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We discuss implementation details, evaluation details, algorithm

derivation and details, and additional evaluation results in the sup-

plementary.

1 IMPLEMENTATION DETAILS
1.1 Details of Back-projecting Pixels into 3D

Gaussians
Given a pixel at screen-space coordinates s, it is associated with an

estimated depth 𝑙 (s). Assume that the ray origin and correspond-

ing ray direction are o and d(s). From our proposed approximate

surface rendering in Sec. 3.3, we want to place a splat such that

𝐷 (s) = 𝑙 (s), where 𝐷 (s) denotes the rendered depth at s. Trivially
placing a splat with small scaling at o + 𝑙 (s)d(s) is plausible but
it reduces the benefits provided by 3D Gaussians back to simply

using points.

Given our approximate surface rendering algorithm in Sec. 3.3

of the main paper, we can map each splat to its ellipsoid shell. Note

that in the following discussion, we talk about how to determine

the center and scaling of the ellipsoid shell instead of 3D Gaus-

sians directly. To fill up holes in the space as much as possible

without affecting depth rendering at any other pixel, we propose
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Figure 1: (a) 𝛽 is the minimum angle between the red ray and
its neighbors. (b) We use 𝛽 and 𝑙 to set the size and center
of the sphere, such that it is as large as possible without
intersecting any black rays.

to set the scaling and the center of the ellipsoid shell to
sin 𝛽

1−sin 𝛽 𝑙 ,

and o + 𝑙
1−sin 𝛽 d(s) respectively, as shown in Fig. 1 (b). Here, 𝛽

is the minimum angle between the current ray and neighboring

rays, as shown in Fig. 1 (a). Therefore, both the scaling and cen-

ter are differentiable functions of 𝑙 , which itself is obtained from

the (differentiable) monocular depth, enabling a fully differentiable

framework.

While back-projecting pixels of newly registered views into 3D

Gaussians, we are only interested in projecting pixels corresponding

to newly observed regions. Therefore, we define a mask𝑀 by:

𝑀 (s) = [𝐷 (s) == ∅] ∨ [𝐷 (s) − 𝑙 (s) > 𝜏], (1)

where 𝑀 (s) denotes the value of 𝑀 at s, 𝐷 (s) == ∅ denotes the

emitting ray from s hits nothing, and 𝜏 = 10. Only pixels with

𝑀 (s) == 1 are back-projected.

1.2 Details of Parameterizing the Optimization
over Monocular Depth

As stated in the Sec. 3.1 of main paper, due to the sparsity of corre-

spondences, we have to rely on the scale-consistency assumption in

monocular depth estimation. However, this assumption can easily

break when there are multiple objects in the scene. Therefore, we

relax the constraint by learning a separate scaling and shift for
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each detected object in the scene. The objects are detected using

the method described by Yu et al. [2023].

1.3 Details of Imposing Low-pass Filter
As stated in Sec. 3.4 of main paper, after obtaining a coarse solution,

we apply a low-pass filter to it and then conduct refinement. To

fill up the holes resulting from the filtering, we expand the scales

of the remaining 3D Gaussians based on their spatial density as in

[Kerbl et al. 2023].

1.4 Details of Optimization Configuration
Our optimization setup mostly follows Kerbl et al. [2023]. While

constructing the coarse solution, we use the following learning

rates: 0.01 for the quaternion for each view, 0.1 for the translation

for each view and 0.01 for each object in the monocular depth. We

only retain correspondence points with confidence over 0.5 for the

detected correspondence [Sun et al. 2021; Tang et al. 2022].

For the coarse solution, in the adjustment, as stated in the main

paper, we have to fit all seen views. Assuming the 𝑘 + 1th view has

just been registered, we optimize the 𝑘 + 1th view with 50% chance,

and all previous views with the remaining 50% chance. These hyper-

parameters depend on the camera movements during the capture;

we have reported the ones that worked well in our experiments.

Finally, we further refine the camera parameters when refining

the coarse solution using standard method [Kerbl et al. 2023], which

is possible as a result of the differentiable forward model. We lin-

early decay the learning rate for the quaternions from 0.0001 to

0.000001, and for translation from 0.001 to 0.00001. The optimiza-

tion consumes ∼ 1 hour on an NVIDIA RTX 3080 GPU.

