Efficient BRDF Importance Sampling Using A Factored Representation

Jason Lawrence Szymon Rusinkiewick Ravi RamamoortHi
Princeton University Princeton University Columbia University

Abstract

High-quality Monte Carlo image synthesis requires the ability to
importance sample realistic BRDF models. However, analytic sam-
pling algorithms exist only for the Phong model and its derivatives
such as Lafortune and Blinn-Phong. This paper demonstrates af
importance sampling technique for a wide range of BRDFs, includ-
ing complex analytic models such as Cook-Torrance and measure(
materials, which are being increasingly used for realisticimage syn-
thesis. Our approach is based on a compact factored representatid
of the BRDF that is optimized for sampling. We show that our algo- | 4
rithm consistently offers better efficiency than alternatives that in- [§
volve fitting and sampling a Lafortune or Blinn-Phong lobe, and is (a) Lafortune sampling (b) Our method
more compact than sampling strategies based on tabulating the full
BRDF. We are able to efficiently create images involving multiple Figure 1: Monte Carlo renderings of a vase with a shiny Cook-Torrance
measured and analytic BRDFs, under both complex direct lighting BRDF under complex illumination. These images were generated with a
and global illumination. path tracer that selected 16 reflected rays per pixel according to (a) a best-
fit Lafortune model with 3 lobes, and (b) our factored BRDF representation.
Keywords: BRDF, Importance Sampling, Monte Carlo Integra-  Notice the reduced noise in the image on the right that was made with our
tion, Global lllumination, Rendering, Ray Tracing approach: the other algorithm would need roughly 6 times more samples to
achieve the same quality.

1 Introduction This paper develops a general, efficient importance sampling al-
) ) ) _gorithm for arbitrary BRDFs. Our algorithm is based reparam-

The modeling of complex appearance is a key component in usingeterizing the BRDF, followed by a compact and accurdeaeom-
photo-realistic rendering techniques to produce convincing images.position into factors. We express the four-dimensional BRDF as
The subtleties of how light interacts with different surfaces provide z sym of (a small number of) terms, each of which is the product
important clues about material and finish—impressions that cannot of a two-dimensional function that depends only on view direction,
be conveyed by geometry alone. In this paper, we focus on oneand two one-dimensional functions. This representation allows im-
component of appearance models, the Bidirectional Reflectanceportance sampling by numerical inversion of the Cumulative Dis-
Distribution Function (BRDF) [Nicodemus et al. 1977]. A major tripution Functions of the 1D factors. In contrast with other BRDF
challenge in incorporating complex BRDF models into a Monte factorization techniques [Kautz and McCool 1999; McCool et al.
Carlo-based global illumination system is efficiency in sampling: 2001}, which are geared towards real-time rendering, our represen-
when tracing a path through the scene, it is desirable to generategation is developed especially for sampling. To this end, we present
reflected rays distributed according to the BRDF. When simulat- the first factored BRDF representation that can be directly sampled.
ing light reflecting from a mirror-like surface, for example, most of \ve demonstrate the benefits of our method with examples in which
the energy will be in rays close to the direction of ideal specular the variance of a Monte Carlo estimator is reduced by a factor of
reflection. In this situation, it is wasteful to generate reflected rays .10 over the best alternative sampling strategies for both analytic
in random directions: many fewer total paths will be necessary if models, such as Cook-Torrance (see Figure 1), and measured mate-
the rays are generated mostly in the specular direction. This tech-ria|s, including the BRDFs acquired by Matusik et al. [2003].
nigue, known as importance sampling, reduces image variance and
is critical for efficient rendering. 2 Related Work

Effective importance sampling strategies are known only for the
simplest Lambertian and Phong models, and generalizations suchlhe goal of global illumination algorithms is numerical integration
as Lafortune’s cosine lobes [1997]. More complex BRDFs, includ- of the rendering equation, first formulated by Kajiya [1986]:
ing both measured data and physically-based analytic models (such
as Cook-Torrance [1982], which has been used for over 20 years) Lo(X, &) = Le(X, &) ‘|'/Q2 Li(x, @) p(x, @, o) (@ -n)da.

have n rr nding importan mpling str ies. This diffi- . . .
ave no corresponding importance sampling strategies sd The approach of Monte Carlo algorithms is to evaluate the incom-

icmug;g/];;s/r:mggged the widespread adoption of realistic BRDFs in ing radianced.; by recursively casting rays through the scene to sim-

ulate light transport paths.

In order to reduce variance, it is desirableitgoortance sam-
plereflected rays by preferentially considering paths carrying high
energy. One possibility is to importance sample according to the
lighting Lj, as in sampling light sources for direct illumination. In
the special case whdpg is described by an environment map, ef-
fective illumination sampling methods have recently been demon-
strated [Agarwal et al. 2003; Kollig and Keller 2003]. These meth-
ods are intended for diffuse or rough semi-glossy materials, and
typically require a few hundred samples for good results. At low to
medium sample counts, they may miss important details, especially
for glossy materials and slowly-varying environments.
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In the general case of global illumination (Figure 10), itisnot 3 A BRDF Representation for Sampling
practical to pre-compute the incoming radiance at all points in the
scene. Therefore, we seek to sample according to the product of th
BRDF p and the incident cosine term - n. The remainder of this
section describes related work on obtaining the complex analytic
and measured BRDFs we would like to sample, deriving factored
representations, and performing importance sampling in the contex
of global illumination.

dn this section, we consider the requirements and design choices in
choosing our BRDF representation for sampling. We discuss why
our requirements are different from those of previous factored rep-
resentations, and present a new factorization approach optimized
ifor the needs of importance sampling. Sections 4 and 5 go on to
discuss implementation details of our representation and sampling
algorithms.

