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SVBRDF-Invariant Shape and Reflectance
Estimation from a Light-Field Camera

Ting-Chun Wang, Manmohan Chandraker, Alexei A. Efros, Ravi Ramamoorthi, Fellow, IEEE

Abstract—Light-field cameras have recently emerged as a powerful tool for one-shot passive 3D shape capture. However, obtaining
the shape of glossy objects like metals or plastics remains challenging, since standard Lambertian cues like photo-consistency cannot
be easily applied. In this paper, we derive a spatially-varying (SV)BRDF-invariant theory for recovering 3D shape and reflectance from
light-field cameras. Our key theoretical insight is a novel analysis of diffuse plus single-lobe SVBRDFs under a light-field setup. We
show that, although direct shape recovery is not possible, an equation relating depths and normals can still be derived. Using this
equation, we then propose using a polynomial (quadratic) shape prior to resolve the shape ambiguity. Once shape is estimated, we also
recover the reflectance. We present extensive synthetic data on the entire MERL BRDF dataset, as well as a number of real examples
to validate the theory, where we simultaneously recover shape and BRDFs from a single image taken with a Lytro Illum camera.

Index Terms—Light-fields, 3D reconstruction, BRDF
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1 INTRODUCTION

U SING motions of the object, the light source or the
camera to recover object shapes have been extensively

studied in computer vision. For example, many works
have been developed in optical flow for exploiting object
motion [16], [22], photometric stereo for light source mo-
tion [40] and multi-view stereo for camera motion [30].
However, dealing with the complex behavior of the bidi-
rectional reflectance distribution function (BRDF) is hard,
and the photo-consistency assumption is often adopted
assuming a Lambertian surface. In particular, very robust
and efficient algorithms have been introduced in multi-view
stereo based on diffuse brightness constancy [13]. However,
many common materials such as metals, plastics or ceramics
are not diffuse and do not follow these assumptions, so
acquiring shapes for these materials is still a difficult prob-
lem. Although theories for recovering shapes with general
BRDFs have been proposed by Chandraker [6], [7], [8], they
are still not as robust compared to traditional Lambertian
methods, and the setup requires multiple shots of the object
and is thus inconvenient.

In recent years, light-fields have emerged as a power-
ful tool for shape recovery. Using light-field cameras (e.g.
Lytro [1] and Raytrix [27]), shape can be recovered in a
single shot with minimal effort, offering a practical and
convenient alternative to traditional multi-view approaches.
However, most current depth estimation methods still sup-
port only Lambertian scenes, making them unreliable for
glossy surfaces.

In this paper, we present a depth and reflectance esti-
mation algorithm that explicitly models spatially varying
BRDFs (SVBRDFs) from light-field cameras (Fig. 1). Since
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(a) Light-field input (b) Our depth 

(c) PLC [32] (d) SDC [31] (e) PSSM [17] 

(f) Lytro Illum (g) SMRM [6],[7] (h) IAMO [8] 

Fig. 1: Comparison of depth estimation results of different algo-
rithms. We texture map the input image onto the depth maps, so
we can clearly see where each method fails. It can be seen that our
method correctly handles the glossy surface, while other methods
generate visible artifacts, especially around the specular parts.

the problem is under-constrained, we assume a known
distant light source. We think of a light-field camera as a
multi-camera array (of virtual viewpoints), and follow the
shape estimation framework using camera motion in [6],
[7], [8]. However, note that the theory in [6], [7], [8] is
not directly applicable to the light-field case; in fact, we
show that in the case of light-fields, shape cannot be di-
rectly recovered (Sec. 3). However, in many instances where
the BRDF depends on only the half-angle, we derive an
SVBRDF-invariant equation relating depths and normals
(Sec. 4). Note that we are able to include a generalized
diffuse term (including textures) in addition to the specular
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single-lobe model, and that our theory applies generally to
spatially-varying BRDFs (Figs. 7 and 12), whereas the work
by Chandraker [6], [7], [8] was limited to homogeneous
materials.

After this equation is derived, we recover the shape by
applying a locally polynomial shape prior (Sec. 5.1). To ease
the optimization, we require the normal at one seed pixel to
be specified. Then, we solve for the BRDF derivatives and
integrate them to recover the reflectance (Sec. 5.2). Finally,
we demonstrate extensive real-world examples of shape and
reflectance estimation using commercial light-field cameras
(Figs. 1, 11, and 12). Our main contributions are:

1) A generalization of optical flow to the non-Lambertian
case in light-field cameras (Secs. 3 and 4).

2) A depth estimation algorithm for light-field cameras
that handles diffuse plus specular 1-lobe BRDFs (Sec. 5.1).

3) A reflectance estimation approach that recovers
BRDFs for up to 2-lobes once shape is given (Sec. 5.2).

4) An extensive synthetic evaluation on the entire MERL
BRDF dataset [23] (Sec. 6, Figs. 7,9 and 10).

5) A practical realization of our algorithm on images
taken with the Lytro Illum camera (Sec. 6).

This is an extended version of the work at CVPR [36],
where we discuss more related works in Sec. 2, derive
the case where the cameras are focused at some general
distance instead of at infinity (Sec. 3.1, Sec. 4.2 and Fig. 3),
add results on a synthetic complex shape in addition to
spheres (Sec. 6.1 and Fig. 10), perform analysis on shapes
with different frequencies (Fig. 8), compare with more state-
of-the-art methods [6], [7], [8], and give more details on the
implementation, including the Lytro calibration model and
the derivation of the optimization objective matrix (Sec. 5.1
and Sec. 6.2).