2 EVALUATION DETAILS
2.1 Dataset Pre-processing
We use the exact same Tanks&Temples dataset in [Bian et al. 2023],

and pre-process the Static Hikes dataset in [Meuleman et al. 2023]

by truncating each scene such that 3 training views can cover the

entire scene.

2.2 Registration of Testing Views
Since we split all views into training views and testing views, testing

views need to be registered after reconstruction of training views.

For methods that rely on off-the-shelf estimated camera poses,

we again leverage SfM [Schönberger and Frahm 2016; Schönberger

et al. 2016] to register testing views but without bundle adjustment

for fairness.

For methods that do not rely on off-the-shelf estimated camera

poses, following Bian et al. [2023], we conduct a post-training op-

timization of the camera poses of the testing views, based on the

RGB loss only. The camera pose of the next unregistered testing

view is initialized with the corresponding value for the last regis-

tered testing view. For our method, we optimize quaternion with a

learning rate of 0.001 and translation with a learning rate of 0.01

for the testing views based on the RGB loss only.

3 COARSE SOLUTION CONSTRUCTION
ALGORITHM

Our coarse solution construction algorithm is summarized in Alg. 1.

The usage of semantic masks in parameterizing optimization of

depths is discussed in Sec. 3.2 of main paper but omitted here for

simplicity.

Algorithm 1 Coarse solution construction

Input: 𝑛 consecutive frames I = {𝐼 (1) , 𝐼 (2) , ..., 𝐼 (𝑛) }, and their es-

timated monocular depths D = {𝐷 (1) , 𝐷 (2) , ..., 𝐷 (𝑛) }. Camera

intrinsic matrix 𝐾 .

Output: A reconstructed scene S represented with Gaussian

splatting, and the extrinsic matrices for 𝑛 frames P =

{𝑃 (1) , 𝑃 (2) , ..., 𝑃 (𝑛) }.
1: S ← 𝐵𝑎𝑐𝑘𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 (S, 𝐼 (1) , 𝐷 (1) , 1) ⊲ Back-project all pixels

into 3D Gaussians based on depth

2: for 𝑖 ← 2 to 𝑛 do
3: 𝑃 (𝑖 ) ← 𝑃 (𝑖−1) ⊲ Initialization

4: 𝑃 (𝑖 ) ← 𝐹𝑖𝑡𝐼𝑚𝑎𝑔𝑒 (S, 𝐼 (𝑖 ) , 𝑃 (𝑖 ) ) ⊲ Registration

5: I′ ← {𝐼 (1) , 𝐼 (2) , ..., 𝐼 (𝑖 ) }
6: P′ ← {𝑃 (1) , 𝑃 (2) , ..., 𝑃 (𝑖 ) }
7: P′,S′, 𝐷′(𝑖 ) ← 𝐹𝑖𝑡𝐼𝑚𝑎𝑔𝑒 (S,I′,P′, 𝐷 (𝑖 ) ) ⊲ Adjustment

8: 𝑀 ← 𝑀𝑎𝑠𝑘𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(S, 𝐼 (𝑖 ) , 𝑃 (𝑖 ) )
9: S ← 𝐵𝑎𝑐𝑘𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 (S, 𝐼 (𝑖 ) , 𝐷′(𝑖 ) , 𝑀) ⊲ Back-projection

4 NUMERICALLY STABLE APPROXIMATE
SURFACE DIFFERENTIABLE RENDERING

We start from a brief simplified review of the color rendering in

Kerbl et al. [2023] in Sec. 4.1, and then extend it to surface rendering

in Sec. 4.2. Finally, we provide a numerically stable ray-ellipsoid

intersection algorithm in Sec. 4.3.

4.1 Review of rendering in Gaussian Splatting
We are interested in computing the color for screen-space point

x = (𝑥,𝑦) [Mildenhall et al. 2022], given by

𝐼 (x) =
∫ ∞

0

c(x, 𝑡)𝜎 (x, 𝑡) exp (−
∫ 𝑡

0

𝜎 (x, 𝑠)𝑑𝑠)𝑑𝑡 . (2)

Here, 𝑡 denotes the third dimension, i.e., depth.