BRDF models. There exist many analytical models for the BRDF We begin with the observation th_at, in the context of a stand_ard
that approximate the way specific materials reflect light. Some backward ray- or path-tracer, we will generally know the outgoing
of these are phenomenological, such as the popular Phong shaddirection (65, @) and will need to sample lighting and visibility

ing model [Phong 1975]. More sophisticated, physically-based over the incident he_mlsphere. A straightforward approach Woyld be
analytical models can capture effects including Fresnel reflection t0 tabulate(6;, @) slices of the BRDF for a dense set of directions
and rough microgeometry [Torrance and Sparrow 1967; Cook and S°Vering(6o, ¢), and use the appropriate one. This is essentially
Torrance 1982; He et al. 1991]. Anisotropic reflection models the approach taken by Matusik [2003] and, as far as we know, is
characterizing the reflective properties of oriented surfaces such agh€ only previous approach for importance sampling of arbitrary
brushed metal have also been developed [Kajiya 1985; Ward 1992;mea_sured materials. However, as already noted, this representation
Poulin and Fournier 1990; Ashikhmin and Shirley 2000]. Other an- "équires a large amount of storage space for both analytical and
alytical BRDF models, such as those meant to describe dusty sur-measured materials—as large as or larger than the tabulated BRDF
faces, exhibit backscattering phenomena [Hapke 1963; Oren andtSelf- )

Nayar 1994]. Despite the large amount of research on these BRDFs, 'NStead, we observe that for nearly all common materials there
most of these models have so far been difficult to sample efficiently. 'S coherence in the BRDF for different outgoing directions—for in-

This typically arises because the analytic formula is difficult or im- Stance, the shape of the specular lobe in a glossy BRDF will often
possible to integrate and invert. remain similar. Our goal is to exploit this coherence to develop

The potential benefit of using measurements of a BRDF has also@ compact representation. - First, wepar ameterize the BRDF,

gained recent attention [Ward 1992: Greenberg et al. 1997; Dana®-9: bY using the half-angle [Rusinkiewicz 1998]. As a number of
et al. 1999; Marschner et al. 1999]. The measurements of MatusikaUthorS have observed, reparameterization by the half-angle prop-

; ; ly aligns BRDF features such as specular reflection, making them
et al. [2003] provide a dense (3090 x 180) sampling of many &' of
isotropic BRDFs. The main drawback of these models is their size, E"gDp:fr to represefnt. Ne>|(|t, we gﬁa!:t?red ;orms \f/vglltjlr}g the 4D
since they typically represent the full 3D isotropic BRDF in tabular =~ has ahsum ora STla BnREI?F er 3 dpro |U°t5 0 actors, to ex-
form. In his thesis, Matusik [2003] also describes one approach for ploit the coherence in the and gevelop a compact representa-

sampling these measured BRDFs, but this representation requiredion- Similar approaches have been developed for real-time render-
as much storage as the original BRDF, making it difficult to use for ing, and have shown that reparameterization and factorization can
scenes containing many materials ' be a compact and accurate way to represent most BRDFs [Kautz

and McCool 1999; McCool et al. 2001].

Factored BRDF representations. In an effort to reduce the size The specific factored decomposition we use is the following:

of measured BRDF models while maintaining an accurate rep-
resentation of their effects, several researchers have investigated
techniques for factoring these large datasets into a more compact,

manageable form [Kautz and McCool 1999; McCool et al. 2001; | a6 e have decomposed the original 4D BRDF function (mul-

Suykens et al. 2003]. In all cases, the 4D BRDF is factored into injieq by the cosine of the incident angle) into a sum of products

products of 2-dimensional functions that can be represented as teXo 5y finctions. One of the functions always depends on the view
ture maps and used to shade a model in real-time. However, in mos

h ¢ o I | inal A tdirectionoq), and the other function is dependent on some direction

(I\:/lases_t ese actorzlzatlons allow ?}n y a sw;g e term approxmat:pn. wp arising from the reparameterization. In the case of a half-angle

ore important, there are no techniques for importance sampling parameterizationy, is taken to be
these representations.

W + o
Wh=r—""7. @
|+

Unlike previous factorization approaches, this representation sat-

isfies a number of key properties for sampling:

e One factor dependent on outgoing direction: When sam-
pling according to our representation, we know the outgoing

J
p(w, ) (@ -n)~ _Zle(ab)Gj(%), @
j=

Importance sampling: The benefit of stratified importance sam-
pling within the context of physically-based rendering has cer-
tainly been justified by the work of Cook [1986]. Since Shirley
demonstrated how to efficiently sample the traditional Phong
BRDF [Shirley 1990] and Lafortune introduced a generalization
of this cosine-lobe model [Lafortune et al. 1997], a reasonable

approach to importance sampling an arbitrary BRDF has been to
sample a best-fit approximation of one of these simpler models.
Although this technique marks a clear improvement over random
sampling, it has several drawbacks. First, it is not always trivial
to approximate the many complex BRDFs that exist in nature with
one of these models. Often, a nonlinear optimizer has difficulty fit-
ting more than 2 lobes of a Lafortune model without careful user
intervention. Second, since the sampling is only as efficient as the
approximation is accurate, it is not always the case that this strat-
egy will optimally reduce the variance for an arbitrarily complex
BRDF. Our approach, on the other hand, robustly detects the en-
ergy in a BRDF during the factorization step and provides a more
efficient sampling strategy.

directionwy, but not the incident direction (since we are sam-
pling over it). Therefore, we can directly evaludteand it is
critical that it depenanly on the outgoing direction.

Sum of products of two factors: Each term above is the
product of two factor$ andG, whereF depends only on the
outgoing direction. Thus, it is easy to sample according to the
second facto only. On the other hand, approaches such as
homomorphic factorization [McCool et al. 2001] or chained
matrix factorization [Suykens et al. 2003] can include multi-
ple factors in a term, making importance sampling difficult.
We can also enable multiple terms (with differgihfor more
accurate sampling—another feature that is difficult to incor-
porate in homomorphic factorization.
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Figure 2: Sepsin factoring a BRDF into our representation, shown for a Phong-like anisotropic BRDF [ Ashikhmin and Shirley 2000]. (a) We first compute
regularly-sampled 2D dlices of the BRDF at a fixed set of outgoing directions. Notice that in this case the flattened highlight moves according to the position
of perfect specular reflection for each view. (b) We would like to maximize the symmetry in these slices of the BRDF to make the factorization more accurate.
We accomplish this by reparameterizing these values of the BRDF with respect to the half-angle vector, as the energy in this BRDF is symmetric about this
direction. (c) We organize these samples into a 2D matrix by unfolding each 2D dlice of the BRDF into a separate column in the matrix according to its
half-angle parameterization. Notice that our choice of parameterization produces a data matrix that has a rank very close to 1. (d & e) \e use non-negative
matrix factorization to factor this data matrix into the outer product of two vectors. Because the rank of the original matrix was close to 1, we need only one
termin the factorization. (d) In the end, we are left with a column vector dependent only on the incoming direction (G reparameterized with respect to the

half-angle vector in this case) and (€) a row vector i dependent only on the outgoing view direction.