2 RELATED WORK

Depth from Light-Field Cameras: Many depth estimation
methods for light-field cameras have been proposed. How-
ever, most of them rely on the Lambertian assumption and
work poorly on glossy surfaces [10], [17], [20], [31], [37], [38],
[39]. Recently, there are some works that try to deal with
specularity. Tao et al. [33] proposed a clustering method
that eliminates specular pixels when enforcing photo consis-
tency. However, they attempt a binary classification of pixels
into either Lambertian or specular, which cannot handle
general glossy surfaces. A follow-up work [32] adopts the
dichromatic model and combines point and line consistency
to deal with Lambertian and specular surfaces respectively.
However, the dichromatic model fails to hold for materials
like metals [34]. Therefore, their method fails if the BRDFs
in different views do not lie on a line as in the dichromatic
model, which is discussed in Sec. 4.1. Moreover, line con-
sistency is not robust if neighboring pixels have a similar
color. In contrast, our model can work on general 1-lobe
BRDFs, and can also recover reflectance in addition to shape
(Sec. 5.2), which has not been achieved by previous light-
field shape acquisition approaches.

Multi-View Stereo: Multi-view stereo methods based on
diffuse photo-consistency have a long history [30]. In recent
years, the robustness for these reconstruction algorithms
have been dramatically improved [13]. Several extensions

have also been proposed to handle severe situations such
as textureless regions or specularity, including priors from
Manhattan constraints [14], [15] or architectural schema [41].
In contrast, we explicitly account for SVBRDF-dependence
in image formation for shape recovery under the light-field
setup, which can be considered as differential translations
of the camera.

Methods dealing with non-Lambertian materials have
also been introduced. For instance, the Helmholtz reci-
procity principle is adopted by Zickler et al. [46] to recon-
struct shapes with arbitrary BRDFs. Bonfort and Sturm [5]
use a voxel carving approach to handle specular surfaces.
Yang et al. [43] extend the Space Carving framework with
a photo-consistency measure that works for both specular
and diffuse surfaces. Treuille et al. [35] present an example-
based stereo approach that uses reference shapes of known
geometry to infer the unknown shapes. Jin et al. [18] derive
a rank constraint on the radiance tensor field to estimate
the surface shape and the appearance. Yu et al. [44] reduce
biases in 3D reconstruction using a new iterative graph
cut algorithm based on Surface Distance Grid. In contrast,
we explore how a light-field image informs about shape
with unknown SVBRDFs, regardless of the reconstruction
method.

Differential Motion Theory: Our theoretical contributions
are most closely related to the differential theory proposed
by Chandraker [6], [7], [8]. He constructs a mathematical
model to recover depth and reflectance using differential
camera motion or object motion. Our work has three major
differences. First, in contrast to the differential motions he
uses, which contain both translations and rotations, we
only have translations in light-field cameras. While this
changes the form of equations obtainable through differen-
tial motions, we show that a BRDF-invariant equation of
similar form as in [6], [7], [8] can still be obtained for half-
angle BRDFs (Sec. 4). Second, the work by Chandraker then
assumes a constant viewing direction (i.e., (0, 0,−1)>) for
all pixels to solve for depth directly. In contrast, for our
purely translational light-field setup, we must account for
viewpoint variations. This is necessary because if the view
directions do not differ between cameras, it inherently im-
plies photo-consistency in the Lambertian case. As we show,
accounting for viewpoint changes results in the infeasibility
to directly obtain depth, and we try to solve the BRDF-
invariant equation by applying a polynomial shape prior in-
stead (Sec. 5.1). Finally, to obtain depth directly Chandraker
also assumes a homogeneous BRDF. Since we are solving
the BRDF-invariant equation instead of computing depth
directly, this change also enables us to deal with spatially-
varying BRDFs.

BRDF Estimation: BRDF estimation has been studied for
many years and different models have been proposed [24].
Parametric models [25] can achieve good accuracy by mod-
eling the BRDF as a statistical distribution on the unit
sphere. Non-parametric [28], [29] and data-driven meth-
ods [23] are also popular, but rely on complex estimation
or require a large amount of data. Semi-parametric ap-
proaches [9], [21] have also been proposed.

For joint shape and BRDF estimation, the closest to our
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work is [6] described above. Alldrin et al. [2] proposed an
alternating approach to recover both shape and BRDF under
light source motion. The work by Oxholm and Nishino [26]
also uses an alternating optimization over shape and re-
flectance under natural illumination. None of these methods
tries to recover shape or reflectance using camera motions,
and the techniques are not intended for light-field cameras.

Shape from Shading: Shape from shading has a long
history. Since it is a very under-constrained problem, most
work assumes a known light source to increase feasibil-
ity [11], [45]. The method by Johnson and Adelson [19]
can estimate shape under natural illumination, but requires
a known reflectance map, which is hard to obtain. Barron
and Malik [3], [4] described a framework to recover shape,
illumination, reflectance, and shading from an image, but
many constraints are needed for both geometry and illumi-
nation. Since shape from shading is usually prone to noise,
recent methods [12], [42] assumed that the shape is locally
polynomial for a small patch, and thus increased robustness.
We adopt this strategy in our final optimization procedure.
However, note that our case is harder, since most shape from
shading methods are limited to Lambertian surfaces. In the
Lambertian case, if both the pixel value and the light source
are given, the normal must be lying on a cone around the
light direction. In our case, since the BRDF is an unknown
function, we do not have this condition.

3 DIFFERENTIAL STEREO

Since light-field cameras can be considered as a multi-
camera array corresponding to the set of virtual viewpoints,
we first consider a simple two-camera case in Sec. 3.1. The
idea is then extended to a multi-camera array in Sec. 3.2.
Finally, the BRDF invariant equation is derived in Sec. 4.