Following several splatting based rendering algorithms [Kerbl

et al. 2023; Zwicker et al. 2001, 2002], 𝜎 (x, 𝑡) is reformulated as

𝜎 (x, 𝑡) =
𝑁∑︁
𝑖=1

𝜔𝑖 (x, 𝑡)𝑟𝑖 (x, 𝑡), (3)

where 𝑟𝑖 denotes the 𝑖
th
reconstruction kernel evaluated at (x, 𝑡)

and 𝜔𝑖 (x, 𝑡) denotes its weight.
Therefore, by swapping the integral and summation, Eqn. 2 can

be formulated as

𝐼 (x) =
𝑁∑︁
𝑖=1

∫ ∞

0

c(x, 𝑡)𝜔𝑖 (x, 𝑡)𝑟𝑖 (x, 𝑡)

𝑁∏
𝑗=1

exp (−
∫ 𝑡

0

𝜔 𝑗 (x, 𝑠)𝑟 𝑗 (x, 𝑠))𝑑𝑠)𝑑𝑡 .
(4)
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Assumption 1. Reconstruction kernels are locally supported or
approximately truncated and they have no overlap with one another.
Specifically, for any depth 𝑡̂ , there is a single index 𝑘 ∈ {1, ..., 𝑁 },
such that 𝜎 (x, 𝑡̂) ≈ 𝜔𝑘 (x, 𝑡̂)𝑟𝑘 (x, 𝑡̂).

Using the above assumption, we have∫ ∞

0

𝐹 (𝑡)𝜔𝑖 (x, 𝑡)𝑟𝑖 (x, 𝑡)𝑑𝑡 ≈
∫ 𝛽𝑖

𝛼𝑖

𝐹 (𝑡)𝜔𝑖 (x, 𝑡)𝑟𝑖 (x, 𝑡)𝑑𝑡, (5)

where 𝛼𝑖 , 𝛽𝑖 denote the starting and ending points of the local sup-

port for the 𝑖th reconstruction kernel, and 𝐹 (𝑡) is any 𝑡-dependent
function. Furthermore, we sort reconstruction kernels based on

their centers along the depth axis such that

∀𝑖,∀𝑗 > 𝑖, 𝛼 𝑗 > 𝛽𝑖 . (6)

This implies that

∀𝑖,∀𝑗 > 𝑖,
∫ 𝛽𝑖

0

𝜔 𝑗 (x, 𝑠)𝑟 𝑗 (x, 𝑠)𝑑𝑠 ≈ 0. (7)

Plugging Eqn. 5 and Eqn. 7 into Eqn. 4, we have

𝐼 (x) ≈
𝑁∑︁
𝑖=1

∫ ∞

0

c(x, 𝑡)𝜔𝑖 (x, 𝑡)𝑟𝑖 (x, 𝑡)

𝑖−1∏
𝑗=1

exp (−
∫ 𝑡

0

𝜔 𝑗 (x, 𝑠)𝑟 𝑗 (x, 𝑠))𝑑𝑠)𝑑𝑡 .
(8)

By expanding the first-order Taylor series of the exponential func-

tion, we have

𝐼 (x) ≈
𝑁∑︁
𝑖=1

∫ ∞

0

c(x, 𝑡)𝜔𝑖 (x, 𝑡)𝑟𝑖 (x, 𝑡)
𝑖−1∏
𝑗=1

(1−
∫ 𝑡

0

𝜔 𝑗 (x, 𝑠)𝑟 𝑗 (x, 𝑠))𝑑𝑠)𝑑𝑡 .

(9)

Again plugging Eqn. 5 into Eqn. 9, we can change the upper bound

of inner integral for alignment as

𝐼 (x) ≈
𝑁∑︁
𝑖=1

∫ ∞

0

c(x, 𝑡)𝜔𝑖 (x, 𝑡)𝑟𝑖 (x, 𝑡)
𝑖−1∏
𝑗=1

(1−
∫ ∞

0

𝜔 𝑗 (x, 𝑠)𝑟 𝑗 (x, 𝑠))𝑑𝑠)𝑑𝑡

(10)

Assumption 2. Color is constant inside each reconstruction kernel,
i.e., c(x, 𝑡) = c𝑖 .

