
Real-Time Selfie Video Stabilization
Supplementary Material

Jiyang Yu1,3 Ravi Ramamoorthi1 Keli Cheng2 Michel Sarkis2 Ning Bi2

1University of California, San Diego 2Qualcomm Technologies Inc. 3JD AI Research, Mountain View
jiy173@eng.ucsd.edu ravir@cs.ucsd.edu {kelic,msarkis,nbi}@qti.qualcomm.com

Table a. Notations in the paper and supplementary material

Symbols Explanation

t Frame index
Mt Foreground mask
Pt Background feature points
Qt Correspondence of Pt−1 in frame t
Ft Face vertices
Q̂t Target coordinate of Qt

v Coordinate of a pixel
W (v;Qt, Q̂t) Rigid MLS warping function
v̂ Warped coordinate of pixel v
qi ith column of Qt

wi MLS weight of qi,t to pixel v
α MLS parameter
c Weighted centroid of Qt

ĉ Weighted centroid of Q̂t

q∗i Vector from c to qi,t
q̂∗i Vector from ĉ to q̂i
Ai Transformation matrix of q̂∗i
gj jth grid vertex
G Grid vertices enclosing v
D Bilinear weights of v with respect to G

A. Implementation Details

A.1. MLS warping process

Table a summarizes the notations used in the main paper
and this supplementary material. Algorithm 1 provides the
MLS warping process referred in Sec. 3.2. Since the MLS
warping is not related to the time dimension, we omit the
time subscript t for simplicity. In Algorithm 1, we use rel-
atively small α = 0.3 to maintain a smooth warp field and
avoid artifacts.

A.2. Sliding Window

Since the stabilization network only takes fixed length
video segments, to apply to arbitrary length selfie videos,
we apply a sliding window scheme. In our experiment,
we use a sliding window with length T = 5. We demon-

Algorithm 1: The rigid MLS warping algorithm
W (v;Q, Q̂)

Input : Source coordinates of a pixel v, source
node coordinates Q and target node
coordinates Q̂

Output: Target coordinates of a pixel v̂
for i← 1 to 512 do

wi = 1/ |v − qi|2α
end
c =

(∑512
i=1 wiqi

)
/
(∑512

i=1 wi

)
ĉ =

(∑512
i=1 wiq̂i

)
/
(∑512

i=1 wi

)
for i← 1 to 512 do

q∗i = (qi − c)T q̂∗i = (q̂i − ĉ)T

Ai = wi
(q∗i
−q∗i⊥

) (
v − c − (v − c)⊥

)
,

where ⊥ is an operator on 2D vector
(x, y)⊥ = (−y, x)

end
v̂ = |v − c|

(∑512
i=1 Aiq̂

∗
i

)
/
∣∣∣∑512

i=1 Aiq̂
∗
i

∣∣∣+ ĉ

strate our sliding window scheme in Fig. a. Each window is
marked by the same color, which is the input to our network
for the window. Consider window 1 as an example. The
outputs of our stabilization network are the displacements
of the warp nodes Q̂2, Q̂3 and Q̂4 as we discussed in the
network structure. At this point, if we warp all these frames
in the current window and set the next window starting from
frame 5, the result will be smooth within each window but
not globally smooth. Therefore, we only warp the second
frame in the current window and shift one frame for the
next window. This scheme ensures temporal consistency
between consecutive windows. Specifically, in this exam-
ple, we use the MLS warp function W (v;Q2, Q̂2) to warp
frame 2. We then warp the feature points and face vertices
using W (P1;Q1, Q̂1) and W (F1;Q1, Q̂1), since warping
the frame leads to updated positions of the original feature
points and face vertices. The updated feature points and

1

Figure a. The sliding window scheme of our method. The inputs
of our network for each window are marked with the same color.
For each window, the second frame is stabilized. The background
feature points and the foreground face vertices are updated ac-
cordingly and become the next window’s input.

face vertices become a part of window 2, which is the next
window starting at frame 2.