3.1 Two-camera System
Consider a camera in the 3D spatial coordinates, where the
origin is the principal point of its image plane. The camera
is centered at p = (0, 0,−f)>, where f is the focal length
of the camera. Let β ≡ 1/f . Then for a perspective camera,
a 3D point x = (x, y, z)> is imaged at pixel u = (u, v)>,
where

u =
x

1 + βz
, v =

y

1 + βz
. (1)

Let s be the known distant light source direction. Given
a 3D point x, let n be its corresponding normal, and v be its
(unnormalized) viewing direction from the camera center,
v = p−x. Then the image intensity at pixel u for the camera
at position p is

I(u,p) = ρ(x,n, s, v) (2)

where ρ is the BRDF function, and the cosine falloff term is
absorbed into ρ. Note that unlike most previous work, ρ can
be a general spatially-varying BRDF. Practical solutions will
require a general diffuse plus 1-lobe specular form (Sec. 4),
but the BRDF can still be spatially-varying.

Now suppose there is another camera centered at p + τ ,
where τ = (τx, τy, 0)>. Also suppose a point at pixel u in
the first camera image has moved to pixel u + δu in the
second camera image. Since the viewpoint has changed,
the brightness constancy constraint in traditional optical
flow no longer holds. Instead, since the view direction

has changed by a small amount τ and none of x,n, s has
changed, the intensities of these two pixels can be related
by a first-order approximation

I(u + δu,p + τ ) ∼= I(u,p) + (∇vρ)>τ (3)

We can also model the intensity of the second image by,

I(u + δu,p + τ ) ∼= I(u,p) + (∇uI)>δu + (∇pI)>τ (4)

Note that (∇pI)>τ is just the difference between the
image intensities of the two cameras, I(u,p + τ ) − I(u,p).
Let ∆I be this intensity difference. Combining (3) and (4)
then gives

(∇uI)>δu + ∆I = (∇vρ)>τ (5)

Finally, since the second camera has moved by τ , all
objects in the scene can be considered as equivalently moved
by δx = −τ while assuming the camera is fixed. Using (1),
we can write

δu =
δx

1 + βz
=
−τ

1 + βz
(6)

Substituting this term for δu in (5) yields

(∇uI)>
−τ

1 + βz
+ ∆I = (∇vρ)>τ (7)

Let Iu, Iv be the spatial derivatives of image I(u,p).
Then multiplying the vector form out in (7) gives

∆I = (∇vρ)xτx + (∇vρ)yτy + Iu
τx

1 + βz
+ Iv

τy
1 + βz

(8)

where (·)x and (·)y mean the x- and y-components of (·),
respectively.

An intuition for the above equation is given in Fig. 2.
Consider the 1D case where two cameras are separated by
distance τx. The 2D case can be derived similarly. First, an
object is imaged at pixel u on camera 1 and u′ on camera
2. The difference of the two images at pixel u, ∆I(u) =
I(u, τx) − I(u, 0) in Fig. 2a, will be the difference caused
by the view change (from I(u, 0) to I(u′, τx) in Fig. 2b), plus
the difference caused by the spatial change (from I(u′, τx) to
I(u, τx) in Fig. 2c). The view change is modeled by (∇vρ)x ·
τx, which is how the BRDF varies with viewpoint multiplied
by the view change amount. The spatial change is modeled
by Iu ·τx/(1+βz), which is the image derivative multiplied
by the change in image coordinates. Summing these two
terms gives (8) (Fig. 2d).

Compared with the work by Chandraker [6], [7], [8],
we note that since different system setups are considered,
the parameterization of the total intensity change in (3) is
different ((∇vρ)>τ instead of (∇xρ)>τ in Appendix D of
[8]). We believe this parameterization is more intuitive, since
it allows the above physical interpretation of the various
terms in the total intensity change.

Note that in the previous derivation we assumed all
cameras are looking straight ahead, i.e., focused at infinity.
For a light-field camera, however, it may be focused at
some finite distance, which means if we average over all
the different sub-views, objects at this distance will stay
in-focus while other objects will become out-of-focus. The
derivation for this case is as follows. Assume the cameras
are focused at depth F . The view change will then stay the
same as in the previous case. The spatial change, however,
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Fig. 2: Optical flow for glossy surfaces. (a) The difference between
two images at the same pixel position, is (b) the view change plus
(c) the spatial change. (d) Summing these two changes gives the
overall change.

Cam 1 Cam 2

Image
plane

z

f

τx
1+βz

Object 

u uu'

τx

τx

(a) Cameras focused at infinity

Cam 1 Cam 2

Image
plane

z

f

Object 

u u'

τx

Focus
plane

u
F

A B

(b) Cameras focused at depth F

Fig. 3: Comparison between cameras focused at infinity and
focused at some finite depth.

will become different since the change in pixel coordinates
(distance between u′ and u) changes. From Fig. 3b, we can
see that the distance between u′ and u becomes

−→
u′u = − f

f + F

−−→
AB = − f

f + F
· z − F
z + f

τx (9)

Comparing it to Fig. 3a, it can be seen that 1/(1 + βz) is
replaced by

−f
F + f

z − F
z + f

=
F − z
F + f

1

1 + βz
(10)

Note that when F →∞, i.e., all cameras are looking straight
ahead, the above expression reduces to 1/(1 + βz). We can
then replace 1/(1 + βz) in (8) with this new term without
changing anything else.

3.2 Multi-camera System
We now move on to consider the case of a light-field camera,
which can be modeled by a multi-camera array. For a multi-
camera array with m + 1 cameras, we can form m camera
pairs using the central camera and each of the other cam-
eras. Let the translations of each pair be τ 1, τ 2, ..., τm and

the corresponding image differences be ∆I1,∆I2, ...,∆Im.
Each pair will then have a stereo relation equation as in (8).
We can stack all the equations and form a linear system as

Iuτ
1
x + Ivτ

1
y τ1x τ1y

...