e Non-negative factors: As opposed to using a matrix decom- 4 Factorization
position algorithm such as SVD [Kautz and McCool 1999],
we use non-negative matrix factorization to ensure that all val- We now describe the details of our method to factor a tabular
ues are positive. This is necessary for interpreting the result- BRDF—Figure 2 provides an overview of the process. Unlike some
ing factors as probability distributions, according to which we previous methods, we use multiple non-negative terms in equa-
can then sample. tions (1) and (3). This disallows common techniques such as ho-
momorphic factorization or singular value decomposition. Instead,
We now observe that most BRDFs can be compacily representedinsplred by Chen et al. [2002], we use non-negative matrix factor-
by further factoring each of th&; into 1D functionsuik(8p) and ization (NMF) [Lee and Seung 2000] to decompose the reparam-
VJ.k((pP) By domg th'.s we can separat_ely Freuaan_dv as 1D dis- eterized BRDF. NMF is an iterative algorithm that allows multi-
tributions, for which importance sampling is straightforward. Our term factorizations, guaranteeing that all the entries in the factors

final factored BRDF representation is therefore are non-negative. We have found it to be robust for both single-

J K and multi-term decompositions, and capable of producing accurate
p(w,wp) (@ -n) ~ z Fi () z Ujk(6p) Vik(@p)- (3) approximations for a wide range of both analytical and measured
=1 k=1 BRDFs.

There are a total aJK terms in the final factorization, each a prod- ) . ) .
uct of a two-dimensional functiorF() and two one-dimensional Data matrix: We first organize the set of values of the original
functions (1jk andviy). reparameterized BRDF into a matrix. We consider takiggreg-

It should be noted that this factorization fits the form of many u:ar saanIes along the ouLchng (Tlevatlon anglefﬁ@dsam_ples
isotropic and anisotropic BRDFs well. For instance, a Blinn-Phong 2/0nd the outgoing azimuthal angle. For each of thgeview

BRDF [Blinn 1977] can be fit exactly by a single terth= K = 1), d:_reCtiO“S* we recorty, Samﬁ)'e_s of the ERIDF i”tT“SitY (multi-l
with variation appearing only in the(,) function. Similarly, ~ Plied by cos), spaced equally in azimuthal and elevation angles

only 2 terms § = 1,K = 2) are needed for an anisotropic Phong for the chosen BRDF reparameterization. We organize the initial

BRDF [Ashikhmin and Shirley 2000]. The same holds approxi- data samples into i, x N, matrixY.

mately for many other materials, so the above representation typi-

cally gives accurate results with a small number of terms. First factorization: Using the appropriate NMF update rules,
Note that, unlike other uses of factored BRDF models, we typi- which are summarized in the appendix, we fadtamto the product

cally use the representation above only for choosing samples. Forof two matrices of lower dimension:

actually computing the BRDF value, we use an analytic formula

where available. In this case, the representation above is a com-

pact means of sampling these commonly used analytic models, Y =[G || F | (4)

which have hitherto been difficult to sample. Similarly, for com-

pact basis function representations, such as the Zernike polyno-

mial expansions [Koenderink and van Doorn 1998] used in the  As shown in Figure 2G is anNy, x J matrix, with each column

CURET database [Dana et al. 1999] or spherical harmonic approx-corresponding to a factd®; in equation (1), whileF is aJ x Ng,

imations [Westin et al. 1992; Sillion et al. 1991], we can use the matrix, with each row corresponding to a fackgrin equation (3).

BRDF value represented by the basis functions, using our repre-It can be helpful to interpret th@; factors as basis images over the

sentation only for importance sampling. In other cases, such asincoming hemisphere anj as encoding the appropriate mixing

the dense measured BRDF representations of Matusik et al. [2003],weights to approximate the original BRDF. In practice, we rarely

we take advantage of the compactness of our multi-term factoriza- need more than 3 or 4 terms to achieve an accurate approximation,

tion and use it as the primary representation for both reconstructionand we always reduce the size of the original BRDF by at least an

and sampling. This provides a 200-fold savings in storage in many order of magnitude since our factored representation involves 2D

cases, while remaining faithful to the original data. functions rather than a 3D or 4D BRDF.



Then we normalize each terfix as

on A
O O 0 - Tie = Fi) u(8p) vik(@p)
- _ I Ujk(6p) \ [ Vik(®p)
(O B | = (UkVjkFj(wp)) <U—|k> <V—J|(>
g g = Fjk(awo) Uj(8p) Vi (). )

(a) Incident factoGy (b) uj terms (C)vjk terms Finally, dropping the primes and using a single indiewe obtain
(reshuffled from Fig. 2d) the final form of our factored representation, whereandyv, are
proper 1D probability distribution functions,

Figure 3: In order to optimize our representation for importance sampling,

we perform another factorization step on the 2D functions d dent on =

the Iijncorring direction (a) W first ?gorganize each column?r)leg into a pla, wo) (@ -n) ~ ZF' (o) u (Bp)vi(gp), L=JK. (8)
matrix such that the rows and columns vary with respect to the elevation I=

and azimuthal angles respectively. We again apply NMF to decompose this Discussion: Our representation is designed with a view to devel-
matrix into an outer product of terms. In this example, we choose to factor oping a sampling algorithm, and lacks two properties that are some-
thismatrix into two terms. Inthe end, we are left with (b) two column vectors times theoretically desirable. First, the terms in equation (1), whose
that each depend only on the elevation angle and (c) two row vectors that form is essential for sampling, do not explicitly enforce reciprocity.
depend only on the azimuthal angle of the incoming direction. These arethe (Of course, since we factor the product of the BRDF and the cosine
uand v terms, respectively, in our final representation. term, the input function is not reciprocal to begin with.) Second,

the representation is not guaranteed to be continuous—there can
If we were interested only in reducing the size of the BRDF, or be a discontinuity at the polé, = 0 in the second factorization in

in using our representation for real-time rendering, it might be rea- equation (3). In either case, we have not observed any drawbacks
sonable to use these 2D functions directly. Notice, however, that wein practice because of these properties and it can be seen from our
have approximated the intensity of the BRI (1, ) times the results that our multiple-term fits are accurate.
cosine term, which is appropriate for importance sampling. There-
fore, we would need to update this representation to account for5 Sampling
the wavelength dependence in the original BRDF. We accomplish . o )
this by using NMF to compute a single-term approximation of the e now describe how to use our representation in equation (8) for
BRDF at a particulawavelength (e.g. red, green or blue) divided by importance sampling. Intuitively, each term in the approximation
the intensity. For the red color channel, we would factor a data ma- corresponds to a specific “lobe” of the original BRDF, and the fac-

trix composed of samples of the functigheq (e, @) /Pint (@, &) torization algorithm works to find the best set of lobes to approx-
and reconstruct the red value of the BRDF by scaling our approxi- imate its overall structure. We first randomly select one of these
mation of the intensity by the approximation of this function. lobes according to the energy it contributes to the overall BRDF