From Assumption. 2, we can move c(x, 𝑡) outside the integral

𝐼 (x) ≈
𝑁∑︁
𝑖=1

c𝑖 (
∫ ∞

0

𝜔𝑖 (x, 𝑡)𝑟𝑖 (x, 𝑡)𝑑𝑡)
𝑖−1∏
𝑗=1

(1−
∫ ∞

0

𝜔 𝑗 (x, 𝑠)𝑟 𝑗 (x, 𝑠))𝑑𝑠)

(11)

By choosing a Gaussian reconstruction kernel, further convolu-

tions and transformations applied to 𝐼 (x) can be reduced to the

operations on 𝑟𝑖 (x, 𝑡). The integral has a closed form solution given

by,

𝐼 (x) ≈
𝑁∑︁
𝑖=1

c𝑖𝛼𝑖 (x)
𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 (x)), (12)

where 𝛼𝑖 (x) denotes the alpha blending coefficients of 𝑖th Gaussian

kernel, as in Kerbl et al.[2023].

4.2 Extension to approximate surface rendering
In previous works, surface rendering is usually achieved by render-

ing the depth, which is given by

𝐷 (x) ≈
𝑁∑︁
𝑖=1

𝑑𝑖𝛼𝑖 (x)
𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 (x)), (13)

where𝑑𝑖 denotes the 𝑧-axis coordinate for the center of the Gaussian

kernel in the camera space.

This surface rendering model is based on an assumption similar

to Assumption. 2, according to which the depth is constant inside

each reconstruction kernel. However, it is too strong that it ignores

the shape of the Gaussian kernel, making the depth independent of

rotation and scaling. A better surface approximation which is both

anisotropic and scale-dependent is vital for optimization.

Actually, similar to Eqn. 10, from the definition of expected

surface points, we can have

Ψ(x) ≈
𝑁∑︁
𝑖=1

(
𝑖−1∏
𝑗=1

(1−
∫ ∞

0

𝜔 𝑗 (x, 𝑠)𝑟 𝑗 (x, 𝑠))𝑑𝑠)) (
∫ ∞

0

𝑞𝜔𝑖 (x, 𝑡)𝑟𝑖 (x, 𝑡)𝑑𝑡),

(14)

where 𝑞 = (x, 𝑡)𝑇 and Ψ(x) ∈ R3
denotes the expected surface

points for screen-space point x. Therefore, we can see that 𝑞 only

appears in the right integral, excluding effects from reconstruction

kernels in front of current one, and 𝑞 lies exactly on the ray emitting

from x.
We then expect to propose a similar assumption to Assumption. 2,

such that 𝑞 is moved out from the integral as a constant, but the

constant is carefully chosen such that it still satisfies the property

that it lies exactly on the ray emitting from x.

Assumption 3. Surface point is constant inside each reconstruc-
tion kernel but it depends upon the viewing ray.

By denoting the carefully chosen constant for the 𝑖th reconstruc-

tion kernel at screen-space coordinates s as 𝜇𝑖 (x), we can have the

expected surface points formulated as:

Ψ(x) ≈
𝑁∑︁
𝑖=1

𝜇𝑖 (x)𝛼𝑖 (x)
𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 (x)) (15)

Notice that even though 𝜇𝑖 is a function of x, it actually represents

the surface is constant around the current ray and filter, but it

changes along with the current ray direction.

Since 𝜇𝑖 (x) is a property belonging to each Gaussian kernel, we

look at one Gaussian kernel for defining it. Above all, it is obvious

that we can expect two properties for it. As stated in the main paper,

1) The relative position between 𝜇𝑖 (x) and the center of Gaussian

kernel should be fixed when the center and ray both translate by

the same distance. 2) The relative position between 𝜇𝑖 (x) and the

center of Gaussian kernel should be fixed when the Gaussian kernel

and ray both rotate by the same angle. Therefore, we can put the

Gaussian kernel in its canonical form, i.e., placed at the origin with

identity rotation, for seeking the definition of 𝜇𝑖 (x).
For simplicity, we assume the Gaussian kernel is a sphere and

then approximately extend it to the ellipsoid case. When the Gauss-

ian kernel is not too big, rays emitted from the camera passing

through it can be assumed as roughly passing through the center.