Iuτ
m
x + Ivτ

m
y τmx τmy





1

1 + βz

(∇vρ)x

(∇vρ)y


=



∆I1

...

∆Im


. (11)

Let B be the first matrix in (11). If B is full rank, given
at least three pairs of cameras (four cameras in total), we
would be able to solve for depth by a traditional least
squares approach. Unfortunately, it can easily be seen that
B is rank deficient, since the first column is a linear com-
bination of the other two columns. This should not be
surprising, since we only have two degrees of freedom for
translations in two directions, so the matrix is at most rank
two. Adding more cameras does not add more degrees of
freedom.1 However, adding more cameras does increase the
robustness of the system, as shown later in Fig. 5a. Finally,
although directly solving for depth is not achievable, we
can still obtain a relation between depth and normals for a
specific form of the BRDF, which we derive next.

4 BRDF-INVARIANT DERIVATION

We first briefly discuss the BRDF model we adopt (Sec. 4.1),
and then show how we can derive a BRDF invariant equa-
tion relating depth and normals (Sec. 4.2). A comparison
between our work and the work by Chandraker [6], [7], [8]
is given in Sec. 4.3.

4.1 BRDF model
It is commonly assumed that a BRDF contains a sum of
“lobes” (certain preferred directions). Thus, the BRDF can
be represented as a sum of univariate functions [9]:

ρ(x,n, s, v) =
K∑
i=1

fx,i(n̂>α̂i) · (n̂>ŝ) (12)

where n̂ is the normalized normal, α̂i are some directions,
fx,i are some functions at position x, and K is the number of
lobes. For the rest of the paper, when we use ŵ to represent
a vector w, it means it is the normalized form of w.

The model we adopted is similar to the Blinn-Phong
BRDF; for each of the RGB channels, the BRDF is 1-lobe that
depends on the half-angle direction ĥ = (ŝ + v̂)/‖ŝ + v̂‖,
plus a diffuse term which is independent of viewpoint,

ρc(x,n, s, v) =
(
ρcd(x,n, s) + ρcs(x, n̂>ĥ)

)
· (n̂>ŝ),

c ∈ {red,green,blue}
(13)

For the work by Tao et al. [32], it is assumed that the
BRDFs of different views will lie on a line not passing the
origin in the RGB space. Taking a look at, e.g., the BRDFs

1. Note that, adding translations in the z direction does not help
either, since moving the camera along the viewing direction of a
pixel does not change its pixel intensity (v/‖v‖ does not change), so
∇vρ · v = 0. Thus, (∇vρ)z is just a linear combination of (∇vρ)x and
(∇vρ)y , and adding it does not introduce any new degree of freedom.
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in Fig. 9, we can see that the BRDFs do not necessarily lie
on a line, and passing the origin is possible for the materials
whose diffuse components are not significant.

4.2 BRDF invariant
To derive the invariant, we first derive two expressions for
∇vρ, one using depth z and the other using normals n.
Combining these two expressions gives an equation which
contains only z and n as unknowns and is invariant to the
BRDF. We then show how to solve it for shape.
a. Expression using depth Continuing from (11), let
γγγ = B+(∆I), where B+ is the Moore-Penrose pseudoin-
verse of B. Then (11) has an infinite number of solutions,

1

1 + βz
(∇vρ)x
(∇vρ)y

 = γγγ + λ

 1
−Iu
−Iv

 (14)

with λ ∈ R. Let γγγ = [γ1, γ2, γ3]>. From the first row λ can
be expressed as

λ =
1

1 + βz
− γ1 (15)

Thus, we can express (∇vρ)y/(∇vρ)x, which can be seen as
the direction of the BRDF gradient, as a function of z,

(∇vρ)y
(∇vρ)x

=
γ3 − λIv
γ2 − λIu

=
γ3 − ( 1

1+βz − γ1)Iv

γ2 − ( 1
1+βz − γ1)Iu

(16)

b. Expression using normals Next, using the BRDF model
in (13), in Appendix A we show that

∇vρ = ρ′s
n̂>H

‖ŝ + v̂‖(1 + βz)
√
u2 + v2 + f2

(17)

where ρ′s = ∂ρs/∂(n̂>ĥ) is an unknown function, and H ≡
(I− ĥĥ

>
)(I− v̂v̂>) is a known 3× 3 matrix.

Since ρ′s is unknown, we cannot express ∇vρ as a
function of n and z only. However, if we take the ratio
between the y-component and the x-component of ∇vρ
corresponding to the direction of the gradient, all unknowns
except n will disappear,

(∇vρ)y
(∇vρ)x

=
(n̂>H)y

(n̂>H)x
=
nxH12 + nyH22 −H32

nxH11 + nyH21 −H31
(18)

c. Combining expressions Equating the right-hand sides of
(18) and (16) for the direction of the gradient∇vρ then gives

γ3 − ( 1
1+βz − γ1)Iv

γ2 − ( 1
1+βz − γ1)Iu

=
nxH12 + nyH22 −H32

nxH11 + nyH21 −H31
(19)

which is an equation of z and n only, since γγγ is known and
H is known if s is known. Note that the spatially-varying
BRDF dependent terms have been eliminated, and it is only
possible for a single-lobe BRDF. Expanding (19) leads to
solving a quasi-linear partial differential equation (PDE)

(κ1 + κ2z)nx + (κ3 + κ4z)ny + (κ5 + κ6z) = 0 (20)

where κ1 to κ6 are constants specified in Appendix A. We
call this the BRDF invariant relating depths and normals.
Note that, in the case that ∇vρ is zero, γ2 and γ3 will be
zero for most solvers (e.g., mldivide in Matlab). Using

