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Abstract—Image view synthesis has seen great success in reconstructing photorealistic visuals, thanks to deep learning and various
novel representations. The next key step in immersive virtual experiences is view synthesis of dynamic scenes. However, several
challenges exist due to the lack of high-quality training datasets, and the additional time dimension for videos of dynamic scenes. To
address this issue, we introduce a multi-view video dataset, captured with a custom 10-camera rig in 120FPS. The dataset contains 96
high-quality scenes showing various visual effects and human interactions in outdoor scenes. We develop a new algorithm, Deep 3D
Mask Volume, which enables temporally-stable view extrapolation from binocular videos of dynamic scenes, captured by static
cameras. Our algorithm addresses the temporal inconsistency of disocclusions by identifying the error-prone areas with a 3D mask
volume, and replaces them with static background observed throughout the video. Our method enables manipulation in 3D space as
opposed to simple 2D masks, We demonstrate better temporal stability than frame-by-frame static view synthesis methods, or those
that use 2D masks. The resulting view synthesis videos show minimal flickering artifacts and allow for larger translational movements.

Index Terms—Computer Vision, View Synthesis
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1 INTRODUCTION

R ECENT advances in view synthesis have shown promising re-
sults in creating immersive virtual experiences from images.

Nonetheless, in order to reconstruct compelling and intimate in-
teraction with the virtual scene, the ability to incorporate temporal
information is much needed. In this paper, we study a specific
setup where the input videos are from static, binocular cameras
and novel views are mostly extrapolated from the input videos,
similar to the case in StereoMag [2]. We believe that this case is
useful as dual- and multi-camera smartphones are gaining traction
and it could also prove to be interesting for 3D teleconferencing,
surveillance or playback on virtual reality headsets. Moreover, we
can acquire the dataset from a static camera rig as shown in Fig. 1.
Although we can apply state-of-the-art image view synthesis
algorithms [1]–[4] on each individual video frame, the results
lack temporal consistency and often show flickering artifacts.
The issues mostly come from the unseen occluded regions as
the algorithm predicts them on a per-frame basis. The resulting
estimations are not consistent across the time dimension, which
causes some regions to become unstable when shown in a video.

In this paper, we address the temporal inconsistency when
extrapolating views by exploiting the static background informa-
tion across time. To this end, we employ a 3D mask volume,
which allows manipulation in 3D space as opposed to a 2D mask,
to reason about moving objects in the scene and reuse static
background observations across the video. As shown in Fig. 4, we
first promote the instantaneous and background inputs into two
sets of multiplane images (MPI) [2] via an MPI network. Then,
we warp the same set of input images to create a temporal plane
sweep volume, providing information about the 3D structure of
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the scene. The mask network converts this volume to a 3D mask
volume which allows us to blend between the two sets of MPIs.
Finally, the blended MPI volume can render novel views with
minimal flickering artifacts.

To train this network, we also introduce a new multi-view
video dataset to address the lack of publicly available data.
We build a custom camera rig comprised of 10 action cameras
and capture high-quality 120FPS videos with the static rig (see
Fig. 1). Our dataset contains 96 dynamic scenes of various outdoor
environments and human motions. We show that the proposed
method generates temporally stable results against previous state-
of-the-art methods, while only using two input views.

Our contributions can be summarized as:
• a multi-view video dataset composed of 96 dynamic scenes

(Sec. 3);
• a novel 3D volumetric mask able to segment dynamic ob-

jects from static background in 3D, producing higher-quality
and temporally stable results than state-of-the-art methods
(Sec. 4.2);

• a synthetic dataset to evaluate complex background
(Sec. 5.3);

• experiments including comparison to recent NeRF-based
dynamic view synthesis methods (Sec. 5.2, Sec. 5.3).

This paper is an extended version of Deep 3D Mask Volume
for View Synthesis of Dynamic Scenes [5]. In this journal version,
we conduct further experiments to evaluate concurrent NeRF-
based methods [6]–[8] in Sec. 5.2. These methods target a monoc-
ular dynamic camera setup different from our static stereo camera
setup. A moving monocular camera effectively provides multiple
viewpoints of the static scene components. On the contrary, static
stereo cameras can only supply two viewpoints and thus their
methods do not perform as well as our proposed method. To
show experiments in a more controlled environment and allow for
more complex backgrounds, we created a new synthetic dataset
to evaluate the performance in Sec. 5.3. We demonstrate how
our method can tackle the dynamic background with multiple
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Fig. 1. Our custom camera rig. Top left figure shows the configuration we use for evaluation in Sec. 5. We show the input stereo image sequences
from camera 4 and camera 5 in the middle. The rightmost column shows the crops of rendered novel view at camera 0. Artifacts appear when
the novel view is translated by a larger distance. We use the conventional MPI method [1] as our baseline algorithm. Note how the area on top of
the person’s head is distorted and shows “stack of cards” artifacts. This type of artifact flickers in a dynamic video as the network hallucinates the
disocclusion per-frame.

actors. Moreover, we detail how different loss functions would
affect the visual results in Sec. 5.4, as well as large distance view
extrapolation in Sec. 5.5 and extension to more input views in
Sec. 5.6.

2 RELATED WORK

Our goal is to achieve temporally stable view synthesis on dy-
namic scenes. We are inspired by several previous methods in
view synthesis and space-time synthesis.

2.1 View synthesis
View synthesis is a complicated problem which has become a
popular field of research in computer vision and graphics. Earlier
lines of work utilize dense sampling from the scene to create
light fields [17], [18]. Image-based rendering techniques [19], [20]
exploit proxy geometry of the scene to produce novel view ren-
derings. Later extensions on this topic introduce better modeling
of the scene structure [21] and hand-crafted heuristics [22], [23].
As deep learning became dominant, learning-based methods [24]–
[28] have shown promising results. Recently, a class of research
works focuses on combining novel representations [1]–[3], [9],
[29]–[34] with a differentiable rendering pipeline to produce high-
quality results. Another exciting advance is neural radiance fields
(NeRF) [29], which encodes the 3D scene structure in a compact
continuous 5D volumetric function. Although NeRF has shown
promising view synthesis results, it has to overfit to the given scene
with enough samples (10 or more), requiring time-consuming per-
scene training. Rendering time could take up to 30s for one image,
whereas our pipeline allows inference and rendering in less than 2s
without dedicated optimization, using only binocular input views.