Therefore, as the ray moves, the exact surface points form a shell
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Figure 2: Qualitative comparison of pose-free methods for sparse view synthesis. From top to bottom, we use 3 and 12 frames as
training views and others for testing. The scenes are, from the top to bottom: Ballroom, Church from Tanks&Temples. Our
method enjoys the best visually pleasing results and highest PSNR scores. Images credit by Knapitsch et al. [2017].

Methods 3 Views 6 Views 12 Views
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Instant-NGP� 15.54 0.43 0.56 17.62 0.57 0.46 20.44 0.71 0.33

LocalRF 16.06 0.49 0.70 16.31 0.50 0.67 18.68 0.54 0.61

NoPe-NeRF 12.05 0.35 0.76 15.64 0.45 0.65 18.12 0.49 0.60

CF 3DGS 14.91 0.43 0.43 16.71 0.50 0.41 18.62 0.59 0.36

Ours 20.37 0.66 0.26 25.18 0.81 0.16 28.65 0.88 0.10
Table 1: Quantitative evaluation on the Tanks&Temples dataset in terms of novel view synthesis where SfM sees all frames for
reconstruction, yielding clean camera poses. The best score is highlighted in bold. Methods marked with a camera denote that
they rely on off-the-shelf estimated camera poses.

around the Gaussian kernel. In this case, it is sufficient to consider

a 1D Gaussian kernel to determine the location of surface.

Specifically, assume the “scaling” of this 1D Gaussian kernel is 𝑠

and a 1D ray is passing through it from infinite left to infinite right,

the density can be given as 𝜎 (𝑥) = 𝑒−
𝑥2

2𝑠2 . Therefore, based on the

corresponding defined free-flight distribution, the located surface

is given by

Ψ =

∫ ∞

−∞
𝑥𝜎 (𝑥)𝑒−

∫ 𝑥

−∞ 𝜎 (𝑠 )𝑑𝑠
𝑑𝑥 (16)

We numerically solve this equation, but for efficient calculation,

we propose to use Ψ = 2𝑠 to approximate it. We then extend the

conclusion to an ellipsoid Gaussian kernel by forming an ellipsoid

shell whose length of each axis depends on the scaling of the same

axes.

Therefore, in summary, 𝜇𝑖 (x) is reduced to a ray-ellipsoid in-

tersection test. Each Gaussian kernel is associated with a unique

ellipsoid, which shares the same center and rotation with the kernel,

but the length of axes is a function of the scaling of the kernel.

In the forward pass, the calculated Ψ(x) has the desirable prop-
erty that it is promised to be projected to x in the screen space.

As to the backward pass, as discussed in the main paper, the

gradients should not be propagated to the ray origin and direction

even though the surface point is defined through the ray-ellipsoid

intersection test, which has the form 𝜇𝑖 (x) = o + 𝑙d, where o, d
denote the ray origin and direction, and 𝑙 denote the length between

ray origin and intersected point. By defining the surface point

through an approximated ellipsoid, we can actually parameterize

the surface point as a function of center, rotation and scaling of

Gaussian kernels. This awards us with another benefit.

Considering the gradients propagated to the reconstructed scene

through the rendered surface
𝜕L

𝜕𝜇𝑖 (x) , if 𝜇𝑖 (x) is parameterized as

o + 𝑙d, 𝜕L
𝜕𝑙

= 𝜕L
𝜕𝜇𝑖 (x) ·

𝜕𝜇𝑖 (x)
𝜕𝑙

= 𝜕L
𝜕𝜇𝑖 (x) · d. Therefore, the gradient

is biased towards the ray direction, and it is even possible that

𝜕L
𝜕𝜇𝑖 (x) is perpendicular to d, resulting in stuck at zero gradients.

In contrast, by parameterizing 𝜇𝑖 (x) as 𝜇𝑖 + 𝑅𝑖 𝑓 (𝑠𝑖 ), where 𝜇𝑖 , 𝑅𝑖 , 𝑠𝑖
denote the center, rotation and scaling of 𝑖th Gaussian kernel and

𝑓 denotes the function of determining the shape of ellipsoid shell,

𝜕L
𝜕𝜇𝑖

= 𝜕L
𝜕𝜇𝑖 (x) . It is free of the problem mentioned above.