(a) Using infinite focus formula (b) Using finite focus formula 

Fig. 4: (a) The BRDF invariant (20) result and the depth result
when the cameras are focused at some finite distance but the
formula for infinity focus (39) is used. Note that the BRDF
invariant differs from zero by a large amount, and the depth
reconstruction is far from accurate. (b) The results when the
formula for finite focus (41) is used.

the formulas for κ in Appendix A, (20) just reduces to
(γ1 − 1) + (βγ1)z = 0, and z can be directly solved. This
corresponds to the Lambertian case; the equation just stands
for the photo-consistency, where the left hand side can
be thought of as the intensity difference between different
views. In the specular case, the same point in different views
does not have the same intensity anymore; they differ by
(∇vρ)>τ (3), which can be written as a function of n. That
is where the first two normal terms in (20) come from.

Next we consider the case where the camera is focused
at some finite distance instead of infinity. From (10) in
Sec. 3.1, we know that we can replace 1/(1 + βz) by
(F − z)/[(F + f)(1 + βz)] to derive the formula for this
case. Equation (19) then becomes

γ3 − (F−zF+f
1

1+βz − γ1)Iv

γ2 − (F−zF+f
1

1+βz − γ1)Iu
=
nxH12 + nyH22 −H32

nxH11 + nyH21 −H31
(21)

Using the same procedure, it will still lead to the same PDE
as (20), only with different κ values. The new κ values are
again specified in Appendix A. An example of applying
this new formula on a synthetic sphere with finite-focused
cameras is demonstrated in Fig. 4. In Fig. 4a, we use the
old formula (assuming cameras focused at infinity), and
it can be seen that it generates large errors on both the
BRDF invariant result and the depth estimation result. In
Fig. 4b, we replace it with the new formula (focused at finite
distance), and we are able to get reasonable results.

4.3 Discussion
Compared to the work of Chandraker [6], [7], [8], we note
that a similar BRDF invariant equation is derived. However,
our derivation is in the light field setup and lends better
physical intuition (Fig. 2). Moreover, our resolution of the
shape ambiguity is distinct and offers several advantages.
To be specific, the work of Chandraker assumes a constant
viewing direction over the image, which can generate one
more equation when solving the linear system (11), so di-
rectly recovering depth is possible. However, this is not true
in the general perspective camera case. Instead, we directly
solve the PDE, using a polynomial shape prior introduced
next (Sec. 5.1). Furthermore, a homogeneous BRDF is also
assumed in [6], [7], [8] to obtain depth directly. Our solution,
on the other hand, is capable of dealing with spatially-
varying BRDFs since we solve the PDE instead, as shown
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in the following section. Finally, while [6], [7], [8] are very
sensitive to noise, we achieve robustness through multiple
virtual viewpoints provided by the light field (Fig. 5a) and
the polynomial regularization, as shown in the next section.

5 SHAPE AND REFLECTANCE ESTIMATION

Given the BRDF invariant equation derived in Sec. 4, we
utilize it to solve for shape (Sec. 5.1) and reflectance (Sec. 5.2)
in this section.

5.1 Shape estimation

As shown in Appendix A, solving (20) mathematically re-
quires initial conditions, so directly solving for depth is not
possible. Several possible solutions can be used to address
this problem. We adopt a polynomial regularization, similar
to the approach proposed in [12], [42]. The basic idea is
to represent z and nx,ny as some shape parameters, so
solving (20) can be reduced to solving a system of quadratic
equations in these parameters. Specifically, for an ξ × ξ
image patch, we assume the depth can be represented by
a quadratic function of the pixel coordinates u and v,

z(u, v) = a1u
2 + a2v

2 + a3uv + a4u+ a5v + a6 (22)

where a1, a2, ..., a6 are unknown parameters.
We now want to express normals using these parameters

as well. However, to compute nx = ∂z/∂x, we need to
know the x-distance between the 3D points imaged on those
two pixels, which is not given. Therefore, we cannot directly
compute nx and ny . Instead, we first compute the normals
in the image coordinate,

nu(u, v) =
∂z

∂u
= 2a1u+ a3v + a4

nv(u, v) =
∂z

∂v
= 2a2v + a3u+ a5

(23)

In Appendix B we show that normals in the world coor-
dinate nx are related to normals in the image coordinate nu
by

nx =
∂z

∂x
=

nu
1 + β(3z − 2a6 − a4u− a5v)

(24)

and ny is computed similarly. Thus, (20) can be rewritten as

(κ1 + κ2z)nu + (κ3 + κ4z)nv

+ (κ5 + κ6z)
(
1 + β(3z − 2a6 − a4u− a5v)

)
= 0

(25)

Plugging (22)-(23) into (25) results in ξ2 quadratic equa-
tions in a1, ..., a6, one for each pixel in the ξ × ξ patch,

(3βκ6u
4 + 2κ2u

3)a21 + 2(3βκ6u
2v2 + κ4u

2v + κ2uv
2)a1a2

+(κ4u
3 + 3κ2u

2v + 6βκ6u
3v)a1a3 + · · ·+

(3βκ6v
4 + 2κ4v

3)a22 + (κ2v
3 + 3κ4uv

2 + 6βκ6uv
3)a2a3

+ · · ·+ βκ6a
2
6 + (2κ1u+ κ6u

2 + 3βκ5u
2)a1 + · · ·+ κ5

(26)

We can then factorize the above equation into the following
form for easier optimization[

a> 1
]

Mi

[
a
1

]
= 0 i = 1, 2, ..., ξ2 (27)
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(b) camera baseline (cm)

Fig. 5: (a) Depth error vs. number of cameras (virtual viewpoints)
used. We add Gaussian noise of variance 10−4 on a synthetic
sphere and test the performance when different numbers of cam-
eras are used, from three to 81 (9×9 array). Although theoretically
three cameras are enough, depth recovery is very sensitive to noise.
As the number of cameras increases, the system becomes more
robust. (b) Depth error vs. camera baseline. Our method performs
the best when the baseline is between 0.01 cm to about 0.5 cm.
where a =

[
a1 a2 a3 a4 a5 a6

]> and Mi is a 7×7
matrix whose formula is given in the supplementary matrix.
Since we have 6 unknowns and ξ2 equations, any patch
larger than or equal to 3 × 3 would suffice to solve for a.
We choose the patch size as 5× 5 in our experiment.