There also remains a challenge in sampling according to the 2D for the current view. Next, we sample the hemisphere according to
distribution G;. It is possible to use explicit tabular approaches, the shape of this lobe by sequentially generating an elevation and
by storing a Cumulative Distribution Function @ for eachg, azimuthal angle according to the 1D factoyandy;.
but such representations are not compact. Furthermore, effectively 10 further demonstrate this idea, consider the pair of factors that
generating stratified samples given these 2D tabulated CDFs provedVe computed to approximate the anisotropic BRDF in Figures 2
to be a difficult problerh. Therefore, we perform a second factor- and 3. The first term creates a pair of_ Iobgs tha; extend along the
ization of Gj into 1D functions dependent c and g, which not y-axis, centered about the specular direction (Figure 4a), and the
only matches the form of most common BRDFs, but also makes the Second term creates a pair of flattened lobes that extend along the

representation easy to sample and further reduces storage require$-@xis (Figure 4b). We could imagine sampling the hemisphere
ments. according to just one of these terms (Figure 4c,d): using each term

alone generates samples in a different region of the BRDF. If we
Second factorization: As shown in Figure 3, we separately factor generate samples according to both terms with equal probability,
each column of the matrig, corresponding to a 2D function that  however, the aggregate effect is that we distribute samples along
depends on the reparameterized incoming diredifiangy): the anisotropic highlight (Figure 4e).

5.1 Importance Sampling
We now describe the mathematics of sampling more formally. We
will be interested in evaluating the integral of the incident illumina-
whereu; (6p) is anNg, x K matrix, with each column correspond- tion for a fixed outgoing directiony, at a given pixel with location

b ,

ing to a factoruji in equation (3), and;j(@p) is aK x Ng, matrix, xand surface norma,
with each row corresponding to a factgg.

Gj =y || i )

[ Litea) pix ) (@) da

Normalization: For the purposes of sampling, it is desirable to 1N
treatu;k and vjx as normalized 1D probability distribution func- Moo Li(xa) {w )
n
s=1

tions. To do this, we first define Vi(ws | o)
-~ T . - 2 The first line is simply the reflection equation—the incident
Uik :/0 Ujk(6p) SinBpdBp,  Vjk :/o Vik(@p)d@p.  (6) lighting Lj may be evaluated iteratively or recursively for global

illumination. The second line is a Monte Carlo estimator that de-
LEffective 2D stratification in the context of environment map sampling Scribes the standard approach to importance sampling. It represents
has been proposed by Agarwal et al. [2003] using Hochbaum-Shmoys clus-a weighted average of each of the samples, each divided by the
tering, but this approach requires fixing the number of samples a priori, probability y of generating sample directian assuming thady, is
while in our case the number of samples for e@llepends on the view. fixed. The subscript iy denotes that the probability distribution is
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Figure 4: The main benefit of our factored representation is that it can be
used to efficiently sample a BRDF. (a & b) In the top row, we graph the val-
ues of the 1D termsin our factorization of the BRDF considered in Figures 2
and 3. The green lines show the values of u(6h) and uz(6h), whereas the
blue lines represent vi (¢,) and vo(¢h). Using the strategy detailed in Sec-
tion 5, we select either the first or second term to generate an incoming
direction. (c) Using only the first term to generate samples, we notice that
the directions accumulate around a pair of lobes along the y axis, centered
within the highlight. (d) Using only the second term to generate samples,
the directions accumulate around two lobes centered at g =0 and @, = 11.
(e) When we select between these two terms with equal probability, we pro-
duce a sampling pattern that matches the energy in the original BRDF.

(c) Sample Term 1

over incident directionsy should be non-negative and normalized,
i.e. [oV(w | w)daw = 1. Our representation is used to generate
samplesws, according to the probabilitieg. For analytic models,
the actual BRDF can be used to evaluatelhe more accurate our

representation is, the lower the variance, but equation (9) is always

accurate and unbiased.

If our factored representation exactly represents the BRDF mul-
tiplied by the cosine term, the numerator in the bracketed term in

equation (9) will be exactly proportional to the denominator, and
that term will simply be a constant. The estimator will then repre-

sent the ideal importance sampling method based on the BRDF, and

will have low variance. In fact, in the limiting case of a constant en-
vironment (; is constant), there will be zero variance. In practice
our representation is not exact, but it is a good approximation an
importance sampling with it significantly reduces variance.

5.2 Sampling Algorithm

We now describe how to choose directiomsand evaluatg/ in
equation (9). Our method chooses the lbbazimuthal angleg,,

and elevation angl€p in turn, with each step involving computing
one random number and inverting a 1D Cumulative Distribution
Function.

Choosing a term |I: The probability of choosing a term for a
given outgoing directiof, is given by
R ()
le':l Fj (o)
From these probabilities, we calculate a 1D CDF dvefo se-
lect a term, we generate a uniform random variablé0ii] and

y(lwo) = (10)

perform a binary search on the CDF to transform the random vari-

able into a value of. Notice that the probabilities depend on the

view direction, so we must recompute this CDF each time the out-

going direction changes. Howevdr,is typically very small, and

Choosing azimuthal and elevation angles ¢, and 6,:  Having
chosen the ternh to sample, we must now choogg based on
the probability distributionv (¢p). As before, we generate a uni-
formly distributed random variable if0,1], and numerically in-
vert the CDF at that value to determigg. Choosing6p, follows
the same methodology, but because of thé§sarea measure, we
find it simpler to define = cos6p, and usey (z) as the probability
distribution. Inverting the CDF then yields from which we find
6p = cos 1z Note that we can precompute these CDFs because
the probabilities do not depend em—a significant benefit of our
factorization.

