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Abstract

Traditional imaging methods and computer vision algo-
rithms are often ineffective when images are acquired in
scattering media, such as underwater, fog, and biological
tissue. Here, we explore the use of light field imaging and
algorithms for image restoration and depth estimation that
address the image degradation from the medium. Towards
this end, we make the following three contributions. First,
we present a new single image restoration algorithm which
removes backscatter and attenuation from images better
than existing methods do, and apply it to each view in the
light field. Second, we combine a novel transmission based
depth cue with existing correspondence and defocus cues to
improve light field depth estimation. In densely scattering
media, our transmission depth cue is critical for depth es-
timation since the images have low signal to noise ratios
which significantly degrades the performance of the corre-
spondence and defocus cues. Finally, we propose shearing
and refocusing multiple views of the light field to recover
a single image of higher quality than what is possible from
a single view. We demonstrate the benefits of our method
through extensive experimental results in a water tank.

1. Introduction
Images captured in scattering media such as underwa-

ter or in fog are degraded by light absorption and scattering.
This seriously affects the performance of standard computer
vision algorithms which were developed to work well in
clear air. As such, there has been a lot of effort to adapt
these algorithms to handle scattering [18, 23, 1, 31, 15]. In
this work, we introduce the use of light field cameras in
scattering media.

Recently, light field cameras have become commercially
available. These cameras use an array of micro lenses to
capture enough spatial and angular information to allow
post capture change of view point and refocusing. This en-
ables the extraction of correspondence and defocus cues, for
depth estimation, from a single shot [28, 36, 32, 14].

There has been a lot of previous work on restoring
images affected by scattering. Most work on dehazing

Figure 1. Depth estimation and image restoration comparison. (a)
The center view of an image captured by a light field camera in
a densely scattering medium. (b) Restoration of the center view
by the recent method of Drews et al. [6]. (c) Restoration of the
center view by the recent method of Tsiotsios et al. [31]. Notice
the noise on the orange lobster and the greenish tint of the entire
image, especially on the white bunny. (d) Our restoration. (e)
Depth estimation without accounting for scattering by the recent
method of Wang et al. [32]. (f) Our depth.



[35, 8, 7, 37, 12] focuses on removing the backscatter,
also known as airlight. These algorithms are based on
the scattering model proposed by Narasimhan and Nayar
[17], which assumes distant illumination in which the light
rays are all parallel and travel equal distances to scattering
points. This model works well for sunlight, but fails on
near-field illumination. More recently, Tsiotsios et al. [31]
proposed an empirical algorithm which fits a quadratic
function to remove backscatter from near-field illumination.

In this paper, we propose a novel physically based algo-
rithm to remove backscatter as well as attenuation (Sec. 4).
Our restoration requires knowing the scene depths, which
are a priori unknown. As such, we first perform a rough
restoration assuming a constant initialized depth. We apply
this restoration to each view in the light field.

After our initial restoration, existing shape from light
field algorithms can be used to estimate depth. However,
in densely scattering media, the restorations are noisy and
have low signal to noise ratio because the additive backscat-
ter dominates the camera’s dynamic range [30, 15]. As
such the common defocus and correspondence cues do not
provide reliable depth. To address this we introduce a
new, non-uniform corrected, transmission based depth cue,
which complements the light field cues (Sec. 5).

Once the depth is estimated, we can use it to perform a
final image restoration. However as mentioned, the restored
images are noisy. As such, we also propose shearing and av-
eraging multiple views of the light field to produce one high
quality image (Sec. 6). This produces much higher quality
images than simply extracting the central view or simply
averaging multiple views (Fig. 7 and Fig. 12). Furthermore
this circumvents the need to properly focus the camera at
capture time, which can be difficult in dense media (auto
focus often fails).

We demonstrate our method through extensive experi-
ments, in a water tank, with varying concentrations of scat-
tering media added (Sec. 7). As shown in Fig. 1, our
method significantly outperforms recent image restoration
and depth estimation methods.

2. Related work
There are many existing techniques that restore the visi-

bility of degraded underwater images. Schechner et al. [24]
use two images with different degrees of polarization for
underwater image restoration. Roser et al. [22], Swirski et
al. [27], and Negahdaripour et al. [19] use a stereo pair
of images to simultaneously solve for depth estimation and
visibility enhancement. Murez et al. [15] and Tsiotsios et
al. [31] use three or more images under varying illumina-
tion and solve for photometric stereo problem in underwa-
ter scattering condition. These methods all require multiple
images of the same scene.