Next, for spatial coherence we enforce neighboring pix-
els to have similar depths and normals. To avoid ambiguity
we require the normal at one seed pixel to be specified;
in practice we specify the nearest point and assume its
normal is the −z direction. The shape parameters for other
pixels in the image are then estimated accordingly. Our final
optimization thus consists of a data term D that ensures
the image patch satisfies the PDE, and a smoothness term S
that ensures neighboring normals and depths (a4 to a6) are
similar,

a = arg min
a

∑
i

D2
i + η

∑
j

S2
j (28)

where Di is computed by (27), and

Sj = aj − a0j j = 4, 5, 6 (29)

where a0j is the average aj of its 4-neighbors that have
already been computed, and η is the weight, which is 103

in our experiment. We then apply standard Levenberg-
Marquardt method to solve for the parameters.

Finally, note that although theoretically, three cameras
are enough to solve for depth, in practice more cameras
will increase the robustness against noise, as shown in
Fig. 5a. Indeed, the multiple views provided by light-field
cameras are essential to obtaining high-quality results. More
cameras, along with the polynomial regularizer introduced
above, helps to increase the system robustness compared to
previous work [6], [7], [8]. Next, in Fig. 5b, we further test
the effect of different baselines. We vary the baseline from
10−3 to 1 cm, and report their depth errors. As can be seen,
our method achieves best performance when the baseline
is between 0.01 cm to about 0.5 cm. When the baseline is
too small, there is little difference between adjacent images;
when the baseline is too large, the differential motion as-
sumption fails. Note that the effective baseline for Lytro
Illum changes with focal length and focus distance, and is
in the order of 0.01 to 0.1 cm, so our method is well suited
to the practical range of baselines.
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Fig. 6: Depth errors on different material types. Our method
achieves good results on all materials except fabric. For all material
types, we outperform the other methods.

5.2 Reflectance estimation

After the shape is recovered, reflectance can also be recov-
ered, similar to [6]. First, (∇vρ)x and (∇vρ)y can be obtained
using (14). Then (17) can be used to recover ρ′s. Specifically,
let k ≡ ‖ŝ + v̂‖(1 + βz)

√
u2 + v2 + f2, then

ρ′s = k(∇vρ)x/(n̂>H)x

= k(∇vρ)y/(n̂>H)y
(30)

In practice we just take the average of the two expressions
to obtain ρ′s. A final integration over n̂>ĥ then suffices to
generate ρs. Finally, subtracting ρs from the original image
gives the diffuse component (13). Note that although we
assumed a 1-lobe BRDF to obtain the depth information, if
shape is already known, then ρ can actually be 2-lobe since
two equations are given by the x- and y-component of (17).
Specifically, from (17) we have

(∇vρ)x = ρ′s,1mx + ρ′s,2qx

(∇vρ)y = ρ′s,1my + ρ′s,2qy
(31)

where ρ′s,1, ρ
′
s,2 are (unknown) derivatives of the two BRDF

lobes, and other variables are constants. Since we have two
unknowns and two equations, we can solve for the BRDFs.

6 RESULTS

We validate our algorithm using extensive synthetic scenes
as well as real-world scenes. We compare our results with
two methods by Tao et al., one using point and line consis-
tency to deal with specularity (PLC) [32] and one that han-
dles diffuse only but includes the shading cue (SDC) [31].
We also compare with the phase-shift method by Jeon et
al. (PSSM) [17], results by Lytro Illum, and the results by
Chandraker (SMRM [6], [7] and IAMO [8]). Since the pixel
clustering method by Tao et al. [33] has been superseded
by [32], we only include the comparison with [32] here.

6.1 Synthetic scenes

For synthetic scenes, we use a 7 × 7 camera array of 30
mm focal length. We test on a sphere of radius 10 cm
positioned at 30 cm away from the cameras, and also on
a randomly genrated complicated shape. Figure 9 shows
example results on materials in the MERL BRDF dataset [23]
on the sphere, while Fig. 10 shows results on the compli-
cated shape. Note that spheres are not a polynomial shape
(z =

√
r2 − x2 − y2). We provide a summarized figure

showing depth errors on different material types in Fig. 6.
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(b) Our depth 

(c) BRDF at red point 

(d) BRDF at green point 

(e) Our relit image 

(f) GT relit image 

Fig. 7: Shape and reflectance estimation results on a spatially-
varying example in the MERL dataset. (a) Two materials, alum
bronze and green metal, are blended linearly from left to right. We
reconstruct (b) the depth and (c)(d) the BRDFs for each column,
where two examples are shown at the red and green points specified
in (a). Finally, we show a relighting example in (e). The error
percentage compared to (f) the ground truth is 3.20%.