Computing probability: Given8p andgy, it is straightforward to
generate a directions. Due to reparameterization, it is occasion-
ally possible for the sample directions to take values below the
horizon, but we can simply set the estimator to O for those directions
without introducing inaccuracy or bias. Otherwise, we calculate the
probability for equation (9) as the sum of the marginal probabilities
for each term:

F(wo)u(2)vi(gp)
ZJ 1Fj(o)

One issue we must address is reparameterization, since equation
(9) is in terms of the incident directiomy while our factors are
reparameterized using the half-angle or, in general, some alternative
parameterizationy. Since itis easy to convert between them, there
is no difficulty in evaluating equation (9). However, our probability
distributionsy, are in terms of the new parameterization, and must
be modified to conform to equation (9). In particular,

dwp|
ow
where the last term is equivalent to the Jacobian for changing vari-
ables in multidimensional integration, and converts differential ar-
eas inwp to those inw. For the half-angle, this function has been
computed in many derivations, such as for calculating the Torrance-
Sparrow BRDF [1967], and is given by
den| 1

o | 4(w-wh)
Stratification: The preceding algorithm generates single samples

Yn(Z @p|ao) = Z (11)

Y | wo) = yp(wp | o) (12)

(13)

¢independently, butitis straightforward to extend it to generate strat-

ified samples: we simply stratify each of the individual stages. Be-
cause these stages depend only on 1D probability distribution func-
tions, this is accomplished by stratifying the domain of the uniform
random variables used in those stages. We have found this to be
an effective method of further reducing variance in the generated
images.

6 Results

We now present the results of factoring both analytical and mea-
sured BRDFs, describing the accuracy and compactness of our rep-
resentation. In 6.2, we analyze the efficiency of sampling according
to this representation.

6.1 Factorization

We factored four analytic BRDF models of varied behavior: the
Cook-Torrance [1982] rough-surface model, an anisotropic Ward
model [1992], Poulin-Fournier [1990] anisotropic reflection from
cylinders, and the Hapke-Lommel BRDF [1963] with strong back-
scattering effects. We also tested three measured BRDFs acquired
by Matusik et al. [2003]: nickel, plastic and metallic blue. Table 1
lists the resolution and parameterization of each factorization along

the same CDF can be used for all samples through a given pixelwith the normalized mean absolute error (MAE) in the approxima-

(sincew is fixed), so the computation is inexpensive.

tion. These errors were computed over a dense set of samples of



Original Resolution Terms Param. Compression Normalized MAE

BRDF (8o X @ % 6p X @) UxK=Ll) Ratio Factored Lafortune
Cook-Torrance 16x 16x 32x 16 4x1=4 [AY n/a 0.192 0.632
Ward 16x 16 x 100x 100 2x4=8 h n/a 0.094 1.092
Poulin-Fournier 16x 16x 32x 16 3x1=3 ) n/a 0.142 0.348
Hapke-Lommel 16x 16x 32x 16 3x1=3 ) n/a 0.186 0.464
Measured Nickel 16x 16x 128x 16 2x1=2 Oh 230:1 0.201 0.643
Measured Plastic 16x 16x 128x 16 3x1=3 [AY 200:1 0.266 0.874
Measured Metallic-Blue 16x 16x 128x 16 dx1=4 Oh 180:1 0.118 0.464

Table 1: Accuracy of the factored BRDF representation. We factored 4 analytical BRDFs: Cook-Torrance (d = 0.1,R = [0.12,0.22,0.48,s = 0.9,)p = Ry.m=
0.2), Ward (pg = 0.1,ps=1.2,ax = 0.2,ay = 0.02), Poulin-Fournier (d =2.0,h=0.0,n=20.0,Rs = 0.8,Ry = 0.2), and Hapke-Lommel (g=0.6,f =0.1r =1.0),
along with 3 measured BRDFsfrom Matusik et. al. [2003]: nickel, plastic, and metallic-blue. For each BRDF we list the resolution of the original data matrix
Y, the number of “ outer” and “inner” terms (J and K, respectively) of the factorization, and the parameterization of the incoming hemisphere. For the
measured BRDFs, we also list the compression ratio. We report the mean absolute error of the final factorization, normalized by the mean BRDF value. This
is compared to the error resulting from fitting a multi-lobe Lafortune model to the original BRDF using a standard non-linear optimizer.

the 4D domain, independent of the resolution of the factorization.
We compare this with a best-fit 2-lobe Lafortune model, except for
the Cook-Torrance BRDF, to which we fit a 3-lobe model. For
most models, we reparameterized by the half-angle- «w,, while

for the more diffuse models (Poulin-Fournier and Hapke-Lommel),
we used the standard parameterization by incident angle w.
Compression ratios are reported for measured BRDFs, and repre-
sent the reduction in size with respect to the original data matrix.

We see that in all cases factorization produces an accurate result,
in many cases significantly more accurate than fitting an analytic
model such as Lafortune. This accuracy in the representation ex-
plains the high quality of our sampling algorithm. We further note
that fitting a 3-lobe Lafortune model can be unstable, often taking
minutes to hours to converge in a nonlinear minimizer, and can re-
quire manual tuning to find a good fit. By contrast, our method is
automatic, robust, and fast (taking only a few minutes to factor the
BRDFs considered in these experiments).

We observe, as previous authors have, that MAE or RMS er-
rors are imperfect measures of the accuracy and visual quality of
a BRDF approximation: in practice, the numerical error is domi-
nated by regions such as the specular highlight and grazing angles.
To this end, Figure 5 shows the appearance of some factored mod-
els, as compared to the originals, under point illumination. We see
that throughout most of the BRDF the representation accuracy is, in
fact, better than the numbers in Table 1 would suggest, and the er-
ror of our approximation decreases rapidly as more terms are added
(Figure 6). For the case of measured nickel, note that our repre-
sentation regularizes some of the measurement noise around the
highlight, relative to the original data. We conclude that, for mea-
sured data, our representation appears to produce results compara
ble with measurement error (Matusik et al. observe errors, such as
deviation from reciprocity, of 16- 15% at normal angles, ranging
to 60— 70% at grazing angles [personal communication]).