B. Network Design
In this section, we extend the discussion regarding the

linear network design. We first provide the complete list of
parameters in the stabilization network in Sec. B.1. We then
discuss the necessity of using a network instead of formulat-
ing a linear optimization problem in Sec. B.2. In Sec. B.3,
we compare the performance of linear network and direct
optimization of the loss function(Eq. 3). In Sec. B.4, we
compare the performance of linear network and non-linear
network in terms of the quantitative metrics discussed in
main paper Sec. 6.3. Finally, we compare the performance
using different number of filters in the network in Sec. B.5.

B.1. Network Parameters

Table b lists the network parameters in main paper Fig. 5.
The number of filters in each layer is multiple of a base
number C, which will be discussed in Sec. B.5 in this sup-
plementary material.

B.2. Necessity of the linear network

In Eq. (1) and Eq. (2) in the main paper, we define the
loss function directly on feature points detected in the im-
age. This requires linear relationship between the input and
the output of the stabilization network, i.e. scaling of fea-
ture point coordinates should lead to the same scaling of
the output displacement to compensate the motion. Note
that this linear relationship between input and output can
be posed as a matrix-vector product, i.e., n = Am where
A ∈ R1024(T−1)×4096(T−1) is a large matrix that trans-
forms concatenated and reshaped input feature points and
face vertices m ∈ R4096(T−1)×1 to reshaped warp node dis-
placements n ∈ R1024(T−1)×1. The optimization problem

Table b. Network parameters in main paper Fig. 5
Layer

id
Layer
Type

Input Size Output
Size

Kernel
Size

Stride Dilation Padding

1 Conv1d 4(T-1)x512 Cx512 3 1 1 1
2 Conv1d Cx512 2Cx256 4 2 1 1
3 Conv1d 2Cx256 2Cx256 3 1 1 1
4 Conv1d 2Cx256 4Cx128 4 2 1 1
5 Conv1d 4Cx128 4Cx128 3 1 1 1
6 Conv1d 4Cx128 4Cx128 3 1 1 1
7 Conv1d 4Cx128 8Cx64 4 2 1 1
8 Conv1d 8Cx64 8Cx64 3 1 1 1
9 Conv1d 8Cx64 8Cx64 3 1 2 2
10 Conv1d 8Cx64 8Cx64 3 1 2 2
11 ConvT1d 32Cx64 8Cx128 4 2 2 2
12 Conv1d 8Cx128 8Cx128 3 1 1 1
13 Conv1d 8Cx128 8Cx128 3 1 1 1
14 ConvT1d 16Cx128 4Cx256 4 2 1 1
15 Conv1d 4Cx256 4Cx256 3 1 1 1
16 ConvT1d 8Cx256 2Cx512 4 2 1 1
17 Conv1d 2Cx512 2Cx512 3 1 1 1
18 Conv1d 2Cx512 2(T-2)x512 1 1 1 0

Table c. Linear Network vs. Direct Optimization
Methods Cropping Distortion Stability

Direct Optimization 0.91 0.93 0.40
Our Linear Network 0.88 0.97 0.60

equivalent to our network training can be defined as:

min
A

L(m,n), (1)

where L is the loss function defined in Eq. 3 in the main
paper. Solving this problem directly is difficult and pro-
hibitive in the video stabilization for the following reasons.
First, the matrix A is dense and the problem is highly under-
determined. Second, the loss function we defined involves
non-linear moving least squares warping; the problem can-
not be solved using a simple linear system solver as in the
bundled camera paths [4]. Finally, the problem has to be
solved for each sliding window in the online video stabi-
lization, making it impossible to achieve real-time perfor-
mance. On the other hand, the linear neural network has two
advantages compared to posing the problem as an optimiza-
tion. First, the convolutional layers contain only small ker-
nels; the concatenation of layers is equivalent to decompos-
ing the dense matrix into a series of sparse matrices which
is easier to solve through backpropagation and gradient de-
scent. Second, the network implicitly provides regulariza-
tion by training on a large dataset; using a pretrained net-
work avoids the overfitting problem in the optimization and
also enables computational real-time performance.