It can be seen that our method achieves good results on
most material types except fabric, which does not follow the
half-angle assumption. However, for all the material types,
we still outperform the other state-of-the-art methods. For
PLC [32], although it tries to handle glossy surfaces, the
line consistency they adopted is not able to handle general
BRDFs. In fact, from their internal result, we found that most
pixels in their final result are still using point-consistency.
For SDC [31] and PSSM [17], they are designed for Lam-
bertian scenes and perform poorly on glossy objects. For
SMRM [6], [7] and IAMO [8], they assume that the camera
view direction is constant over the entire object, which is
only an approximation for perspective projection. Finally,
to evaluate our reflectance reconstruction we compute the
ground truth BRDF curves by averaging BRDFs for all given
half-angles. It can be seen that our curves look very similar
to the ground truth BRDFs.

Next, we test our method on a sphere with a spatially-
varying BRDF, where we linearly blend two materials (alum
bronze and green metal) from left to right (Fig. 7). In addi-
tion to recovering depth, we also compute the BRDFs for
each column in the image, and show results for two sample
columns and a relighting example, where we accurately
produce results similar to the ground truth.

Finally, to test the adaptability of our quadratic shape
model (22), we randomly generate different shapes, and
apply different sizes of Gaussian filters on the frequency
domain to generate shapes with different smoothnesses. The
plot for depth errors vs. Gaussian standard deviations is
shown in Fig. 8. It can be seen that as the shape becomes
more and more complicated, the quadratic assumption
starts to fail and leads to large errors. A possible solution
would be to use higher order polynomials to better approx-
imate the shapes.

6.2 Real-world results

Given the raw lenslet image taken with the Lytro camera, we
first decode and extract standardized views using Lytro’s
official software. We can then obtain images of angular
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(a) error plot

	σ =0.5

	σ =1.5

(b) example shapes

Fig. 8: (a) We apply Gaussians with different standard deviations
(σ) on the frequency domain to generate shapes with different
smoothnesses, then plot the corresponding depth errors. (b) Exam-
ple shapes for σ = 0.5 and σ = 1.5.

resolution 14×14 and spatial resolution 376×541. However,
the views on the boundaries are usually black, and we only
use the central 7 × 7 views as input to our system. Since
the effective baseline changes for different focal lengths and
focus distances, we fix them and use an object at a known
distance z to calibrate the baseline offline. In particular, we
first compute the disparity (in pixels) between neighboring
views; then the baseline is calculated by

baseline =
∣∣∣ zF

f(z − F )
ps

∣∣∣ · disparity (32)

where F is the focused distance, f is the focal length, which
can be found in the meta file, and ps is the pixel size.

We show results taken with the Lytro Illum in Figs. 1,
11 and 12. In Fig. 11 we show reconstructed shapes and
BRDFs of objects with homogeneous BRDFs. For objects that
are symmetric, we obtain the ground truth by a surface
of revolution using the outline curve in the image, and
compute the RMSE for each method. It can be seen that our
method realistically reconstructs the shape, and achieves the
lowest RMSE when ground truth is available. The recovered
BRDFs also seem qualitatively correct, e.g., for the bowling
pin its BRDF has a very sharp specularity. In Figs. 1 and 12
we show results of objects with spatially-varying BRDFs.
For the first example in Fig. 12, we show results for a red
ball with white stripes. It can be seen that other methods
generate artifacts around the specular region, while ours
captures the true shape. Also, our method achieves the
lowest RMSE compared to the ground truth. For the other
examples, we show figurines where we spray paints of
different materials on their bodies. Again, it can be seen that
other methods have artifacts or produce distorted shapes
around the specular regions, while our method realistically
reproduces the shape.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel BRDF-invariant shape and
reflectance estimation method for glossy surfaces from light-
field cameras. By utilizing the differential motion theory, we
show that direct shape recovery is not possible for general
BRDFs. However, for a 1-lobe BRDF that depends only on
half-angle, we derive an SVBRDF-invariant equation relat-
ing depth and normals. Using a locally polynomial prior
on the surface, shape can be estimated using this equation.
Reflectance is then also recovered using our framework. Ex-
periments validate our algorithm on most material types in
the MERL dataset, as well as real-world data taken with the

Lytro Illum. Spatially-varying BRDFs can also be handled
by our method, while this is not possible using [6], [7],
[8]. Finally, since we showed that there is actually inherent
ambiguity in light-fields for unknown shape and general
multi-lobe reflectance, future work includes deriving its
ambiguity-space, i.e., what is the precise set of shapes and
reflectances that generates the same light-field.
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APPENDIX A
DERIVATION OF ∇Vρ

Suppose ρ = (ρd(x,n, s) + ρs(x, n̂>ĥ)) · (n̂>ŝ), where n̂>ŝ
is the cosine falloff term. Since n̂>ŝ is independent of v, it
just carries over the entire derivation and will be omitted in
what follows. By the chain rule we have

∇vρ =
∂ρs

∂(n̂>ĥ)

∂(n̂>ĥ)

∂v
= ρ′s

∂(n̂>ĥ)

∂v
= ρ′s

∂(n̂>ĥ)

∂ĥ
∂ĥ
∂v

= ρ′sn̂
> ∂ĥ
∂v

= ρ′sn̂
> ∂ĥ
∂h

∂h
∂v̂

∂v̂
∂v

(33)

Recall that for a vector w, ∂ŵ/∂w = (I− ŵŵ>)/‖w‖. Then
∂ĥ
∂h

=
I− ĥĥ

>

‖ŝ + v̂‖
,

∂v̂
∂v

=
I− v̂v̂>

‖v‖
(34)

And
∂h
∂v̂

=
∂(ŝ+v̂)

∂v̂
= I (35)

So (33) can be simplified as

∇vρ = ρ′sn̂
> I− ĥĥ

>

‖ŝ + v̂‖
· I · I− v̂v̂>

‖v‖
(36)

