Again, we march the ray
through the volume. This second ray composites volumetric sam-
ples from front to back until the ray exits the volume. This com-
posited value is then used to represent transmittance along the ray.
To shade our collision point, we multiply the light intensity by the
transmittance of light, and multiply by the albedo of the volume at
the sampled collision location.

As shown in Fig. 1, using 2D blue noise for the free-flight colli-
sion distance turns the error into a pleasing 2D blue noise pattern.
When using spatiotemporal blue noise, that pleasing 2D blue noise
pattern still exists but is of a lower magnitude.

Fig. 12 shows convergence rates. Our spatiotemporal blue noise
achieves competitive convergence with both the golden ratio LDS
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Figure 12: Convergence rate of single scattered volume rendering.
Our spatiotemporal blue noise is competitive with the low discrep-
ancy sequences but is much more stable and does not have the seam
at the sequence restart point seen in EMA.

and the LDS by Heitz and Belcour [HB19]. However, note that our
results do not damage the spatial blue noise properties, unlike these
prior techniques. Moreover, our method is more temporally stable
with somewhat faster convergence under EMA, which can also be
seen more clearly in the supplemental material.

In Fig. 1, we also report image error metrics, namely RMSE,
SSIM, and FLIP [ANA∗20], against a single scattering ground truth
image. Although 2D blue noise already shows a favorable image
error, our spatiotemporal blue noise further reduces this error by
36% for RMSE, 43% for SSIM, and by 30% for FLIP.

6.2. Vector Masks: Ambient Occlusion

Next, we present a ray traced ambient occlusion algorithm. Each
pixel reads a three-dimensional unit vector from a mask to use as
the ray direction for a visibility query from the primary ray hit lo-
cation. The ray hit length is used to interpolate the AO value from
completely in shadow at t = 0 to completely in light at t = T , a
scene dependent maximum AO ray length. This is multiplied by
the cosine of the incident angle to get the final AO sample for that
pixel. If multiple samples are taken, the samples would be averaged
together for the final AO value.

© 2022 The Author(s)
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2D blue noise STBN (ours)

Figure 13: Here we show images denoised using a spatiotemporal filter. The left inset used 2D blue noise during rendering, while the right
inset used STBN. As can be seen, the level of noise in the final images are reduced to a greater extent with STBN.

Rendered results are shown in Fig. 9, where it can be seen that
our spatiotemporal blue noise provides the best image quality un-
der TAA, as well as low sample count Monte Carlo integration. The
convergence graphs shown in Fig. 7 show the same. Only our noise
gives both high quality blue noise spatially and faster convergence.
Please also see our interactive html demo in the supplemental ma-
terial where these differences are even more distinct.

6.3. Importance Sampled Vector Masks: Stochastic
Convolution

Finally, we show a stochastic convolution algorithm which de-
creases the cost of convolving against a large kernel by convolving
against a sparse subset of the kernel instead to save computation
time. Each pixel reads a two-dimensional vector from a mask, sam-
ples the kernel at that location, and divides by the PDF. The kernel
weights drive the PDF.

The rendered results in Fig. 10 show that STBN generates im-
ages with quality that is substantially closer to the ground truth im-
age compared to the other methods, both under low sample count
Monte Carlo and EMA. The convergence graphs in Fig. 11 show
that our importance sampled vector valued spatiotemporal blue
noise masks provide lower RMSE in those scenarios as well.

Imperfections in the importance sampling exist due to both the
vectors and PDFs being stored in textures quantized to 8 bits per
color channel.

6.4. Denoising

Since virtually all ray tracing based real-time rendering frameworks
use some type of denoising technique, we also investigated how
spatiotemporal blue noise works together with a denoising algo-
rithm. In Fig. 13, an image was rendered using the PICA PICA
ray tracing framework [BBHW∗19] using a spatiotemporal filter.
As can be seen, the insets show that the level of noise is substan-
tially reduced using STBN compared to using 2D blue noise. This
is a strong argument showing that STBN is valuable in low sample
count real-time rendering scenarios.

7. Conclusions and Future Work

We have presented the first techniques that can generate scalar and
vector valued masks with spatiotemporal blue properties. This was
achieved by modifying existing algorithms for blue noise mask
generation. We have shown how these masks can be useful for a
variety of rendering algorithms and how resulting images have per-
ceptually pleasing error and are easier to filter, while decreasing
error magnitude through faster convergence.

A limitation of this work is the behavior under TAA when pix-
els are in motion. Our method does no worse than purely spatial
blue noise when under motion, and does much better when not in
motion. It would be good to address this situation better, perhaps
by allowing all pixels within a similarly moving region (like on the
surface of a moving object) to retain their sampling sequence after
motion.

In Fig. 5, it can be seen that the scalar void and cluster noise
provides higher quality than the scalar (Vec 1) valued noise made
with the swapping algorithm. We also believe that STBN is a sin-
gle member of a family of arbitrary dimensionality precomputed
sampling textures optimized towards specific denoising techniques,
rendering techniques, and artistic content. Both points suggest there
is plenty of image quality left to be discovered at the lowest of sam-
ple counts.

In summary, spatiotemporal blue noise masks (STBN) have
many applications, and are a drop-in replacement for independent
2D blue noise masks currently widely in use for real-time render-
ing.
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