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1 SUPPLEMENTARY MATERIAL
In the supplementary material, we present some additional experi-

mental results. These evaluations are still important when we design

a full-fledged path guiding system for arbitrary scenes in practice.

1.1 Next Event Estimation (NEE)
Similar to Müller et al. [2017] and Vorba et al. [2014], the default

setting in our main paper turns off the next event estimation (NEE)

to more clearly compare the effectiveness of different path guiding

algorithms. However, NEE has already been a prevalent module in

modern renderers, and often it is able to ease the search of hidden or

small light sources. Besides, NEE can sometimes also help in acceler-

ating the path guiding algorithms by providing initial information

on potential light locations.

Therefore, we turn on the standard NEE and see how it affects

the performance of each path guiding algorithm. In Fig. 1, we test

on two scenes used in our main paper with different light setups.

For the Racing Car scene, because there are multiple tiny lights
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that are hidden behind objects with complex geometry, NEE can

be useful in the beginning to quickly connect to one of the light

sources. In general, NEE is more useful for a path sample based

guiding approach (e.g., [Müller et al. 2017; Rath et al. 2020]) than

a photon-based approach (e.g., [Zhu et al. 2020]), since photons

already provided sufficient information about visible incident lights

from a surface point. However, for the Bathroom scene, the glass

bulb fixture and staggered window blinds reduce the chance of

successful direct NEE connection to any light source. Therefore,

most methods cannot benefit much from NEE in this special case.

In general, whether NEE is contributing or not depends on the local

light visibility as well as the specific NEE technique. More advanced

direct sampling methods such as the light hierarchy [Walter et al.

2005] are able to sample the direct illumination more efficiently over

the standard NEE, and it is interesting to study how path guiding

interacts with those methods in future research.

In fact, although our method benefits less from NEE compared to

other baselines, we can still achieve better performance (although

the gain is reduced), thanks to our high-quality sampling distribution

reconstruction framework which captures both direct and indirect

illumination. In practice, it is often a good choice to request NEE,

but the decision is also affected by the total timing or sampling

budget in specific applications.

1.2 Monte-Carlo (MC) Denoising
The standard Monte-Carlo path tracing algorithm has the slow

convergence problem, which requires running the algorithm for a

long time to produce noise-free images [Kajiya 1986; Lafortune 1996].

In the past few years, MC denoising has been researched to reduce

the last-mile residual pixel variance by filtering over the rendered

image. Among all of these proposed methods, deep learning based

denoising for path tracing results using a CNN has become a very

successful approach [Bako et al. 2017; Chaitanya et al. 2017; Vogels

et al. 2018]. This greatly increases the visual quality of the image

with a small risk of bias introduced to the results.

A practical and straightforwardway to combine path guidingwith

denoising is to apply the neural denoiser on path guiding results.

More specifically, we use the built-in neural denoiser from Nvidia

OptiX 6.5 [Parker et al. 2010], which runs on the GPU, on all the
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Fig. 1. The effect of the standard next event estimation (NEE) on the results rendered equal-time for each row. NEE can improve the results in some scenes
when it is hard for path tracing to find lights in the beginning. However, it is not very efficient in some other light transport scenarios when most direct
connections fail.

Caustics Egg

0.3077 0.0495 0.0412 0.0203 0.0085

0.0365 0.0219 0.0252 0.0137 0.0126

Path

Tracer

Müller 

[2019]

Rath et al. 

[2020]

Zhu et al. 

[2020] Ours Path


Tracer
Müller 

[2019]

Rath et al. 

[2020]

Zhu et al. 