Let H ≡ (I− ĥĥ
>

)(I− v̂v̂>), and note that

‖v‖ = ‖(0, 0,−f)> − (x, y, z)>‖

=
√
x2 + y2 + (z + f)2

= (1 + βz)
√
u2 + v2 + f2

(37)

then (36) becomes

∇vρ = ρ′sn̂
> H
‖ŝ + v̂‖‖v‖

= ρ′sn̂
> H

‖ŝ + v̂‖(1 + βz)
√
u2 + v2 + f2

(38)

which is the equation we used in (17). The following proce-
dure is described in the main text. Finally, after expanding
(19), the κ’s in (20) are

κ1 = (γ2 + γ1Iu − Iu)H12 − (γ3 + γ1Iv − Iv)H11

κ2 = β(γ2 + γ1Iu)H12 − β(γ3 + γ1Iv)H11

κ3 = (γ2 + γ1Iu − Iu)H22 − (γ3 + γ1Iv − Iv)H21

κ4 = β(γ2 + γ1Iu)H22 − β(γ3 + γ1Iv)H21

κ5 = −(γ2 + γ1Iu − Iu)H32 + (γ3 + γ1Iv − Iv)H31

κ6 = −β(γ2 + γ1Iu)H32 + β(γ3 + γ1Iv)H31

(39)
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The mathematical solution to the PDE (20) is a paramet-
ric curve defined by

z(s) = −κ5
κ6

+ c1e
−κ6s

x(s) = κ1s+ κ2(− c1
κ6
e−κ6s − κ5

κ6
s) + c2

y(s) = κ3s+ κ4(− c1
κ6
e−κ6s − κ5

κ6
s) + c3

(40)

where c1, c2, c3 are constants, and require some initial con-
dition to be uniquely identified. Note that κ’s are different
for each pixel, which makes the problem even harder. There-
fore, directly obtaining shape is not possible, and we refer
to a polynomial shape prior, as introduced in the main text.

For cameras focused at some finite distance F , the new
κ values become

κ1 = (γ2 + (γ1 −
βF

1 + βF
)Iu)H12 − (γ3 + (γ1 −

βF

1 + βF
)Iv)H11

κ2 = β(γ2 + (γ1 +
1

1 + βF
)Iu)H12 − β(γ3 + (γ1 +

1

1 + βF
)Iv)H11

κ3 = (γ2 + (γ1 −
βF

1 + βF
)Iu)H22 − (γ3 + (γ1 −

βF

1 + βF
)Iv)H21

κ4 = β(γ2 + (γ1 +
1

1 + βF
)Iu)H22 − β(γ3 + (γ1 +

1

1 + βF
)Iv)H21

κ5 = −(γ2 + (γ1 −
βF

1 + βF
)Iu)H32 + (γ3 + (γ1 −

βF

1 + βF
)Iv)H31

κ6 = −β(γ2 + (γ1 +
1

1 + βF
)Iu)H32 + β(γ3 + (γ1 +

1

1 + βF
)Iv)H31

(41)

APPENDIX B
DERIVATION OF nx AND ny
Since u = x/(1 + βz) by (1), we can multiply both sides in
(22) by (1 + βz)2 and get

z(1 + βz)2 = a1x
2 + a2y

2 + a3xy + a4x(1 + βz)

+ a5y(1 + βz) + a6(1 + βz)2
(42)

Taking derivatives of both sides, the above equation be-
comes

(1 + βz)2δz + 2βz(1 + βz)δz = 2a1xδx+ 2a2yδy

+a3xδy + a3yδx+ a4(1 + βz)δx+ a4βxδz

+a5(1 + βz)δy + a5βyδz + 2βa6(1 + βz)δz

(43)

After some rearrangement, we can write the normal nx as,

nx =
∂z

∂x
=

2a1x+ a3y + a4(1 + βz)

(1 + βz)2 + 2βz(1 + βz)− a4βx− a5βy − 2βa6(1 + βz)

=
2a1u+ a3v + a4

1 + 3βz − a4βu− a5βv − 2βa6

=
nu

1 + 3βz − a4βu− a5βv − 2βa6 (44)

Similarly, ny can be written as

ny =
∂z

∂y
=

nv

1 + 3βz − a4βu− a5βv − 2βa6
(45)
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Fig. 9: Shape and reflectance estimation results on a sphere for example materials in the MERL dataset. For shape estimation, the
upper-left shows the recovered depth, while the lower-right shows the error percentage (hotter color means larger error). For reflectance
estimation, we show the recovered BRDF compared to ground truth curves.
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Fig. 10: Shape and reflectance estimation results on a more complicated shape for example materials in the MERL dataset. For shape
estimation, the upper-left shows the recovered depth, while the lower-right shows the error percentage (hotter color means larger error).
For reflectance estimation, we show the recovered BRDF compared to ground truth curves.
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Fig. 11: Shape and reflectance estimation results on real data with homogeneous BRDFs. The intensities of the input images are
adjusted for better contrast. For each example, we show both the depth map (hotter color means nearer) and the side view profile of
the reconstructed shape. It can be seen that our method realistically reconstructs the shapes, and also achieves the lowest RMSE when
ground truth is available. The recovered BRDFs also look qualitatively correct, e.g., the bowling pin has a very sharp specularity.
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Fig. 12: Shape estimation results on real data with spatially-varying BRDFs. The intensities of the input images are adjusted for better
contrast. For each example, we show both the depth map and the side view profile of the reconstructed shape. For the first example, we
show results for a red ball with white stripes. It can be seen that other methods generate artifacts around the specular region, while
ours captures the true shape. Also, our method achieves the lowest RMSE compared to the ground truth. For the other examples, we
show figurines where we spray paints of different materials on their bodies. Again, it can be seen that other methods have artifacts or
produce weird shapes around the specular regions, while our method realistically reproduces the shape.