Selecting the appropriate resolution for the factorization, and the
parameterization of the incoming hemisphere is a manual process.
In most cases, the analytical formula (for parametric BRDFs) or
general appearance (for measured BRDFs) provides enough infor-
mation for an accurate estimate of how many samples are sufficient
and what parameterization is optimal. Theoretically, the number of
terms should be proportional .to t.h.e rank.s of the matricesd Gj . a vase rendered with (a) a Cook-Torrance BRDF, (c) a Ward anisotropic
(or, at least, the number of significant eigenvalues of these matri- g and (¢) a measured nickel BRDF under direct illumination. (b, d
ces). In pract_ice, howeve_r, we simply i_ncre_ase the number_ of terms ¢ ) The right column shows the same vase rendered with a factored ap
(J andK) until the error in the approximation plateaus. Figure 6 oximation of the original BRDF. (b) Notice the slight banding effects that
shows this convergence process for factorizations of the anisotropicappear in the factored highlight of the Cook-Torrance BRDF, which result
Ward BRDF listed in Table 1. from the finite sampling resolution along .. (f) The factorization actually

Since our goal is to develop a representation suitable for effi- regularizes some of the measurement noise that appears in the highlight of
cient sampling, rather than a factorization method more accuratethe measured nickel BRDF.
than previous approaches, we did not directly compare with previ-

(a) Cook-Torrance (b) Factored Cook-Torrance

(c) Anisotropic Ward (d) Factored Anisotropic Ward

(e) Measured Nickel (f) Factored Measured Nickel

Figure 5: Accuracy of the BRDF factorization. The left column shows
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Figure 6: Comparison of the RMS approximation error of an anisotropic . .
Ward BRDF, as a function of the number of terms in the factorization. Each voon Variance for Measured Metallic-Blue BRDF
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ous factorization approaches that cannot be easily sampled. How-3 | .| s g
ever, we did factor a Poulin-Fournier model with qualitatively com- @ e
parable parameters to the one listed in [McCool et al. 2001], and < T g,
produced a factorization with RMS error comparable with that ap- 16-06 L . ]
proach (although not given in Table 1, the RMS error for that fac- 5 25 20 s 100 11 196 200
torization is 0.094). While this is not the focus of our paper, these Samples / pixel

results indicate that the benefits of a multi-term nonnegative factor-

ization may be applicable in other areas such as real-time renderingFigure 7: Image variance as a function of the number of samples. These
plots show the relationship between the average image variance and the

6.2 Sampling number of samples/pixel for all 5 sampling strategies considered in this pa-
’ per. Top: the variance in the image of a sphere with the Cook-Torrance

We next consider the efficiency of importance sampling using our BRDF from Table 1 under constant illumination. Bottom: variance in the
factored representation. For a controlled quantitative comparison,image of a sphere with a measured metallic-blue BRDF under constant il-
we conducted tests involving images of a sphere (so visibility is not lumination. As expected, the variance converges to 0 as the sample counts
considered), lit by a constant environment map (so complex illu- increase, confirming that each strategy produces an unbiased estimate. At
mination is not considered). The comparison methods are uniform 100 paths/pixel we see the values for which the factor of improvement is
sampling of a cosine-weighted hemisphere, analytic sampling of listed in Table 2.
either a best-fit multi-lobe Lafortune model [Lafortune et al. 1997]
or a generalized Blinn-Phong model developed by Ashikhmin and lobes depending on the half-angle well, and therefore does better
Shirley [2000], and an approach based on explicit tabulation of the than Lafortune at sampling metals and plastics such as the Cook-
BRDF [Matusik 2003]. All methods were stratified. Torrance, nickel and plastic BRDFs. However, our method is still

We compared variance (averaged over 50 trials) as a function of at least a factor of 2 better, and for many of the materials, we see an
the number of samples used (ground truth was taken as the limitimprovement by a factor of 5-10.
with a very large number of samples) for the BRDFs considered in ~ We also measured the effectiveness of importance sampling the
Table 1. We verified for all sampling techniques that they were un- BRDF using the factored representation under complex illumina-
biased, and that the image variance decayed approximately as théion (Table 3). The experimental setup is identical to that for Ta-
inverse of the number of samples (Figure 7). Table 2 reports the ble 2, except that the sphere was placed in the beach environment
ratio of the variance of the comparison methods to our approach [http://www.debevec.org/Probes/]. Because the shape of the inte-
with 100 samples—the relative performance with a different sam- grand of the rendering equation is affected by varying illumination,
ple count would be essentially the same. This is an appropriate met-sampling the BRDF alone will not be as efficient as for constant il-
ric, since it directly corresponds to how much longer the alternative lumination. As expected, for more diffuse BRDFs (Hapke-Lommel
approaches would need to run (i.e., how many more samples theyand Poulin-Fournier) we notice that the illumination becomes the
would require) to produce the same quality results as our method.dominant factor in the integrand and uniform random sampling is
The image RMS error corresponds roughly to the standard devia-a reasonable strategy. For the more specular BRDFs, however, we
tion, which is the square root of the variance. still see the benefits of importance sampling the BRDF, and our

We see that compared to uniform random sampling, BRDF im- method decreases the variance by a factor of 2-20 over best-fits of
portance sampling always does at least 5 to 10 times better, and sigeither parametric formula. One example of this is the measured
nificantly better for shiny materials such as measured nickel. Rela- metallic-blue BRDF. The specular peak of this BRDF deviates sub-
tive to analytic models, the degree of improvement depends on howstantially from the ideal specular direction, and is also not well ap-
closely the analytic model is able to match the BRDF. Lafortune’s proximated by a function df,, particularly as the view approaches
model, for instance, is a good fit of the Poulin-Fournier and Hapke- the horizon. As a result, the best-fit Lafortune and Ashikhmin-
Lommel BRDFs (as seen in Table 1). Note that these materials areShirley parametric models fail to match the BRDF well in these
more diffuse and random sampling also does fairly well on them. regions. Although our factored representation uses a half-angle pa-
However, we always do at least twice as well as sampling basedrameterization of the incoming hemisphere as well, it can handle
on a Lafortune fit, and for measured materials, and even for the small deviations from this direction through the inherent flexibil-
widely known Cook-Torrance model, we do an order of magnitude ity a numerical approximation provides. As a result, our technique
better. On the other hand, the Ashikhmin-Shirley model representssamples this BRDF more efficiently than either parametric fit (Fig-



Efficiency of BRDF Sampling in Constant Environment
Original Improvement relative to:
BRDF Unif. Laf. A&S Mat.
Cook-Torrance| 16.38 | 13.27| 3.53 0.75
Poulin-Fournier| 5.86 1.85 6.11 n/a

Hapke-Lommel| 3.32 214 | 11.61| 1.99
Nickel 306.17 | 11.52| 2.17 | 1.66
Plastic 157.12| 14.40| 1.34 | 18.53

Met. Blue 8.88 6.73 | 6.75 | 0.44

Table 2: Efficiency of importance sampling the BRDF. This table lists the
factor of improvement in variance resulting from sampling the BRDF ac-
cording to our factored representation, compared to four alternative ap-
proaches: uniformly sampling a cosine-weighted hemisphere, sampling a
best-fit multi-lobe Lafortune model, sampling a best-fit generalized Blinn-
Phong model described by Ashikhmin and Shirley, and sampling from a
dense set of tabulated CDFs, as described by Matusik. Because variance
islinearly proportional to running time, these values can be interpreted as
the factor of time, or number of paths, that would be required for the other
sampling approaches to reach the same noise level as our representation.