Instead, in this paper we focus on a specific layered represen-
tation, multiplane images (MPI) [1]–[3], [10], [35], as it provides
good generalizability across various scenes and efficiency capable
of real-time rendering. Our proposed method directly tackles the
temporal instability introduced in MPIs when the disoccluded
areas lead to different estimations across time.

2.2 Space-time synthesis
Space-time synthesis is a more complicated problem since it not
only involves movement of the novel viewpoint in space, but

also incorporates differences of time. A body of work covers
appearance changes such as relighting while changing views [27],
[36]–[39]. However, these methods focus on the lighting change
with respect to a static scene, treating dynamic objects in the
scene as outliers. On the other hand, some methods directly target
dynamic scenes [10], [11], [13], [15], [40]. While our method
utilizes MPIs similar to Broxton et al. [10], they employ dense
sampling of 46 cameras to reconstruct light fields of the viewing
volume, essentially interpolating between cameras. Our method
focuses on the stereo case similar to StereoMag [2], targeting
extrapolation from stereo inputs like dual-camera smartphones.
In addition, unlike depth-based methods [11], [13], we do not
require any explicit depth maps to render novel viewpoints. As
depth-based methods often yield flickering and require hole-
filling, we instead use a representation more suitable for rendering.
Another issue that these methods do not address is the lack of
generalizability. Bansal et al. [13] is trained on limited data which
could make the learned network overfit to a small number of
scenes. Moreover, while Yoon et al. [11] uses a pretrained network
to ensure generalizability on unseen scenes, it still requires human-
generated masks for foreground and background separation. We
capture various dynamic scenes with human interactions to train
our network and ensure that it is generalizable across different
unseen scenes. Also, our network utilizes the background infor-
mation extracted from video and uses it to directly segment the
foreground and background in 3D space without any human input.

Concurrently, there are several NeRF-based algorithms [6]–
[8] which demonstrate state-of-the-art performance on monocular
video inputs with a moving camera. For static parts of the scene,
a moving camera provides multi-view cues to the network and
they can be reconstructed in the same process as the original
NeRF [29]. For dynamic parts of the scene, NSFF [7] learns
an implicit representation of the scene flow and warps the sam-
pled points to render the scene at different timesteps. Similarly,
NeRFlow [6] also uses an MLP network to learn the underlying
scene flow but it incorporates a neural ODE to enforce consistency
across continuous time. Non-rigid NeRF [8] optimizes for a canon-
ical volume model, then it uses deformation fields to generate
renderings at different timestamps. Although these methods work
well for a single moving camera, they are not able to acquire good
3D geometry for a pair of static cameras. As demonstrated in
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TABLE 1
Comparison of different multi-view datasets.

Dataset Scene count Rigid rig Large disparity Views Dynamic Public Remarks

Real Forward-Facing [1] 65 ✗ ✓ 25 ✗ ✗ Loosely gridlike formation
Spaces [9] 100 ✓ ✓ 16 ✗ ✓ Strictly gridlike formation
Immersive LF Video [10] 130 ✓ ✓ 46 ✓ ✗ Spherical formation
Dynamic Scene [11] 8 ✓ ✓ 12 ✓ ✓ Few temporal frames
Single Image LF [12] ∼2000 ✓ ✗ 196 ✗ ✓ Small baseline light fields
RealEstate10K [2] ∼10000 ✗ ✓ 1 ✗ ✓ Static scenes
Open4D [13] 6 ✗ ✓ 15 ✓ ✓ Free-viewpoint capture
MannequinChallenge [14] ∼2000 ✗ ✓ 1 ✗ ✓ Mostly static scenes
X-Fields [15] 8 ✓ ✓ 5 ✓ ✓ Few temporal frames
KITTI [16] 400 ✓ ✓ 2 ✓ ✓ Binocular setup on cars

Ours 96 ✓ ✓ 10 ✓ ✓ Publicly released

TABLE 2
Number of videos that contain each occlusion type as described in
Sec. 3.3. Note that most scenes typically contain multiple types of

occlusion.

Occlusion types (a) (b) (c) (d) Total videos

Count 90 96 42 19 96

Sec. 5.2, our MPI-based method is able to utilize better geometry
priors to provide high-quality results during extrapolation with less
distortion and flickering.

3 DATASET

High-quality video datasets are crucial for learning-based novel-
view video synthesis algorithms. The ideal datasets would contain
a diversity of scenes, captured at multiple synchronized views.
In this work we introduce a novel multi-view video dataset. We
discuss the limitations of existing datasets compared to our dataset
in Sec. 3.1. We describe our data capture and generation process in
Sec. 3.2. Finally, we discuss the statistics and advanced properties
of our dataset in Sec. 3.3.

3.1 Multi-view video dataset
As shown in Table 1, we evaluate several properties which are
important to train a generalized view synthesis network. Specifi-
cally, a rigid camera rig is preferred as it can provide good pose
priors and ensure the accuracy of the estimated camera poses.
On the contrary, unstructured captures like Real Forward-Facing
[1] and Open4D [13] do not use pose priors and utilize structure
from motion, which could produce varying accuracy depending
on scene geometry and the texture presented. In addition, rigid
camera rigs allow for capture of dynamic scenes with multiple
simultaneous camera views. On account of the above reasons, our
dataset is captured with a custom camera rig that is rigid and
robust enough to offer good pose priors.

Number of views is also an important factor for a multi-view
dataset since different combinations of input and target camera
pairs provide diversity in baselines and camera motions. X-Fields
[15] and KITTI [16] provide limited views and camera motions
and thus are not as useful for video view synthesis tasks. Our
dataset offers 10 different camera views in a gridlike formation

(see Fig. 1). For our binocular view synthesis task, we choose 2
views out of 10 and 1 from the rest to construct a training pair.