B.3. Direct optimization

Since our network is linear, an obvious question is
whether we need a convolutional network at all. A way to
pose the stabilization process as an optimization problem is
to directly solve for the warp node displacement Q̂t − Qt

2

Figure b. Complete quantitative comparison of bundled camera paths [4], selfie video stabilization [7], MeshFlow [3], deep online video
stabilization [6], deep iterative frame interpolation [1] and our method. In these metrics, a larger value indicates a better result.

Table d. Quantitative results from different network designs. In
this table, C is the number of filters in the first layer of our network
depicted in Fig. 5

C=32 Cropping Distortion Stability
No activation 0.85 0.95 0.56
Leaky ReLU 0.90 0.97 0.48

Tanh 0.87 0.97 0.50

C=64 Cropping Distortion Stability
No activation 0.86 0.96 0.57
Leaky ReLU 0.92 0.98 0.52

Tanh 0.85 0.96 0.52

C=128 Cropping Distortion Stability
No activation 0.88 0.97 0.60
Leaky ReLU 0.91 0.97 0.57

Tanh 0.89 0.96 0.52

to minimize the non-linear loss function L. Note that the
objective function L is non-linear, so a simple least squares
linear solver such as in bundled camera paths [4] cannot be
used. We conduct an experiment in which we optimize our
loss function Eq. 3 in the main paper directly over the fea-
ture points (warp nodes) instead of network weights. We
optimize 1000 iterations using Adam optimizer [2] with

Figure c. The 25 selfie video examples used for testing, referred to
in Fig. b

lr = 10−1, β1 = 0.9 and β2 = 0.99 for each 5-frame slid-
ing window. Note that although this formulation is tractable
comparing to Sec. B.2, the runtime of this optimization is
prohibitive for pratical use since it requires an average of
20 seconds to stabilize each frame. We show the quantita-
tive comparison of this optimization result with the result
generated by our linear network in Table c. Although our
network is linear, it performs significantly better than di-
rect optimization. This is expected; since the input feature
points are sparsely distributed and the distribution varies

3

Figure d. The visual comparison and stabilization speed compari-
son of different number of warp nodes in our method. The artifacts
are marked by the red box.

frame from frame, blindly overfitting to the feature points in
each sliding window will result in temporal inconsistency.
Our linear network provides implicit regularization for this
process since it is trained over a variety of feature point dis-
tributions. Therefore, this comparison proves that using the
linear network is necessary and can produce significantly
better results than optimization.

B.4. Comparison with non-linear network

To justify our linear network design, we added differ-
ent types of activation layers after each convolutional layer
in our network and compare the result with our original
network design. To allow negative values in the network
feature vectors, we select leaky ReLU and Tanh in our ex-
periments. Table d shows the averaged quantitative result
over the examples in Fig. c using the networks with leaky
ReLU (with negative slope 0.2), tanh and no activation lay-
ers (our original design). For the stability metric that is the
most important, it can be observed that non-linear activation
layers undermine the performance comparing to our orig-
inal network design with the same base number of filters
C. The reason for this performance degradation is that the
non-linear layers break the linear input/output relationship
requirement.

B.5. Number of filters

To show the effect of the number of filters used in each
layer of the network, in Table d we include the quantitative
results with different numbers of filters in the input layer,
i.e., C = 32, 64, 128. In general, the larger number of fil-
ters in the network, the better the results. This conclusion
also applies to the networks with non-linear activation lay-
ers, but the effect is more significant for the leaky ReLU
activated network. For the even more non-linear network
with tanh layers, the performance saturates quickly with a
greater number of filters C. In this paper, we use C = 128
in all the experiments.

Table e. Ablation Study
Ablation Cropping Distortion Stability

No Foreground Detection 0.89 0.95 0.52
Full Pipeline 0.88 0.97 0.60

Table f. Input Video Frame Size Comparison
Frame Sizes Cropping Distortion Stability

HD (1280× 720) 0.87 0.95 0.59
FHD (1920× 1080) 0.87 0.96 0.58

832× 448 0.88 0.97 0.60

C. Additional Results
In this section, we provide additional results to Sec. 6 in

the main paper.