|l

(a) Lafortune (b) A&S (c) Factored

Figure 8: Importance sampling a BRDF according to best-fit parametric
models and our factored representation (cf. last row of Table 3). These
images show a metallic-blue spherein the beach environment, rendered with
100 samples generated according to (a) a best-fit 2-lobe Lafortune model,
(b) a best-fit Ashikhmin-Shirley model, and (c) our factored representation.
We show both a variance plot on a logarithmic scale and a closeup at a

region where the view approaches the horizon. In this part of its domain,
the BRDF has a shape that is difficult to fit with either of the parametric

Efficiency of BRDF Sampling in Beach Environment - - °
models, and our factored representation allows more efficient sampling.

Original Improvement relative to:
BRDF Unif. Laf. | A&S | Mat.
Cook-Torrance| 25.79 | 10.28| 2.23 | 0.75
Poulin-Fournier| 1.40 1.09 | 153 n/a
Hapke-Lommel| 0.89 161 | 1.87 | 1.00

Nickel 572.76| 3.45 | 2.17 | 4.80
Plastic 381.94| 21.60 | 1.67 | 55.64
Met. Blue 9.17 596 | 5.71 | 0.55

Table 3: Importance sampling the BRDF under complex illumination. This
table presents the factor of improvement of our sampling strategy compared
to alternative approaches when rendering a particular BRDF in the beach
environment. Because the illumination contributes to the shape of the in-
tegrand in the rendering equation, sampling according to the BRDF alone
will be less efficient than when the illumination is constant. Although our
factored representation still outperforms the alternative sampling strategies
by a factor of 2-20, these results suggest the potential desirability of com-
bining environment and BRDF sampling.

3

ure 8). Together, these results indicate the generality and efficacy o
our approach for importance sampling compared to fitting a specific
analytic model.

The only method competitive with ours is that of Matusik [2003].  Figure 9: Sampling measured nickel with a dense set of 2D CDFs, as de-
For a set of fixed view directions, this method computes a 2D CDF scribed by Matusik et. al. and using our factored representation (cf. fourth
over incident directions according to the spherical parameteriza- row of Table 3). For such shiny BRDFs, computing a fixed set of 2D CDFs
tion of the hemisphere. For accurate results, this approach requiresan still cause problems for regions of the domein for which the nearest pre-
dense sampling along all variables, and does not provide the com-computed CDF of a particular view poorly matches the actual BRDF. Our
pactness of our factored representation. In fact, Matusik reports factored representation, on the other hand, gains better continuity through
using resolutions of 98 90 x 180 for isotropic materials, and ac- 2" aPpropriate parameterization and approximation, resuting in more effi-
knowledges the infeasibility of this approach for anisotropic ma- €M importance sampling throughoit the domain.
terials. Even with these resolutions, however, there are still situ-
ations when the closest CDF (i.e. the closest view for which the ] )
CDF is tabulated) differs significantly from the actual shape of the factored representation requires roughly 200KB as compared to the
BRDF. This is apparent with measured nickel and measured plas-60MB required to store the samples of the 3D BRDF along with the
tic, for which the BRDF has a sharp specular peak. For views Pre-computed 2D CDFs required for the approach of Matusik.
near normal incidence, sampling according to the spherical coor- In generating a sample using our approach, the dominant cost is
dinates of the incident direction is sufficient to accurately capture that of inverting three 1D CDFs using a binary search. This makes
the shape of the BRDF. Near grazing angles, however, the 2D CDFour approach reasonably fast, comparable with analytically draw-
for the nearest view often varies significantly from the actual shape ing a sample according to the Lafortune and Phong sampling algo-
of the BRDF, degrading the sampling efficiency in these regions rithms. It is somewhat slower than the simpler random sampling,
(Figure 9). Our factored representation, on the other hand, avoidsand almost identical to the approach of Matusik, which also inverts
this situation through a better parameterization of the hemispherea pair of 1D CDFs. In practice, all of these times are small com-
and a more continuous approximation of the BRDF over all views. pared to the cost of propagating a sample or tracing a ray for global
Moreover, our representation supports anisotropic reflection and isillumination, and hence the number of samples (and the results in
more compact. For the BRDFs presented in this paper, the completeTable 2) corresponds closely to actual running time.

Matusik Sampling

Factored Sampling



6.3 Global lllumination References

We also rendered a complex scene with global illumination using a AGARWAL, S., RAMAMOORTHI, R., BELONGIE, S.,AND JENSEN, H. W.
path tracer (Figure 10). In this case, the incident illumination and ~ 2003. Structured importance sampling of environment mapsS @a
visibility are unknown and, consequently, importance sampling the ~ GRAPH 03, 605-612.

BRDF is the only reasonable strategy (i.e., environment sampling ASHIKHMIN, M., AND SHIRLEY, P. 2000. An anisotropic Phong BRDF
is not possible). We used our factored representation to sample model.Journal of Graphics Tools: JGT 5, 2, 25-32.

all five BRDFs in the scene and to represent the three measuredBLinn, J. F. 1977. Models of light reflection for computer synthesized
BRDFs. We compare our results with those of a system using best-  pictures. I'SGGRAPH 77, 192—-198.

fit Lafortune models to sample the different BRDFs. We present cuen, W.-C., BOUGUET, J.-Y., QHU, M. H., AND GRZESZCZUK, R.
rendered images at equal time (300 paths/pixel for both sampling  2002. Light field mapping: efficient representation and hardware render-
strategies) and equal quality (1200 paths/pixel for Lafortune sam- ing of surface light fields. '8l GGRAPH 02, 447—456.

pling) along with false-color visualizations of the variance in the cook, R. L., AND TORRANCE, K. E. 1982. A reflectance model for
scene on a logarithmic scale and several magnified views show- computer graphicsACM Trans. Graph. 1, 1, 7-24.

ing different BRDFs in the scene. Clearly, different regions of the coo, R, L. 1986. Stochastic sampling in computer graphigscM
scene converge at different rates, but our method is roughly 4-5  fransactions on Graphics5, 1, 51-72.

times more 'eff|C|ent overall and an order_of magnltude_ more effi- DANA, K. J., VAN GINNEKEN, B., NAYAR, S. K., AND KOENDERINK,
cient on difficult BRDFs such as the plastic handle. This example ;3 1999, Reflectance and texture of real-world surfaéesl Trans.
highlights the usefulness of a general approach to both representing Graph. 18, 1, 1-34.

and importance sampling BRDFs. GREENBERG D. P., TORRANCE, K. E., SHIRLEY, P., ARVO, J., LAFOR-

TUNE, E., FERWERDA, J. A., WALTER, B., TRUMBORE, B., PaT-
TANAIK , S.,AND FOO, S.-C. 1997. A framework for realistic image
synthesis. '8 GGRAPH 97, 477—-494.