The most important feature is to have enough temporal frames
and dynamic movements for training. Most datasets fail at this
part as they target the image view synthesis task instead of a video
one. Although the Dynamic Scene Dataset presented by Yoon et al.
[11] targets the dynamic scenes, it uses frame skips to keep salient
movements. Thus, the movements shown in the dataset are not
smooth and fail to provide enough training samples. To address
this issue, our dataset is captured in 120 FPS and synchronized
as a post-process (see Sec. 3.2), making it easy to perform and
evaluate view synthesis at different framerates.

One dataset that targets the purpose of video view synthesis
is the Immersive Light Field Video dataset proposed by Broxton
et al. [10], which contains 46 camera views and 130 different
dynamic scenes. However, the full dataset is not publicly available
to the community. Our full dataset can be found at http://cseweb.
ucsd.edu/%7eviscomp/projects/ICCV21Deep/

Fig. 2. Digital clock and the
randomly moving QR code pat-
tern used to perform synchro-
nization. We have two ways to
do synchronization: (1) match-
ing the timestamp; (2) align-
ing the QR code location in all
views. We use these methods
to ensure the synchronization is
accurate enough.

3.2 Dataset generation
Our video dataset is captured with a custom camera rig that
consists of 10 GoPro Hero 7 Black action cameras as shown
in Fig. 1. The horizontal baseline between neighbor cameras is
approximately 10 cm and the vertical distance between rows is
around 14 cm. We captured 96 outdoor videos in 120 FPS, with
the camera rig being static for each video. As GoPros only allow
fisheye mode for high FPS captures, we calibrate the cameras
with a 17x14 checkerboard pattern (squares have side lengths of
40mm) and undistort the videos using a pinhole camera model
[41] implemented in OpenCV [42]. For camera extrinsics, we
choose the first frame from all views as inputs to COLMAP
[43], [44], which then does feature extraction, feature matching,
and sparse reconstruction. The reconstructed camera poses are

http://cseweb.ucsd.edu/%7eviscomp/projects/ICCV21Deep/
http://cseweb.ucsd.edu/%7eviscomp/projects/ICCV21Deep/
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Fig. 3. A selection of still frames from our dataset. We captured various dynamic scenes with human motions, including walking, running, jumping
and sitting down. Note that cameras remain static for the whole duration of the capture.

assumed to be fixed for the duration of each video. In addition, to
achieve synchronization, we display a digital clock with randomly
appearing QR code patterns (see Fig. 2) on a high refresh rate
screen that can be seen by all cameras at the same time. Then,
we manually edit and align the multi-view videos according to the
digital clock and QR code pattern.

3.3 Dataset statistics

Our videos are mostly around 1 to 2 minutes long and all videos
are shot in 120 FPS. We cover different scenes to ensure that the
surface reflectance variety is high enough. For example, in Fig. 3
we show that in our dataset we cover different buildings, furniture,
foliage and specularity effects. Another important aspect of our
dataset is the inclusion of different human motions, including
slower motions like walking, sitting down and faster motions,
such as running, jumping and arms waving. We now discuss four
possible types of occlusion interactions and show the numbers of
their occurrences in Table 2.

(a) Static occluder and static background. For example, the
table in Fig. 3c occludes the areas behind. Most view synthesis
methods target this case as this is one of the most common cases.
We describe it as a static occluder in the scene blocking the line-
of-sight from the cameras to the background scene. Background
information can only be acquired from the views with direct line-
of-sight. As such, it is difficult to recover the unseen regions with-
out prior knowledge of the scene. However, temporal consistency
in these areas is easily achievable because inputs remain relatively
unchanged throughout the video. Hallucination of the disoccluded
areas can also remain the same for this case.

(b) Dynamic occluder and static background. Another type of
event happens when a dynamic object is moving across the scene.
For example, the person in Fig. 3a and Fig. 3e walks in front
of the static background. In these scenes, the camera has line-of-
sight on the background behind the person at some point in the
video. Therefore, it is relatively easy to acquire static background
information as the occluder does not block the line-of-sight in
all video frames. Combining information from multiple frames
throughout the video provides an accurate rendering of what is
behind the dynamic occluder. Temporal consistency in this case
can also be maintained by substituting the static background for
the dynamically-occluded regions. In other words, we can perform

hole-filling based on the observations from other video frames.
Our proposed method takes advantage of this prior knowledge to
generate temporally-stable view synthesis results, as opposed to
previous methods.

(c) Static occluder and dynamic background. This case happens
when an object moves behind a static occluder and thus the
camera does not have full visuals on it. For example, the person
walks behind a traffic sign in Fig. 3f. In this case as it is only a
short-term occlusion, the person’s appearance can be interpolated
between different frames. However, in the case of a larger wall,
this becomes difficult to solve as extrapolating the movement is
complicated and the ambiguity could lead to different outcomes.
In general, it is difficult to accurately predict the trajectory of the
occluded object without assuming it is moving at constant velocity.
For temporal consistency, the movement of dynamic objects can
lead to instability of the novel view prediction. Our method learns
to detect the dynamic movements and treat the static part of the
scene as (a) such that flickering artifacts are kept at a minimal
level.

(d) Dynamic occluder and dynamic background. The last case
happens when the occluder and the background object are both
moving or the background appearance is changing. For instance,
two people walk towards each other parallel to the camera’s
image plane in Fig. 3g. Similar to (c), how the occluded object is
moving remains ambiguous and hard to resolve deterministically.
Although we do not have a clear idea of the occluded parts, we
can still ensure it is temporally stable when shown. We can reduce
this case to (b) with the ambiguity that the occluded object can
move anywhere. And as a result, the occluded regions look more
or less similar to the static background.

Our dataset contains diverse occlusion interactions and we
show results in Sec. 5.2 and provide an analysis in Fig. 6.

