
Supplementary Material:
Photon-Driven Neural Reconstruction for Path Guiding

SHILIN ZHU, University of California San Diego, USA
ZEXIANG XU, Adobe Research, USA
TIANCHENG SUN, University of California San Diego, USA
ALEXANDR KUZNETSOV, University of California San Diego, USA
MARK MEYER, Pixar Animation Studios, USA
HENRIK WANN JENSEN, University of California San Diego and Luxion, USA
HAO SU, University of California San Diego, USA
RAVI RAMAMOORTHI, University of California San Diego, USA

CCS Concepts: • Computing methodologies → Ray tracing.

Additional Key Words and Phrases: Global Illumination, Path Guiding, Ray
Tracing, Sampling and Reconstruction, Neural Rendering

ACM Reference Format:
Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer,
Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi. 2021. Supplementary
Material: Photon-Driven Neural Reconstruction for Path Guiding. ACM
Trans. Graph. 1, 1, Article 1 (January 2021), 5 pages. https://doi.org/10.1145/
3476828

1 SUPPLEMENTARY MATERIAL
In the supplementary material, we provide additional experimental
results and visualizations, as well as discussions on potential exten-
sions of the proposed framework. Although not being emphasized
in the main paper, these additional studies and evaluations are also
important in the design of a full-fledged path guiding supported
renderer in practice.

1.1 Monte-Carlo Denoising
Monte-Carlo (MC) rendering algorithms such as path tracing are
known to suffer from the slow convergence problem when produc-
ing noise-free images [Kajiya 1986; Lafortune 1996]. In recent years,
MC denoising has become a successful approach to reduce pixel
variance, especially those based on deep neural networks [Bako
et al. 2017; Chaitanya et al. 2017; Vogels et al. 2018]. Although MC
denoising is a biased operation, it significantly increases the visual
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quality by removing the last-mile residual pixel noise. Therefore,
we apply the learning based denoising technique to the rendered
results from path-guiding methods, which can be a practical way
to use the method. In particular, we use the built-in denoiser from
Nvidia OptiX 6.5 [Parker et al. 2010] to process the output of all the
approaches, as shown in Fig. 1. In fact, although the denoiser can
effectively reduce rMSE in most cases, such denoising is reasonable
only when the rendered image has an acceptable level of MC noise;
otherwise the results can appear blurry with missing details (e.g.,
the caustics area in the Egg scene) or distorted (e.g., the center re-
gion in the Hotel scene), which is unacceptable in either case for
offline photo-realistic rendering.

1.2 Next-Event Estimation
In the default experimental setting, we turn off the next-event es-
timation (NEE) to clearly compare the effects from path guiding
(similar to [Müller et al. 2017] and [Vorba et al. 2014]), though in
practice NEE can be effective and should be always turned on. In
particular, NEE can help reducing the variance by easing the light
discovery and improving the sampling map quality. To study how
NEE affects the path guiding results, we turn on the standard NEE
in Fig. 2. Results show that whether NEE is useful or not depends
mostly on the light setup. For the Bathroom scene, the glass bulb
fixture and staggered window blinds make the direct connection
difficult to succeed; for the Veach Ajar scene, NEE connection
fails and succeeds from time to time depending on the local light
visibility. However, we believe more advanced NEE techniques such
as the light hierarchy [Walter et al. 2005] should be able to sample
the direct illumination more efficiently over the standard NEE, and
it is interesting to explore how different path guiding approaches
interact with state-of-the-art direct light sampling in future research.

1.3 One-Sample MIS
In the main paper, we demonstrate a new heuristic pipeline for
estimating the mixture coefficient 𝛼 in one-sample MIS of BSDF
sampling and guiding. This is useful in some cases, as shown in
Fig. 3. In the Pool scene, the BSDF sampled directions from the floor
surface often fail to reach the sunlight, thus contributing less energy
to the final pixels. Therefore, our heuristic encourages sending more
guiding samples in those regions based on the collected statistics
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Fig. 1. Monte-Carlo denoising on the path guiding rendering results. We use the deep learning based image-space denoiser in Nvidia OptiX 6.5. In general, the
denoiser in-paints the missing regions in between pixels and filters out the high-frequency MC noise. The denoised images rendered with our method are
more acceptable without severe blurring or distortion.
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Fig. 2. The effect of the standard next-event estimation (NEE) on the path guiding rendering results. The comparison is equal-time for each row. Results show
that NEE effectively improves the results in some cases while it is not very successful in some other cases, depending on the sampling map quality in path
guiding and the light visibility levels at different scene locations.

of previously traced path samples. For glossy surfaces such as the
metal armrest in this scene, we send more BSDF samples since
many guided directions have small or zero BSDF values. Although
the proposed heuristic is still sub-optimal, it is straightforward
to implement and does not introduce too much overhead. In the
future, we believe our heuristic can provide a good starting point
to initialize other methods that try to optimize 𝛼 during rendering
[Müller 2019; Rath et al. 2020].