However, there is no denying that a density function represented

as the composition of Gaussian kernels does not necessarily corre-

sponds to a valid surface. It would be interesting to explore how

to use splatting to represent SDF, UDF, and etc. function for more

accurate surface rendering.

4.3 Numerically stable ray-ellipsoid
intersection algorithm summary

In our introduced approximate surface rendering algorithm, the

ray-ellipsoid intersection has the numerical issues when the ray

origin is far from the ellipsoid. We summarize the details of a more

numerically stable version in Alg. 2.



A Construct-Optimize Approach to Sparse View Synthesis without Camera Pose—Supplementary MaterialSIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Algorithm 2 Numerically Stable Ray-ellipsoid Intersection Test

Input: Ray origin o ∈ R3
and ray direction d ∈ R3

. The properties

of an ellipsoid: center e𝑐 ∈ R3
, scaling e𝑠 = (e𝑠𝑥 , e𝑠𝑦 , e𝑠𝑧 )𝑇 ∈

R3

+ and rotation e𝑟 ∈ 𝔰𝔬(3).
Output: Whether the ray intersect the ellipsoid. If yes, return the

world space coordinates of the intersection point.

1: o′ ← e𝑇𝑟 (o − e𝑐 )
2: d′ ← e𝑇𝑟 d

| |e𝑇𝑟 d | |2
3: t0 ← d′ � e𝑠
4: t1 ← o′ � e𝑠
5: t2 ← 1

e𝑠𝑥 e𝑠𝑦 e𝑠𝑧
(d′ × o′) ⊙ e𝑠

6: if | |t0 | |2 < | |t2 | |2 then
7: return No Intersection,∅.
8: else
9: 𝑡 ← −( t0

| |t0 | |2 ·
t1
| |t0 | |2 ) −

1

| |t0 | |2

√︃
1 − | |t2 | |2| |t0 | |2

√︃
1 + | |t2 | |2| |t0 | |2 .

10: return Intersected, o + 𝑡d.

Methods 3 6 12
Instant-NGP� 15.31 17.52 20.21

3DGS� 15.21 20.17 23.60

GNT � 17.80 22.52 24.56

LocalRF 16.06 16.31 18.68

NoPe-NeRF 12.05 15.64 18.12

CF 3DGS 14.91 16.71 18.62

Ours + MiDaS [2023] 19.22 22.65 25.17
Ours + MariGold [2023] 20.37 25.18 28.65

Table 2: PSNR Score ↑ on testing views with different number
of training views (3, 6, 12) on the Tanks&Temples dataset,
including our method using different depth estimators as
backbones. We highlight the best score in bold, italicize the
second best score, and underline the third best score.

Methods CF 3DGS NoPe-NeRF Ours

RPE𝑡 ↓ 7.1888 5.5087 0.0000
RPE𝑟 ↓ 2.4940 2.3741 0.0882
ATE ↓ 0.0981 0.0610 0.0000

Table 3: Quantitative evaluation of pose accuracy on the
Tanks&Temples dataset with 12 training views. The unit of
RPE𝑟 is in degrees, and RPE𝑡 is scaled by 100. ATE is in the
ground truth scale. The best score is highlighted in bold.

5 ADDITIONAL EVALUATION RESULTS
5.1 Evaluation on Pose Accuracy
Pose accuracy measurement is non-trivial for sparse views. The rea-

son is that even though ground-truth is given, the poses are relative,

therefore, we have to estimate a transformation between produced

camera poses from some pose-free methods and the ground-truth.

However, it is very ambiguous in the case of sparse views. For

example, given 3 views which are distributed on the 𝑥-axis with

equal interval, even though a pose-free method registers views as

three almost equal poses, the estimated transformation can align

the registered poses and ground-truth well. In this case, the pose-

free method cannot synthesize high quality novel view results due

to failure of registration but has very high pose accuracy.

Therefore, we choose to evaluate pose accuracy on the 12 training

views case on the Tanks&Temples dataset. We follow the NoPe-

NeRF [Bian et al. 2023] to use the Absolute Trajectory Error (ATE)

and Relative Pose Error (RPE), which consists of relative rotation

error (RPE𝑟 ) and relative translation error (RPE𝑡 ), to measure the

estimated pose accuracy of training views. The ground truth camera

poses are estimated using SfM, which sees all views (including both

training and testing views) for accuracy.