4 DEEP 3D MASK VOLUME

Our goal is to synthesize temporally consistent novel view videos
given stereo video inputs. Consequently, we build our algorithm
upon prior work on multiplane images [1], [2] and propose a novel
mask volume structure to fully utilize the temporal background
information and the layered representation. In this section, we
start with a brief review of the multiplane images in Sec. 4.1.
Then we describe our 3D mask volume in Sec. 4.2. Finally we
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Fig. 4. Overview of our pipeline. Given binocular input videos, our MPI network promotes the 2D multiview images to two 3D MPI representations;
one encodes the instantaneous information and the other encodes the background information. The mask network produces a 3D mask volume V
to modulate the MPIs and blend them together, producing the final output. Please see Sec. 4.2 for more details.

discuss our loss function design in Sec. 4.4. Please refer to Fig. 4
for an overview of our algorithm pipeline.

4.1 Multiplane images
Our approach takes inspiration from recent advancements in mul-
tiplane image representation [2], [45]. Multiplane images (MPI)
are a layered representation of the 3D scene. They consist of D
layers of RGBα images, representing the viewing frustum from
the perspective of a virtual reference camera. The planes partition
the viewing frustum according to equally-spaced disparity (inverse
depth) values d0, d1, ..., dD−1. Each layer of the MPI encodes
color C and transparency information α at a specified plane depth
d. We denote the MPI layer at disparity d as a tuple of (Cd, αd).
To construct such a volume, we warp input views to the reference
camera position (in our case, the center left camera, numbered 4
in the camera rig diagram in Fig. 1) to construct a plane sweep
volume (PSV). The PSV is then used as the input to a 3D CNN
similar to the one used by Mildenhall et al. [1] and it generates the
corresponding MPI volume. To render a novel viewpoint j from
camera i, the MPI layers are warped using planar homography as
follows:

Wd
i→j(Cd, αd), (1)

where W is the warping operator. The warped MPIs are then
composited with the over operation. To be more specific, we
calculate the per-pixel transmittance t from the alpha value at
location (x, y) on plane d by

t(x, y, d) = α(x, y, d)
∏
d′>d

[1− α(x, y, d′)]. (2)

The final rendering at each pixel Cfinal is computed as

Cfinal(x, y) =
∑
d

C(x, y, d)t(x, y, d) (3)

These computations are parallelizable and their efficiency
during rendering makes the MPI a good representation for fast
view synthesis.

One observation of MPIs is that the unseen parts in the volume
are often merely repeated texture of the foreground objects [3].
This happens when the input camera baseline is not large enough

and the resulting PSV cannot provide further information about
the background. In addition, these areas typically present different
estimations between frames. Therefore, the unseen areas produce
visible artifacts, especially in video view synthesis (see Fig. 1).
On the other hand, visible parts usually provide temporally stable
results as can be seen in Broxton et al. [10]

4.2 3D mask volume generation

From Sec. 4.1, we observe that most artifacts are introduced by
the disocclusion of moving objects. In order to address this issue,
we seek to find a 3D mask volume that identifies the dynamic
components and removes the flickering artifacts behind them
accordingly. To be more specific, given a pair of stereo image
sequences of length n, {IL0 , IL1 , ..., ILn−1} and {IR0 , IR1 , ..., IRn−1},
we wish to derive a 3D mask V(x, y, d), such that

V(x, y, d) =

{
1, if I(x, y) ̸= Î(x, y), d > D(x, y)

0, otherwise
, (4)

where I is the instantaneous frame, Î denotes the background
image, and D is the scene disparity observed by the camera.
We drop the frame subscript as a shorthand for instantaneous
frame in the following discussion. In addition, we represent the
instantaneous MPI of the scene as M(x, y, d), and the background
MPI as M̂(x, y, d).

The main purpose of the 3D mask volume V(x, y, d) is to par-
tition the scene M(x, y, d) into two parts: static and dynamic. The
static portion of the MPI does not change for the whole video du-
ration, and thus M(x, y, d) = M̂(x, y, d),when V(x, y, d) = 0.
The synthesized novel view of these parts is temporally stable
and requires no further modification to the algorithm. On the
contrary, the dynamic objects (V(x, y, d) = 1) could move in
different directions. The disoccluded areas, given mathematically
by M(x, y, d) if I(x, y) ̸= Î(x, y), d > D(x, y), often change
with them, producing “stack of card” artifacts and flickering when
viewed from another angle (see Fig. 1). However these areas in
fact usually resemble the background Î. With this knowledge, a
clear separation between the static and dynamic scene components
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allows us to identify the disocclusion and minimize the temporal
inconsistency by

M(x, y, d)←− M̂(x, y, d) if I(x, y) ̸= Î(x, y), d < D(x, y).
(5)

Essentially, we are using the temporally-stable static background
to replace the unknown disoccluded areas. An illustration of the
mask is given in Fig. 4.

In order to perform the operation in Eq. 5, our network is
composed of two networks: MPI network generates 2 layered rep-
resentations of the 3D scene, namely M(x, y, d) and M̂(x, y, d);
Mask network produces the 3D mask volume V(x, y, d) satisfy-
ing Eq. 4. We show each network in Fig.4 and discuss them in
details as follows:

MPI network. It is necessary to acquire 3D information from
both the instantaneous frame and throughout the whole video, so
we can then obtain the needed information behind the dynamic
occluder. To this end, we first apply a median filter A on the
image sequences

Î = A({I0, I1, ..., In−1}). (6)

It is applied to both views to generate the corresponding back-
ground images.

Then, we can inversely warp IR and Î
R

to the left camera
and construct a PSV. The PSV from the instantaneous frame is
generated as

P = {IL,Wd0

R→L(I
R),Wd1

R→L(I
R), ...,WdD−1

R→L(I
R)}. (7)

It is then used as an input to a 3D CNN Fθ to produce the
instantaneous MPI, M = Fθ(P). Similarly, we construct the
background MPI, M̂, using another PSV, P̂, generated from Î

L

and Î
R

. The two MPIs, M and M̂, now contain the information of
the dynamic occluder and the static background.

