Supplementary Material for Minimal BRDF Sampling for Two-Shot Near-Field Reflectance Acquisition

Zexiang Xu¹ J

Jannik Boll Nielsen² Jiyang Yu¹ ¹University of California, San Diego Henrik Wann Jensen¹ Ravi Ramamoorthi^{1*} ²Technical University of Denmark

Convergence Plot (Section 5): Figure 1 shows the convergence of the near-field optimization for 50 random initial conditions, with n = 2 samples and a 25° field of view. Light and view directions for each run converge to almost the same directions. Similar results hold for other fields of view.

Figure 1: Optimization repeated 50 times for n = 2 images for near-field sampling with a 25° field of view. Light and view directions for each run converge to almost the same location.

Larger Fields of View and More Samples (Section 6): Figure 2 extends Fig. 6 in the main paper by also showing average RMS error in reconstruction for two much wider fields of view, of 85° and 175° . It can be seen that there is minimal change in the error curves, even for these extreme field of view angles. This justifies our use of 25° field of view for most of the results in the main paper.

Figure 2: Average RMS error over unknown samples for near-field reflectance acquisition. This extends Fig. 6 in the main paper by adding two wide field-of-view angles of 85° and 175°. As with the main paper, errors are measured in the log-mapped BRDF domain.

^{*}email {zexiangxu, jiy173, henrik, ravir }@eng.ucsd.edu, jbol@dtu.dk

Figure 3 extends Fig. 8 of the main paper, also listing the optimal sampling directions for 3, 4 and 5 near-field images for fields-of-view from 15° to 45° . These directions may be useful for those implementers interested in using even more images than the two-shot acquisition discussed in the main paper.

n	$\theta_h[^\circ]$	$\theta_d[^\circ]$	$\phi_d[^\circ]$	n	$\theta_h[^\circ]$	$\theta_d[^\circ]$	$\phi_d[^\circ]$	n	$\theta_h[^\circ]$	$\theta_d[^\circ]$	$\phi_d[^\circ]$	n	$\theta_h[^\circ]$	$\theta_d[^\circ]$	$\phi_d[^\circ]$	
3	0	46	0	3	3	30	36		4	39	3		1	82	0	
	4	80	88		15	79	87	3	8	79	82	3	3	56	6	
	30	36	38		35	39	34		34	43	21		12	12	89	
4	0	16	0	4	2	61	173		3	56	4		1	82	0	
	0	58	0		3	28	36	4	8	82	81	4	1	57	0	
	4	83	88		24	83	88	*	8	12	56	*	10	13	86	
	31	34	38		35	38	34		34	44	27		38	50	44	
5	0	16	0	5	1	68	0		1	76	0		1	85	0	
	0	58	0		3	27	36		1	54	0		1	76	0	
	4	83	88		23	70	45	5	6	85	81	5	1	54	0	
	24	67	40		24	83	88		8	12	56		10	13	86	
	31	30	32		31	35	40		36	43	36		40	44	41	
(a) 15°					(b) 25°				(c) 35°				(d) 45°			

Figure 3: Tabulation of 3, 4 and 5 near-field acquisition directions for fields of view ranging from 15° to 45°.

Point Sampling (Appendix B): Figure 4 lists our optimal point-sampling directions for 1,2,5,10 and 20 samples. Qualitatively, the directions are similar to those in [Nielsen et al. 2015]; for example, the one sample measurement focuses on specular reflection with $\theta_h = 0$. Indeed, we typically use several samples at mirror reflection $\theta_h = 0^\circ$, to precisely measure the specular highlight. However, the actual locations are different from [Nielsen et al. 2015], and produce somewhat more accurate results.

Figure 4: Optimal light-view sampling directions from our method for point-sampled BRDF measurement.

We compare reconstructions for a few materials from the MERL database for our directions, and for [Nielsen et al. 2015] in Fig. 5. It can be seen that in some cases we do qualitatively better, while there is a minor improvement in other cases. In general, our 5 directions produces comparable results to 20 samples using the previous condition number metric.

Figure 18 in Appendix B of the main paper shows a comparison with [Nielsen et al. 2015] for reconstruction with no noise, as in the original work of [Nielsen et al. 2015]. Figure 6 below extends this, by showing a comparison of reconstruction with our optimized 20 directions and the previous work, assuming a noise β of 0.02. The results are comparable to those in the main paper, with our errors always being lower.

Figure 5: Comparison of MERL BRDF materials reconstructed using our new optimized sampling directions, and those obtained with the sampling directions in [Nielsen et al. 2015]. Our results show a minor improvement, with a qualitative benefit in some cases.

Figure 6: Comparison of reconstruction with our new optimized directions, and those from [Nielsen et al. 2015], where we consider 20 directions instead of 5 in the main paper, and include noise of 2%. Our method again produces a lower error.

Comparison of Near-Field and Point Sampling (Figure 2): The remainder of the document is similar to Fig. 2 of the main paper, showing simulations of the MERL BRDF materials, but for all of the materials in the database using our final optimized set of near-field directions. It can be seen that over the entire database, one image in near-field sampling is similar to 5 point samples and two images in near-field sampling is similar to 20 point samples.