This work addresses a long-standing graphics problem of efficiently HAPKE, B. 1963. A theoretical photometric function for the lunar surface.
importance sampling complex analytic and measured BRDFs. We  Journal of Geophysical Research 68, 15.

introduce a new factored representation of the BRDF that reducesHE, X. D., TORRANCE, K. E., SLLION, F. X.,AND GREENBERG D. P.
sampling to inverting three 1D cumulative distribution functions. ~ 1991. A comprehensive physical model for light reflection. S-
This provides a compact practical representation and a simple al- GRAPH 91, 175-186.

gorithm for sampling, which in many cases reduces variance andKAJivA, J. T. 1985. Anisotropic reflection models. S/GGRAPH 85,
sampling times relative to previous methods. We use our repre- 15-21.

sentation and importance sampling method to render scenes withKaJivya, J. T. 1986. The rendering equation. SIGGRAPH 86, 143-150.
multiple isotropic and anisotropic materials with global illumina- Kautz, J.,AND McCooL, M. D. 1999. Interactive rendering with arbi-
tion and shadows. trary BRDFs using separable approximationsPiaceedings of the 10th

In future work, we would like to extend our technique to allow Eurographics Workshop on Rendering, 281-292.
for mixed parameterizations of the factored BRDF, such that each KoeNDERINK, J., AND VAN DOORN, A. 1998. Phenomenological de-
term may have a different parameterization. This would allow us  scription of bidirectional surface reflectiodOSA A 15, 11, 2903-2912.
to better approximate BRDFs that exhibit several different types KoLLig, T., AND KELLER, A. 2003. Efficient illumination by high dy-
of scattering (e.g. side, backward and forward) at the same time.  namic range images. Burographics Symposium on Rendering 03, 45—

A second area of future research is investigating how to combine  51.

Stl’ategles fOf Samphng the BRDF and the |nC|dent |”um|nat|0n In LAFORTUNE, E. P. F’ R_-Z)O, S_C7 TORRANCE, K. E‘ AND GREEN-
general, illumination sampling and BRDF sampling are comple-  gerg, D. P. 1997. Non-linear approximation of reflectance functions.
mentary techniques, and it would be interesting to investigate mul-  |n SGGRAPH 97, 117-126.

tiple importance sampling methods [Veach and Guibas 1995] for | g, D. D., AND SEUNG, H. S. 2000. Algorithms for non-negative matrix
combining our algorithm with environment map sampling. factorization. INNIPS, 556-562.

Our factorization method might also have applications in sam- parscHNER S., WESTIN, S., LAFORTUNE, E., TORRANCE, K., AND
pllng bi-directional texture functions (BTFS) and ||ght fields—two GREENBERG D. 1999. Image-based BRDF measurement including
examples of high-dimensional functions that, like BRDFs, typically ~ human skin. IProceedings of 10th Eurographics Workshop on Render-
have significant redundancy. More generally, we see our work as a ing, 139-152.
first step towards efficient techniques to sample high-dimensional marusik, W., PrISTER, H., BRAND, M., AND MCMILLAN , L. 2003. A
measured functions. With the increasing importance of measured data-driven reflectance model. IGGRAPH 03, 759—769.

and image-based_da_ta in computer graphics, this problem promisesfx/lATUSlK, W. 2003. A Data-Drive Reflectance Model. PhD thesis, Mas-

to have growing significance. sachusettes Institute of Technology.

McCooL, M. D., ANG, J.,AND AHMAD, A. 2001. Homomorphic fac-
torization of BRDFs for high-performance rendering SIGGRAPH 01,
185-194.

This work was supported in part by grants from the National Sci- NICODEMUS, F. E., RCHMOND, J. C., K51A, J. J., GNSBERG, |. W.,

ence Foundation (CCF # 0305322 on Real-Time Visualization and ~ AND LIMPERIS, T. 1977.Geometric Considerations and Nomenclature

Rendering of Complex Scenes) and Intel Corporation (Real-Time  for Reflectance. National Bureau of Standards (US).

Interaction and Rendering with Complex lllumination and Materi- OREN, M., AND NAYAR, S. K. 1994. Generalization of Lambert's re-

als) along with an NDSEG fellowhip sponsored by the Department  flectance model. Il8GGRAPH 94, 239-246.

of Defense. PHONG, B. T. 1975. lllumination for computer generated pictur€am-
The authors would like to thank Wojciech Matusik et. al. [Ma- mun. ACM 18, 6, 311-317.

tusik et al. 2003] for use of their measured BRDF data, Paul De- PouLIN, P.,AND FOURNIER, A. 1990. A model for anisotropic reflection.

bevec for the environment maps and Misha Kazhdan for his help  In SGGRAPH 90, 273-282.

with the teapot model. Lastly, we thank the Princeton TIGGRAPH RusinkiEwICZ, S. 1998. A new change of variables for efficient BRDF

review committee for their helpful input. representation. I&urographics Rendering Workshop '98, 11-22.

7 Conclusions and Future Work

8 Acknowledgements



Equal time Equal quality

(a) Lafortune sampling, 300 paths/pixel (b) Our factored sampling, 300 paths/pixel (c) Lafortune sampling, 1200 paths/pixel

Figure 10: This scene was rendered using a path tracer for global illumination. (a) \We generated 300 stratified importance samples of the local hemisphere
using a best-fit Lafortune model for each of the 5 BRDFs in the scene. (b) We sampled the incoming hemisphere using our factored representation of each
BRDF-. (c) Lafortune sampling with 1200 samples. The bottom row shows a false-color variance plot and closeups of some regions. On the whole, we see that
our method is approximately four times more efficient than Lafortune sampling, and substantially better for difficult BRDFs such as the plastic teapot handle.
We refer the reader to [http://mwww.cs.princeton.edu/gfx/proj/brdf/figl0] for the data and algorithms developed in this paper that were used to generate this

comparison.
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