Mask network. We utilize another 3D CNN Gθ to reason about
the relationship between the MPIs and generate a mask volume
V to satisfy Eq. 4. Inspired by background matting [46] on 2D
images, our mask network takes a similar approach but in 3D
space. From Eq. 6, we define a temporal plane sweep volume
(TPSV) as follows

P̃ = {IL,Wd0

R→L(I
R), ...,WdD−1

R→L(I
R),

ÎL,Wd0

R→L(̂I
R
), ...,WdD−1

R→L (̂I
R
)}. (8)

The TPSV helps the network to distinguish the dynamically-
occluded parts in the 3D scene. Then, we acquire the 3D mask
volume by V = Gθ(P̃).

Finally, we can calculate the final MPI Mo by:

Mo(x, y, d) = M(x, y, d)V(x, y, d) + M̂(x, y, d)(1− V(x, y, d)),
(9)

for all (x, y, d). We define a shorthand version as

Mo = M⊙ V + M̂⊙ (1− V), (10)

where ⊙ means element-wise multiplication. Mo achieves Eq. 5
as our learnable mask volume V satisfies Eq. 4 and we can then
render the output image Io using planar homography and the over
composite operation described in Sec. 4.1. Please refer to Fig.4
for illustrations.

One major difference between using a 3D mask volume
V(x, y, d) and a 2D mask V′(x, y) is that the former is able to

TABLE 3
Details of each layer in our 3D mask network.

Layer kernel size stride dilation in out activation input
conv1 1 7 1 1 12 8 ReLU PSVs
conv1 2 7 2 1 8 16 ReLU conv1 1
conv2 1 3 1 1 16 16 ReLU conv1 2
conv2 2 3 2 1 16 32 ReLU conv2 1
conv3 1 3 1 1 32 32 ReLU conv2 2
conv3 2 3 2 1 32 64 ReLU conv3 1
conv4 1 3 1 1 64 64 ReLU conv3 2
conv4 2 3 1 1 64 64 ReLU conv4 1
up5 - 2 - 128 128 - conv3 2 + conv4 2
conv5 1 3 1 1 128 32 ReLU nnup5
conv5 2 3 1 1 32 32 ReLU conv5 1
up6 - 2 - 64 64 - conv2 2 + conv5 2
conv6 1 3 1 1 64 16 ReLU nnup6
conv6 2 3 1 1 16 16 ReLU conv6 1
up7 - 2 - 32 32 - conv1 1 + conv6 2
conv7 1 3 1 1 32 16 ReLU nnup7
conv7 2 3 1 1 16 8 ReLU conv7 1
conv7 3 3 1 1 8 1 Sigmoid conv7 2

segment out the dynamic objects in the 3D space, namely Eq. 4
and subsequently do Eq. 5. In Fig. 4, notice that the mask volume
only contains the dynamic object (jumping person in this case).
In contrast, a 2D mask V′(x, y) does not vary with respect to the
disparity d, making it impossible to manipulate the areas behind
dynamic objects.

4.3 Network Architecture
Our view synthesis pipeline utilizes two different 3D CNNs to
predict the MPI volumes and the 3D mask volume as described
in Sec. 4.2. Both networks have similar structures as the one in
Mildenhall et al. [1]. However, we made some adjustments to keep
the network light for faster training and less memory consumption.
We show detailed layers for the mask network in Table 3. The
MPI network has the same structure except for some changes in
the overall input and output channels to account for different view
counts.

4.4 Loss function
We implement our loss function as a rendering loss, similar to
previous work on MPIs [1]–[3]. For the rendering loss, we use
view synthesis as the supervision task and let the algorithm render
a held-out view from the final MPI Mo (see Fig.4). The rendering
loss is as follows:

L =
||FV GG(Io)−FV GG(Igt)||1

N
, (11)

where FV GG is the VGG-19 network [47], N is the number of
elements in the image Io, and Igt is the held-out ground truth view.
This perceptual loss is similar to the implementation of Chen et al.
[48]. We also considered a mask supervision loss Lm and a mask
sparsity constraint Ls. However, we did not find them to be useful
for temporal consistency. Ablation studies on these two losses can
be found later in Table 6, and details are in Sec. 5.4.

5 RESULTS

In this section, we discuss implementation details for our network
in Sec. 5.1. Then we show comparisons to other methods on our
dataset in Sec. 5.2. We include comparisons on our synthetic
dataset in Sec. 5.3. To explore the effects of different loss func-
tions, we show the ablation studies in Sec. 5.4. We show that our
method is able to degrade gracefully even doing view extrapolation
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Fig. 5. We show visual results on 4 different scenes. These scenes include both fast and slow movements, such as waving, jumping and walking.
The novel viewpoint is an extrapolation from the input camera views. In the above images, each row is rendered using one method from (a)
MPI/LLFF [1], (b) 2D Mask, (c) NeRFlow [6], (d) Non-rigid NeRF [8], (e) Neural Scene Flow Field [7], (f) IBRNet [49], and (g) ours. Last row (h) is
the ground truth. Our proposed method produces results with fewer artifacts and more temporal stability.

far outside the viewing volume in Sec. 5.5. Our method can also
be extended to incorporate more input views in Sec. 5.6. Finally
we discuss limitations of our current setup and method in Sec. 5.7.
Result videos can be found in the supplementary materials.

5.1 Implementation details
Due to GPU memory constraints, we choose a two-step training
scheme to train our network. We first train the MPI network
on the RealEstate10K dataset [2], and then train only the mask
network on our own video dataset. This training scheme can keep
the memory usage within a reasonable range and the speed fast
enough.