1.4 Adaptive Hierarchical Grid
We also investigate the presented spatial structure - the hierarchical
grid. We show result images rendered with different initial resolu-
tions for the adaptive grid in Fig. 4. We also show corresponding
results using only an uniform grid without the adaptive partitioning
inside voxels. Note that without the adaptivity, rendering quality
varies drastically with different resolutions, since a low-resolution
grid lacks expressibility of complex local light fields and a high-
resolution grid does not cover sufficient photons in some voxels. In
the extreme case, under-partitioning and over-partitioning can both
reduce the performance. On the contrary, the hierarchical grid is

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Supplementary Material:
Photon-Driven Neural Reconstruction for Path Guiding • 1:3

Scene/Method PT [Bako et al.
2019]

[Vorba et al.
2014]

[Müller
et al. 2017]

[Rath et al.
2020]

[Ruppert
et al. 2020]

Ours

Metric SOTA SSIM ↑
Caustics Egg 0.1017 0.1824 0.3472 0.4581 0.7006 0.7866 0.8242
Veach Ajar 0.0474 0.0898 0.4579 0.5455 0.6325 0.6921 0.8572
Bathroom 0.4481 0.4725 0.5472 0.5260 0.5924 0.8195 0.7427
Hotel 0.0695 0.1155 0.0914 0.2665 0.2801 0.4634 0.4378
Staircase 0.4810 0.4957 0.6513 0.7337 0.8626 0.7625 0.8951
Living Room 0.1360 0.1719 0.4734 0.2960 0.3327 0.6065 0.6576
Spaceship 0.5610 0.7476 0.8611 0.7452 0.8124 0.8922 0.8793
Classroom 0.2789 0.3037 0.5756 0.6352 0.7681 0.7505 0.8234
Wild Creek 0.3023 0.3734 0.4890 0.4852 0.5386 0.6130 0.6222
Kitchen 0.3898 0.4173 0.4655 0.6753 0.7873 0.7383 0.8168
Pool 0.2264 0.4595 0.8551 0.8598 0.9364 0.9068 0.9510

Table 1. Quantitative comparison. We compare our approach to [Bako et al. 2019; Vorba et al. 2014; Müller et al. 2017; Rath et al. 2020; Ruppert et al. 2020]
with equal rendering time. We show the corresponding SSIMs of the rendered full images of the testing scenes. Red, orange, and yellow denote the best, the
second-best, and the third-best method in terms of SSIM (higher is better).
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Fig. 3. Our proposed heuristic one-sample MIS scheme outperforms the
default mixture coefficient 𝛼 = 0.5 especially when BSDF sampling and
guiding sampling have very disparate contributions to the final image.
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Fig. 4. The effect of initial grid resolution and our hierarchical spatial parti-
tioning framework. Ideally, the voxel size should be small enough to reflect
the locality of the incident radiance, and large enough to cover sufficient
number of photons for sampling map reconstruction.

more stable and insensitive with different initial resolutions, since it
can adaptively subdivide the initial grid to a desired density locally.

1.5 Additional Statistics
We include the rendering time of each scene in the experimental
section of the main paper. In Table. 2, we further present the tim-
ing breakdown according to the proposed path guiding algorithm.

Component Path
(%)

Photon
(%)

Neural
rec (%)

Path
(%)

Time
(min)

Algorithm 1 LN 3∼24 LN 25∼35 LN 36∼38 LN 40 /
Device CPU CPU GPU CPU /
Phase iterative process (when 𝑡 < 𝑇 ) final /
Caustics Egg 13.91 21.83 8.36 55.88 4.0
Veach Ajar 14.58 21.08 5.76 58.56 18.0
Bathroom 15.42 11.86 9.77 62.93 5.0
Hotel 15.05 18.58 5.89 60.46 20.0
Staircase 15.79 15.77 5.01 63.41 11.0
Living Room 16.42 11.73 5.89 65.94 11.0
Spaceship 16.49 9.20 8.06 66.23 3.0
Classroom 15.33 16.68 6.39 61.57 13.0
Wild Creek 17.05 8.41 6.02 68.50 10.0
Kitchen 14.35 19.06 8.94 57.63 4.0
Pool 16.78 8.22 7.57 67.40 4.0

Table 2. Running time breakdown. Percentages of running time of different
components in the proposed system are shown for different testing scenes.
The total rendering time for each scene is also listed in the rightmost column.
The time distribution varies depending on the scene complexity and light
setup.

