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1 VIDEO
We render video clips to better demonstrate the SVBRDF estimation
results. For synthetic data, we have a side-by-side comparison of
videos rendered with ground-truth BRDF parameters and estimated
BRDF parameters. The appearances in the two videos are observed
to be very similar. We can see the change of specular highlights
when rotating the environment maps, which shows that spatially
varying roughness has been successfully captured by the network.
We do not have ground truth BRDF parameters for real data. But
the change of shading and specular highlights when rotating the
environment maps looks realistic. In order to observe more high
frequency specular highlights, we also render a video with a mov-
ing point light source for real data. Note that the above results are
rendered without depth maps. To show that our method can suc-
cessfully recover the geometry of objects, we also render two video
clips of novel view synthesis using the estimated depths, with and
without the flash light. We use median filter to make the original
depth estimations smoother. However, when rendered without flash
light, some artifacts can still be observed due to incorrect depth
estimation. Given that the depth estimation is less accurate than
normal estimation, one potential future improvement will be to use
normal prediction to refine depth estimation [Nehab et al. 2005].

2 CASCADE NETWORK
In Figures 1 and 2, we show the effect of using cascade structure for
SVBRDF estimation. For synthetic data, we add an error visualization
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so that the differences between estimated BRDF parameters and
ground truth can be clearly observed. We observe that the cascade
structure significantly reduces the error. Interestingly, the cascade
network implicitly learns a piece-wise constant prior for spatially
varying roughness prediction. Such a prior is likely to be important
for this challenging problem, since with such limited inputs, the
network may not have enough information to determine roughness
values for large portions of the surface. For real data, even without
ground truth, the improvements across different levels of cascades
are still very evident.

3 BRDF MODEL
We use the microfacet BRDF model in [Karis and Games 2013].
Following the notation in the main paper, let A, N , R be the diffuse
albedo, normal and roughness respectively. Let L andV be light and
view direction and H = V+H

2 be their half vector. Our BRDF model
is defined as

f (A,N ,R,L,V ) =
A

π
+
D(H ,R)F (V ,H )G(L,V ,H ,R)

4(N · L)(N ·V )
(1)

D(H ,R), F (V ,H ) and G(L,V ,H ,R) are the distribution, Fresnel and
geometric term respectively, which are defined as

D(H ,R) =
α2

π
[
(N · H )s (α2 − 1) + 1

]2
α = R2

F (V ,H ) = (1 − F0)2−[5.55473(V ·H )+6.8316](V ·H )

G(L,V ,R) = G1(V ,N )G1(L,N )

G1(V ,N ) =
N ·V

(N ·V )(1 − k) + k

G1(L,N ) =
N · L

(N · L)(1 − k) + k

k =
(R + 1)2

8
We set F0 = 0.05 as suggested in [Karis and Games 2013].
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Fig. 1. Effect of cascade structure of real data. While ground truth is not available for these examples, qualitative improvements due to the cascade structure
may still be clearly observed.
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Fig. 2. Effect of cascade structure on synthetic data. We add an error visualization so that the improvements due to different cascade levels can be clearly
observed. We show absolute errors for all three BRDF parameters, while the depth map is normalized such that the ground truth value is in range of 1 unit.
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