The MPI generation network is trained by predicting a held-
out novel view and applying the rendering loss L as supervision.
This stage is trained for 800K steps. After the previous pretraining
stage, we freeze the weights of the MPI network and train only
the mask network using the loss L. The network takes 2 random
views from the 10 views as input and we randomly choose a target
camera position from the rest of the views at each step. We select
86 out of the 96 scenes as our training dataset and images are

rescaled to 640×360. This second stage is trained for 100K steps.
The learning rate is set to 5e − 4 for both stages. Our training
pipeline is implemented in PyTorch [50] and training takes around
5 days on a single RTX 2080Ti GPU. With resolution in 640×360,
inferencing Mo using our full pipeline takes around 1.75s, while
rendering takes another 0.28s. Note that the rendering pipeline is
implemented in PyTorch without further optimization. In practice,
it could be significantly faster with OpenGL or other rasterizer.

5.2 Comparisons on real data
For comparison, we choose 7 unseen videos from the dataset and
subdivide them into 14 clips, focusing on salient movements in
the scene. The methods we chose to evaluate includes MPI-based
methods like LLFF, and also emerging NeRF-based methods like
Nonrigid-NeRF, Neural Scene Flow Field, and NeRFlow We ran
all methods on the clips with camera 4 and 5 as input and others
as the target output (see Fig. 1). Error metrics are calculated
between the output and the ground truth images. For monocular
NeRF-based methods [6]–[8], as they assume the input to be
monocular, moving camera, and have increasing time steps, we
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Fig. 6. STRRED comparison on our dataset with baseline methods. We select 14 clips from 7 different scenes. 1-1, 1-2 denotes clip 1 and clip 2
from scene 1.

alternate between left and right views to satisfy this assumption.
This allows the algorithm to treat the input as a monocular video
with the camera jumping between two viewpoints.

We compare with 6 baseline approaches: (1) MPI/LLFF is our
adaptation of Mildenhall et al. [1] to work with only two input
views and different camera intrinsics. It processes the stereo input
videos and renders the novel view frames on a per-frame basis. We
trained it on the same dataset as our method. (2) 2D mask is our
naive baseline method, which is similar to our pipeline, except that
it uses a foreground mask V′(x, y) generated by the background
matting method [46] with I and Î as inputs. The blended MPI M′

o

for (2) is obtained by

M′
o = V′(x, y)⊙M + (1− V′(x, y))⊙ M̂,

where the 2D mask has been expanded into 3D by repeating its
values along the depth dimension. (3) IBRNet [49] uses the official
implementation and their pretrained model weights, and it takes
2 views as input on a per-frame basis. (4) NeRFlow [6] uses the
official implementation and we slightly modify the necessary parts
to allow for two alternating views as input. (5) NSFF [7] is also
adapted from the official implementation to take two input views.
(6) Non-rigid NeRF [8] uses the released official implementation
with modifications to enable two-view inputs. For (4)-(6), we train
them for 20,000 steps for each scene and render the corresponding
viewpoints. Please refer to our supplementary materials for the
video results.

TABLE 4
Comparison on our evaluation dataset. We compare with different

baseline methods and the results show that our 3D mask offers much
better temporal stability. 2D mask does not improve much because it

fails to resolve the ambiguity in disoccluded areas.

Methods Mask STRRED↓ PSNR↑ SSIM↑
MPI/LLFF [1] ✗ 0.2917 25.52 0.8227
2D Mask 2D 0.2892 25.50 0.8242
IBRNet (2-view) [49] ✗ 2.2606 21.49 0.6713
NeRFlow [6] ✗ 3.2646 16.81 0.4146
NSFF [7] ✗ 1.4230 17.04 0.4197
Non-rigid NeRF [8] ✗ 2.3941 18.11 0.4997

Ours 3D 0.1683 26.22 0.8390

From Table 4, we see that our method is able to achieve
temporally-coherent rendering, while offering better visual quality

and fewer distortions. Specifically, we employ the STRRED metric
[51] to evaluate stability across time. Our method significantly
reduces the temporal artifacts across most scenes while also
keeping PSNR and SSIM better than the baseline methods. For
MPI/LLFF, since it does not utilize the information across the
whole video, it yields more flickering and distorted areas as can
be seen in Fig. 5. For example, in the top scene, there is a
ghosting artifact around the person’s head and it changes frame-
by-frame, resulting in flickering video. The 2D mask method is a
binary mask that naively selects the dynamic parts in M and the
background in M̂ to produce the final MPI. As a result, it amplifies
the stack of cards artifacts (see Fig. 5) and also slightly worsens
the visual quality as shown in Table 4. IBRNet [49], does not work
well with 2-view input and it produces poor results compared to
ours. Concurrent monocular NeRF-based methods [6]–[8] perform
similarly in Table 4. With only two input viewpoints, they fail to
represent even the static scene components since there are not
enough multi-view cues for reconstruction. For dynamic parts of
the scene, NSFF provides more stable quality as can be seen from
the STRRED metric. In general, our proposed method provides
state-of-the-art performance over other previous and concurrent
work. We show qualitative results in Fig. 5. Each inset column
corresponds to a scene as shown on the leftmost side. We show
the MPI baseline method in row (a) and 2D mask baseline in
row (b). These two methods suffer from stack-of-card artifacts in
particular in the disoccluded regions. 2D mask fails to solve the
problem and sometimes makes it more apparent. This is because
2D mask does not reason about the 3D geometry of the scene. For
the more recent NeRF-based methods, we show them in row (c-
f). NeRFlow [6] provides better static scene reconstruction than
other methods. However, it produces blurred results and lacks
high-frequency details as can be seen from the second image in
row (c). On the other hand, our proposed method is able to make
the text on the person more legible and sharper, while suffering
little to no disocclusion artifacts. Non-rigid NeRF [8] suffers from
significant artifacts when rendering the images. This is possibly
due to sparse viewpoints and the network is trying to compensate
with deformation fields. NSFF [7] generates sharper images than
NeRFlow, but it suffers from blurriness in static parts of the scene.
IBRNet [49] produces noisy results given two input views on a
frame-by-frame basis. Their method tries to blend different view-
points with a ray transformer to synthesize disoccluded regions.
However, given two input views, this becomes even more difficult
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Fig. 7. We show visual results on 4 different synthetic scenes. These scenes include moving characters and dynamic backgrounds. In the above
image, each row is rendered using one method from (a) MPI/LLFF [1], (b) 2D Mask, (c) NeRFlow [6], (d) Non-rigid NeRF [8], (e) Neural Scene Flow
Field [7], (f) IBRNet [49], and (g) ours. Last row (h) is the ground truth. Our proposed method (g) produces results with fewer artifacts and more
temporal stability.

because of the lack of samples.