C.1. Complete Quantitative Result

The complete list of video index and sample frames are
shown in Fig. c. In Fig. b, we provide complete quantita-
tive comparison with bundled camera paths [4], selfie video
stabilization [7], MeshFlow [3], deep online video stabiliza-
tion [6], deep iterative frame interpolation [1]. Note that we
also modify the optimization based method bundled camera
paths [4] by including the same mask detection procedure
used in our pipeline, but it doesn’t improve their result.

C.2. The number of warp nodes (feature points)

The runtime performance of our method greatly depends
on the number of warp nodes. Note that we use the fea-
ture points as the warp nodes, therefore the number of warp
nodes is equivalent to the number of feature points. In
the motion detection stage, tracking more feature points re-
quires more processing time, leading to slower stabilization
speed. However, if the warp nodes are too sparse in the
frame, the possibility of local distortion increases. We pro-
vide the average per-frame stabilization time using 128, 512
and 1024 warp nodes and the corresponding warped frames
in Fig. d. In Fig. d, using 128 warp nodes results in dis-
tortion near the foreground/background bundaries. This is
because in the MLS warping, the warp nodes are implicitly
constrained by each other. Fewer constraints reduce the ro-
bustness of the warping. An isolated warp node, if tracked
mistakenly, introduces local distortion. In our experiment,
we select 512 warp nodes since it is a good balance between
computational speed and warp quality.

C.3. Ablation Study

We performed an ablation study by removing the fore-
ground mask detection stage in our pipeline. This exper-
iment means that we are essentially using all the feature
points from both foreground and background, even if the
foreground feature tracking is not reliable. Table e shows
the comparison with the full pipeline. The stability score is

4

significantly smaller than our full pipeline that separates the
foreground and background. However, note that even with-
out foreground mask detection, we still outperform compar-
ison optimization based methods [3, 4]. This also indicates
that using the network is necessary for the video stabiliza-
tion task.

C.4. Video Frame Size

The previously discussed results are tested with videos
with frame size 832 × 448. Since our network only takes
feature point/head vertices as the input, it is scalable with
different frame sizes. We tested our network with stan-
dard video resolutions (i.e., HD 1280 × 720 and Full HD
1920× 1080) and compare the quantitative results with the
832 × 448 input, shown in Table f. In these experiments,
we resize the frame to 832 × 448 for faster feature detec-
tion and foreground/face detection. In the warping stage,
we rescale the feature points and the output of our network.
Our network is able to handle higher resolution videos, and
the result quality is similar to previously discussed results
with frame size 832× 448.

References
[1] Jinsoo Choi and In So Kweon. Deep iterative frame interpo-

lation for full-frame video stabilization. ACM Trans. Graph.,
39(1), Jan. 2020. 3, 4

[2] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations (ICLR), 2014. 3

[3] Shuaicheng Liu, Ping Tan, Lu Yuan, Jian Sun, and Bing Zeng.
Meshflow: Minimum latency online video stabilization. In
European Conference on Computer Vision (ECCV), 2016. 3,
4, 5

[4] Shuaicheng Liu, Lu Yuan, Ping Tan, and Jian Sun. Bundled
camera paths for video stabilization. ACM Trans. Graph.,
32(4), July 2013. 2, 3, 4, 5

[5] Fuhao Shi, Sung-Fang Tsai, Youyou Wang, and Chia-Kai
Liang. Steadiface: Real-time face-centric stabilization on mo-
bile phones. In IEEE International Conference on Image Pro-
cessing (ICIP), 2019.

[6] M. Wang, G. Yang, J. Lin, S. Zhang, A. Shamir, S. Lu, and S.
Hu. Deep online video stabilization with multi-grid warping
transformation learning. IEEE Transactions on Image Pro-
cessing, 28(5):2283–2292, 2019. 3, 4

[7] Jiyang Yu and Ravi Ramamoorthi. Selfie video stabilization.
In European Conference on Computer Vision (ECCV), 2018.
3, 4

5