Thanks to the effective sampling map reconstruction that is com-
bined with iterative sample tracing and rendering, our approach
can save more time for the guided path tracing over distribution
learning.

For quantitative evaluation, we use the rMSE metric in the main
paper. There exists other metrics that are inspired by human visual
perception such as the Structural Similarity Index (SSIM [Wang
et al. 2004]). The results on SSIM are presented in Table. 1, which
are generally consistent with rMSE results but rankings are slightly
different for some scenes. This is because SSIM focuses on multiple
factors such as brightness, contrast, and structure while rMSE only
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Fig. 5. Reconstructed sampling map visualization through multiple learning iterations. The reconstructed distributions lead to better path space exploration at
the beginning and more accurate representations of the incident radiance in the subsequent iterations.

�

$GGLWLRQ

6NLS�FRQQHFWLRQ

/RVV�FRPSXWDWLRQ

)HDWXUH�VSDFH�UHFRQVWUXFWLRQ

��

�� ��

5DZ�VDPSOLQJ�
PDS���)HDWXUHV

5HFRQVWUXFWHG�
VDPSOLQJ�PDS

)HDWXUH�$JJUHJDWLRQ�
%ORFN

�[
��
'
LOD
WH
G�

&
RQ
Y

(
/8

�[
��
'
LOD
WH
G�

&
RQ
Y

(
/8

�[
��
8
SV
DP

SO
H

�[
��
8
SV
DP

SO
H

�[
��
'
LOD
WH
G�

&
RQ
Y

(
/8

�[
��
'
LOD
WH
G�

&
RQ
Y

�[
��
'
LOD
WH
G�

&
RQ
Y

(
/8

(
/8

&HQWHU�&RQY�%ORFN

'HFRGHU�&RQY�%ORFN

�[
��
&
RQ
Y

(
/8

(
/8

�[
��
&
RQ
Y

�[
��
8
SV
DP

SO
H

�[
��
&
RQ
Y

(
/8

(
/8

�[
��
&
RQ
Y

(QFRGHU�&RQY�%ORFN

$Y
J�
3
RR
O

8SVDPSOH 6NLS�FRQQHFWLRQ $GGLWLRQ

)HDWXUH�PDS &HQWHU�IHDWXUH�PDS &RQFDW�IHDWXUH�PDS

Fig. 6. The neural network architecture for sampling map reconstruction. We use a compact autoencoder with light-weight masked convolutions [Liu et al.
2018; Yi et al. 2020] and ELU [Clevert et al. 2015] activation function which can extract high-level deep features from the input power map and output a
smooth and detailed sampling map. The bottleneck layers use dilated convolutions [Iizuka et al. 2017] to further expand the size of the receptive fields.

reflects the brightness difference. We leave other advanced metrics
(e.g., FLIP [Andersson et al. 2020]) as future work.

1.6 Neural Sampling Map Reconstruction
Some reconstructed sampling maps are visualized in Fig. 5. After
pre-training on an offline dataset, our neural networks can pro-
gressively reconstruct higher-quality sampling maps with more
accumulated photon power through iterations on new scenes. Un-
like previous Monte-Carlo denoising neural networks [Chaitanya
et al. 2017; Bako et al. 2017; Vogels et al. 2018] which only process
the input image once, our reconstruction is getting better and closer
to the reference sampling maps over time. More specifically, the

pre-trained neural network reconstructs more aggressively in the
early iterations to encourage more exploration of the directional
sampling space; in the later iterations the reconstructed maps con-
tain more accurate details of the incident radiance distribution due
to a higher level of confidence. The detailed network architecture
used for such reconstruction in the main paper is presented in Fig. 6.
We believe the designed deep network can be further compressed
by the state-of-the-art neural compression methods, improved by
more advanced neural components (e.g., reinforcement learning
[Huo et al. 2020]), and extended to more compact representations
(e.g., quadtrees [Müller et al. 2017; Rath et al. 2020], mixtures [Vorba
et al. 2014; Ruppert et al. 2020]) in the future (e.g., [Zhu et al. 2021]).
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