To further analyze how temporal consistency is affected, we
characterize the clips with different properties including different
types of occlusion discussed in Sec. 3.3 and show the results in
Fig. 6. As stated earlier, several clips are selected from the 7
scenes to show salient motions. We only include results from
MPI/LLFF [1], 2D mask and Ours, as other methods have signif-
icantly higher STRRED. From the results, we observe that faster
movements could often result in worse temporal consistency, like
the differences between clip 1-1 and 1-2. There is an interesting
failure in 4-2 for the 2D mask method. 4-1 is the jumping scene
in Fig. 5, and 4-2 shows a person walking in the same scene.
Although the movement is slower, the person walks past several
areas with large appearance changes in 4-2. As a result, the
artifacts in the 2D mask are much more obvious, and the video
flickers more than other methods, leading to a worse STRRED
score.

5.3 Comparisons on synthetic data

In addition to real data, we also crafted a synthetic dataset and
tested different methods on it. The synthetic dataset not only can
provide us real ground truth to make proper comparisons, but
also can illustrate scenes and movements hard to capture in real
life, for example, complex moving backgrounds. The synthetic
dataset is constructed using scenes from the Habitat-Matterport 3D
dataset [52] and UE4 Sun Temple [53], and the moving characters
in the scene are pre-animated characters from Adobe Mixamo. We
used Blender [54] to composite the scenes, and replicated the 10-
view camera array with parameters similar to our GoPro setup. We
deliberately set all the cameras to have the same camera intrinsics
in order to reduce unwanted artifacts.

For each scene, we rendered 60 frames of the animation, and
produced camera poses for all 10 cameras. As all the camera
poses can be directly obtained from Blender, we do not need
COLMAP [43], [44] to estimate camera poses anymore. The
background images are still obtained using median filter. Similar
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Ours Ours w/ ℒ𝑠𝑠 Ours w/ ℒ𝑠𝑠,ℒ𝑚𝑚

Input at reference view Background at reference view Reference View

Fig. 8. 3D visualization of the masks from different loss functions. With alpha values from the instantaneous MPI, we collapse the mask volumes
using over composite to reduce plane count from 32 to 4 for better visualization. (e.g. plane 1∼8 to the furthest plane, ..., plane 25∼32 to the
nearest plane.) Note that there is no supervision on static parts in our final loss function, so the values in those parts are unconstrained, resulting
in soft blending between instantaneous frames and the background. In general, the 3D mask achieves better temporal consistency by replacing the
erroneous disoccluded parts with correct background observations.

TABLE 5
Comparison on the synthetic evaluation dataset.

Methods Mask STRRED↓ PSNR↑ SSIM↑
MPI/LLFF [1] ✗ 0.2889 26.12 0.8345
2D Mask 2D 0.5428 24.01 0.8082
IBRNet (2-view) [49] ✗ 1.7984 21.37 0.6942
NeRFlow [6] ✗ 1.8306 19.99 0.5996
NSFF [7] ✗ 1.0627 19.72 0.5577
Non-rigid NeRF [8] ✗ 3.1401 18.92 0.5947

Ours 3D 0.2812 26.13 0.8342

to our evaluation on the real dataset, we chose cameras 4 and
5 as input. In Table 5, we show the numbers of various methods.
The proposed method achieves favorable results compared to other
baselines. Additionally, we show qualitative results in Fig. 7. For
MPI/LLFF, the numbers are slightly worse than our proposed algo-
rithm, because the main difference is in the disoccluded regions. It
can be seen in the row (a) around the moving characters. 2D mask
introduces more artifacts and thus results in worse numbers across
all metrics. In row (b), 2D mask exacerbates the artifacts and
creates more visible repeated texture in the disoccluded regions.
NeRF-based methods perform slightly better on the synthetic
dataset, as the camera parameters are more precise. However,
they still fail to produce sharp imagery. For example, NeRFlow
lacks the details on the leftmost character in the third column
in row (c). Furthermore, the second column in row (d) shows
blurriness and ghosting artifacts for Non-rigid NeRF. NSFF (e) has
issues rendering complex static scene texture in the last column.
The table to the left shows distorted edges compared to our
proposed method. IBRNet (f) still generates renderings with heavy
distortions, even though the coarse geometry seemingly matches
the ground truth. Our method (g) provides the best visual result

and it is able to generalize to unseen synthetic scenes when trained
on real data. Please refer to the supplementary video for more
results.

M M M

Instantaneous MPI Background MPI Blended MPI

Fig. 9. 3D visualization of the MPI volumes using our loss function L.
Note that the person on the furthest plane in M is replaced by the
background in Mo.

5.4 Ablation Studies on Loss Function
In this sub-section, we experiment with different losses to see
if we can acquire a 3D mask volume that is more interpretable
and possesses physical meaning. Two additional loss functions are
described as follows. The first loss is a mask supervision loss Lm,
which forces the mask volume to match the shape of the dynamic
object in the scene. The second loss is a sparsity loss Ls applied
on the mask volume to encourage the network to reuse M̂ more.
To be more specific, for the mask loss, we use the work by Lin
et al. [46], which takes the individual frame I and the background
Î in the video to generate a dynamic object mask Vgt we later
use as supervision. To supervise the mask volume, we directly
regularize the over-composited alphas from the warped foreground
MPI volumeW(M⊙V) to be consistent with Vgt. We denote the
over-composited alpha values as m1. This mask loss is similar
to the mask supervision loss in Lu et al. [55] We calculate the
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Left Input View

Mildenhall et al. 2019 Ours

Fig. 10. Our algorithm is able to provide better visual quality than baseline methods even when the novel viewpoint is far away from the input view.
We show results when the baseline is 2.5× and 5× baseline between input views. Note that in the 5× case, our method produces fewer artifacts
compared to Mildenhall et al. [1], offering a more graceful degradation.

estimated background mask m0 by dilating the foreground mask
with a kernel of size (5, 5) to produce m′

1. The background mask
is then m0 = 1−m′

1. And the mask supervision loss is:

Lm =
||m1 ⊙ (1− Vgt)||1

2||m1||1
+
||m0 ⊙ Vgt||1

2||m0||1
. (12)

Another loss is a L1 sparsity constraint on the mask volume
to ensure it only covers the necessary portions,

Ls = ||
∑

(x,y,d)

V(x, y, d)||1. (13)

We use L + 0.1Ls + 0.25Lm for the full combination and L +
0.1Ls for the additional sparsity constraint.