[2020] Ours

0.2432 0.0323 0.0207 0.0137 0.0084

0.0159 0.0057 0.0053 0.0043 0.0026
rMSE 0.2968 0.0139 0.0111 0.0045 0.0023

rMSE(denoised) 0.0138 0.0034 0.0040 0.0008 0.0006

Light Maze

0.9088 0.6488 0.6912 0.2654 0.0957

0.2379 0.2057 0.2054 0.0711 0.0298

0.9932 0.5852 0.5804 0.3688 0.0940

0.2015 0.2371 0.1318 0.0606 0.0208

De
no

is
e 

off
De

no
is

e 
on

De
no

is
e 

off
De

no
is

e 
on

rMSE
rMSE(denoised)

0.9031 0.4833 0.4973 0.1636 0.0867
0.2213 0.1434 0.1196 0.0424 0.0138

Fig. 2. The effect of Monte-Carlo denoising on path guiding results. The neural network based MC denoiser in Nvidia OptiX 6.5 is used here to process all the
images. The denoiser fills the black pixels and smooths out the high-frequency noise. Thanks to our high-quality reconstructed sampling distributions, our
initial rendered results contain less noise and are more acceptable after denoising without severe blur or distortion.

result images from our method and baselines. Results in Fig. 2 show

that denoising can effectively smooth the results and remove most

of the high-frequency artifacts. Moreover, our method still achieves

better visual quality even after MC denoising. This is because the

denoising performs best when the original rendered image already

had only a small amount of high-frequency noise, otherwise the

denoised image can be distorted or over-blurry (e.g., the wall in the

Caustics Egg scene and the cube in the Light Maze scene).

1.3 Additional Ablation Results
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Fig. 3. Visualization of the reconstructed quadtree over iterations. In general, our reconstruction is more conservative in the beginning thus the quadtree is
shallower. After more samples are collected over time, our reconstructed quadtree becomes more accurate and fine-grained, which eventually can converge to
the target sampling distribution.

KitchenRacing Car

Fig. 4. The effectiveness of sample features introduced in the main paper.
We show two curves with and without including the auxiliary features as
the neural network input, and results show a slight improvement when
features are considered.

We also try experimenting with more different setups in our pro-

posed framework. To justify the use of the sample features as il-

lustrated in the main paper, we have trained another version of

the network that only takes the sample value (i.e., irradiance of

path samples, or power of photons) as the input. Results in Fig. 4

show that features can offer some improvements to the final ren-

dered image by enabling higher-quality reconstructed sampling

distributions.

Since our approach takes both path samples and photons as input,

it is also necessary to study how this decision affects the perfor-

mance and robustness. In the main paper, we have verified the

increased robustness in the extreme light transport conditions. To

further justify the necessity of hybrid samples, we train another

network with only path sample input (i.e., without photons). The

comparison to our full model is shown in Fig. 5. Although "Ours-

PathOnly" is also powered by a similar neural network, removing

one type of samples from the framework can possibly cause perfor-

mance to downgrade, especially when the one being neglected is

more useful than the one being used.

1.4 Visualization of Quadtrees
In the main paper, we visualize and compare the sampling distri-

bution representations of different methods. In Fig. 3, we further

demonstrate how our reconstructed quadtree gets updated and

evolved over multiple iterations. We can see the sampling distribu-

tion becomes more accurate and detailed with time, which gradually
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OursOurs-PathOnly Reference
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Fig. 5. The effectiveness of using hybrid samples (path samples and photons).
Because of the complex visibility of the light sources, using photons is more
beneficial than path samples in this scene. The presented insets clearly show
the advantage of our hybrid sample framework.

converges to the reference distribution. It also shows that our neural

path guiding framework can process inputs of different noise and

sparsity levels.

1.5 FLIP Metric
In the main paper, we use rMSE as our primary metric to quan-

titatively measure the quality of the rendering results. Here, we

use a recently proposed metric called FLIP [Andersson et al. 2020]

which can closely reflect the human perception of image differences.

In addition, FLIP can also output a map that illustrates the error

distribution over the scene. In Fig. 6, we show that our method can

produce results that have overall less noise within the entire image.
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Fig. 6. FLIP error maps on example scenes from the main paper (brighter color means larger error). The number below each image represents the average error
of all the pixels.
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