As shown in Table. 3, our method outperforms other baselines

in all three metrics.

5.2 Quantitative Evaluation with Different
Depth Estimators

Following the evaluation scheme in the main paper, we evaluate

sparse view synthesis on the Tanks&Temples dataset [Knapitsch

et al. 2017] with different depth estimators. Specifically, besides the

MariGold [Ke et al. 2023] which we use in the main paper, we also

test another popular estimator, i.e., MiDaS [Birkl et al. 2023], which

is assumed to be less detailed and accurate compared to MariGold.

As shown in Table 2, ourmethodwithMiDaS achieves the second

best results, outperforming all other baselines except for ourmethod

with MariGold, which demonstrates the robustness of our method.

FSGS [Zhu et al. 2023] is excluded here as it relies on multi-view

stereo estimation which fails on 50% of all tested cases.

5.3 Quantitative Evaluation with Clean
Cameras

Following the evaluation scheme in the main paper, we evaluate

sparse view synthesis on the Tanks&Temples dataset [Knapitsch

et al. 2017]. We compare with pose-free methods: COLMAP-Free

3DGS (denoted as “CF 3DGS”) [Fu et al. 2023], NoPe-NeRF [Bian

et al. 2023], LocalRF [Meuleman et al. 2023]; and an efficient pose-

required reconstruction method: Instant-NGP [Müller et al. 2022].

We test methods with clean cameras, where SfM sees all views for

estimating camera poses. However, in this case, due to the stronger

reliance between 3DGS, FSGS and SfM, we choose not to test 3DGS

and FSGS for fairness. GNT fails in the case of clean cameras where

SfM sees all the views, because SfM typically estimates poses in a

much larger scale compared to the noisy camera case where SfM

only sees a few views, and GNT cannot handle camera poses in a

large scale.

We report the averaged results of all scenes in Table 1 for Tanks&Tem-

ples dataset. It is clear that even by using clean camera poses, the

pose-required method still cannot outperform ours in all cases.

5.4 Qualitative Comparison
We show additional qualitative results on the Tanks&Temples dataset

in Fig. 2. We compare our methods to other pose-free methods:

COLMAP-Free 3DGS (denoted as “CF 3DGS”) [Fu et al. 2023], NoPe-

NeRF [Bian et al. 2023], and LocalRF [Meuleman et al. 2023]. Clearly,

our method synthesizes the best results both qualitatively and quan-

titatively.
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We show qualitative results on the Static Hikes dataset in Fig. 3,

and compare our method with LocalRF [Meuleman et al. 2023] for

illustration. Notice that LocalRF keeps updating the camera poses

of testing views during the training, leading to occasionally more

aligned results at the cost of longer optimization. Scenes in the

Static Hikes dataset contain many high-frequency details, such as

leaves, and the camera movements are not smooth. Therefore, in

the case of sparse views, the production of testing views can be

ambiguous as in the forest and garden case. For example, in the

case of 3 and 12 views, regions emphasized by arrows synthesized

by our method are reasonable but do not necessarily correspond to

the ground-truth images. In this case, blurry results in LocalRF are

even preferred for better metrics. Besides, scenes in the Static Hikes

dataset are large, and sparse views cannot necessarily cover all

regions. In the case of 3 views, for the university2 and university3

scenes, regions emphasized by arrows synthesized by our method

are missing because they are not covered. In contrast, LocalRF

can fill up the missing regions, which even though are inaccurate,

resulting in better metrics. We show PSNR scores and it can be seen

that even though LocalRF synthesizes much more blurry results,

synthesized results of our method do not always enjoy higher PSNR

scores due to the above mentioned challenges. However, the metrics

improve as the number of views increases and we can achieve

better metrics than other pose-free methods. Our method can also

synthesize visually pleasing results in all cases.
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Figure 3: Illustration of results of a testing view on the Static Hikes [Meuleman et al. 2023]. The scenes are, from the left to
right: forest, garden, university2, university3. We show synthesized results with 3, 6, 12 frames of our method and LocalRF. We
also show the training frames in the 3 frames case at the first row. Regions of interest are emphasized by arrows. Please zoom
in for better details. Images credit by Meuleman et al. [2023].
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