TABLE 6
Effect of different loss functions. Our rendering loss offers better

temporal consistency and slightly better visual quality.

Ls Lm STRRED↓ PSNR↑ SSIM↑
- - 0.1683 26.22 0.8390
✓ - 0.1745 26.18 0.8393
✓ ✓ 0.1900 26.09 0.8374

As shown in Table 6, our rendering loss still offers the
most temporally-stable results, whereas the other two losses trade
temporal consistency for better interpretability. It is reasonable that
the mask supervision loss helps the network to give a sparser and
tighter prediction on the dynamic objects. However, it does not
take into account the movements of the foliage and the shadows,
producing slightly unstable results in those areas. The sparsity
constraint is able to achieve marginally better quality than the full
Ls,Lm combination as it retains some parts of the scene which
might cover the slight differences between frames.

Mask visualization can be found in Fig. 8. From the figure, we
can observe that our mask volume removes areas around the edges

of the dynamic object and the occluded areas behind it. Moreover,
the mask softly blends the shadows cast by the moving object.
Adding Ls, the mask becomes sparser, ignoring most static areas.
However, as shown in Fig. 8, it still contains some areas around
the plants on the left and the building in the back. With Ls,Lm,
the mask has more physical meaning and the resulting 3D mask
only covers the dynamic object. This might be useful to extract
moving objects for other uses such as editing or object insertion.

We further examine the 3D visualization of M, M̂, and Mo in
Fig. 9. Note that in the blended MPI Mo, the occluded area behind
the person is filled with actual background information, unlike in
M, which has repeated texture of the dynamic object. Since we
do not enforce any constraints on the static parts of the scene, our
mask has random values in these areas and softly blends them with
the background MPI. This does not affect temporal consistency
too much as the difference is minor and some areas are free space
which does not contribute any color to the MPI volume as shown
in Fig. 9.

5.5 Large distance view extrapolation
In Fig. 10, we show results when the target camera is translated
far more than the baseline of the input camera pair. When large
translational movement is introduced, the conventional method [1]
starts to show artifacts in the disoccluded regions. On the contrary,
our method still preserves the background details even when the
motion is larger, offering a more graceful reduction in quality as
the distance is increased.

5.6 Extension to more input views
Although our proposed method primarily targets binocular view
extrapolation, we also demonstrate that it can be extended to
utilize more input views in Fig. 11 and in the supplementary
video. With more input views, it can acquire better scene geometry
for some cases where there are ambiguities in the plane sweep
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Top Left Input View Mildenhall et al. 2019 Ours - 4 Input Views

Fig. 11. Our proposed method can also be extended to take 4-view input. We feed 4 input views to both the MPI and mask networks to acquire our
result. Here the baseline method is also adjusted to use 4 input views instead of 2. Notice that the artifacts around the person do not appear in our
result.

Fig. 12. From top to bottom, we show frame 0, frame 966 (last frame) and
the extracted background. Since the lighting changes drastically during
this scene, the extracted background contains a lot of ghosting artifacts.

volume. For example, some ambiguities might occur when there
is straight texture-less structure (beams or handrails) parallel to
the camera baseline. Using additional cameras can provide more
geometric information and avoid similar situations. In Fig. 11, the
main difference is that we modify our network to take 4 input
views, which convert to 4 instantaneous images and 4 background
images as input to the mask network, and output the 3D mask
volume as in the pipeline shown in Fig. 4.

5.7 Limitations

The proposed dataset and algorithm have a few limitations: First,
we limit our camera to stay static when capturing. This is mainly
due to the limitations of synchronization and pose estimation.
Although we can achieve good synchronization with software-
based methods, there are still a few milliseconds of error. This
error could be magnified when the camera rig is in motion and
lead to bad estimates of the camera poses. The camera poses
across time would also require more calculations, possibly leading
to accumulating errors in the system. These issues could be solved
by calibrating the camera trajectory of one of the cameras and
utilizing the rigid assumption to infer the trajectories of other
cameras. Another limitation is that we require an estimate of
the static background. This is easily achievable by applying a
median filter. While it works for most of the scenes, this method
is sometimes not reliable. We show one example in Fig. 12. In this
particular case, the sun light appears after a while in the video,
casting hard shadows on the walls. As a result, the background
is difficult to determine. Another possible case happens when a
static object is moved during the video. It is ambiguous to define
the exact background for this case as both states might take up
a large portion of the video. Thus, it might require more careful
division of different states or using a lighting-agnostic method.
There are more advanced approaches [56], [57] that can be used
in the future.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we discuss view synthesis of dynamic scenes with
stereo input videos. The main challenge is that rendered results
are prone to temporal artifacts like flickering in the disoccluded
regions. To tackle this issue, we introduce a novel 3D mask
volume extension to carefully replace the disoccluded areas with
background information acquired from the temporal frames. Ad-
ditionally, we introduce a high-quality multi-view video dataset,
which contains 96 scenes of various human interactions and
outdoor environments shot in 120FPS.

In future work, we would like to extend our dataset and method
to consider dynamic camera motions, and to operate on even
larger baselines. In summary, we believe video view synthesis
for dynamic scenes is the next frontier for immersive applications,
and this paper has taken a key step in that direction.
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