Recently, many single image underwater restoration
methods have been proposed based on the Narasimhan-
Nayar imaging model [17]. Most previous work has fo-
cused on improving the estimation of the transmission map.

He et al. [8] propose the well-known dark channel prior
(DCP) to estimate scene depths in hazy images. This prior
assumes that most non-sky patches of haze-free outdoor im-
ages have low pixel intensities. In [11, 35, 3], the DCP
methodology was applied to underwater image restoration.
Serikawaa et al. [25] propose a variation of DCP to refine
the medium transmission map by using a guided joint tri-
lateral filter. Bianco et al. [2] proposed an improved un-
derwater DCP that exploits the difference in attenuation be-
tween the three image color channels, i.e., water attenuates
red light more than green and blue. Drews-Jr et al. [6] pro-
poses the underwater dark channel prior (UDCP) and simi-
larly assume that the blue and green channels contain most
of the visual information.

These works all assume mild haze and tend to fail in the
more challenging case of dense scattering. In this paper, we
combine light field (LF) imaging and an improved near-field
scattering model to tackle this problem.

Recently, LF cameras have become readily available
for consumers. Because of their ability to capture mul-
tiple viewpoints in a single image, LF cameras provide
both monocular and stereo depth cues in an easy-to-capture
package. Tao et al. [28] propose a depth estimation method
that combines correspondence and defocus cues in the 4D
Epipolar Image (EPI). Wanner et al. [34] propose a globally
consistent depth estimation framework by applying struc-
ture tensors to estimate the directions of feature pixels in
the 2D EPI. Wang et al. [32] develop an occlusion-aware
depth estimation algorithm from a LF camera, which can
obtain more accurate depth even in the presence of occlu-
sions. Mousnier et al. [14] describe a novel depth esti-
mation approach to partially reconstruct high-resolution 4D
light fields from a stack of differently focused photographs
taken with a fixed camera. Dansereau et al. [5] propose
the volumetric focus method to improve signal quality that
maintains focus over a controllable range of depths.

Although light field cameras have proven advantageous
over traditional cameras, their application to underwater
imaging is still limited. In this paper we propose a novel
application of LF cameras and extend LF based depth esti-
mation to work in scattering media.

3. Underwater Image Formation Model
As shown in Fig. 2, consider a perspective camera placed

at the origin, with the image (x, y) coordinates parallel to
the world’s (X,Y ) axes, and the Z-axis aligned with the
camera’s optical axis. Let the point X = (X,Y, Z) be
the point on the object’s surface along the line of sight
of pixel x = (x, y). We have the following relations,

x =
(
f XZ , f

Y
Z

)t
and X =

(
Z
f x,

Z
f y, Z

)t
, where f is the

focal length. We ignore the (u, v) angular coordinates of
the light field in this section.

Let S = (Xs, Ys, Zs) be the world coordinates of a
near-field point light source, and define D(X) = S − X
as the vector from the object to the source. As in related



Figure 2. Image formation and light propagation in a scattering
medium. The radiance arriving at the camera is the sum of two
components: the direct reflected light and the backscatter. The
direct light travels distance D from the light to the object, and
then distance ‖X‖ to the camera. The backscatter is scattered
through angle α directly into the camera.

works [31, 18], we adopt the single scattering model, and
ignore small angle forward scattering, and thus only con-
sider backscatter from the source. Thus the radiance arriv-
ing at the camera can be expressed as the sum of two terms:

I(x) = Id(x) + Ib(x) (1)

where Id is the direct light reflected from the object and Ib
is composed of rays of light emitted by the source that are
scattered into X′s line of sight before hitting the surface.
This term is known as backscatter.

3.1. Direct Radiance Term
As seen in Fig. 2, consider an isotropic point source with

radiant intensity E. Light from it travels a distance ||D(X)||
to the object. Thereafter, the light is reflected by the sur-
face with albedo ρ(X) and travels a further distance ||X||
(||X|| =

√
X2 + Y 2 + Z2 ) to the camera. The direct radi-

ance can be written as,

Id(x) =
E

||D(X)||2
e−σ||D(X)||ρ(X)e−σ||X|| (2)

where σ denotes extinction coefficient of the medium.
Let J(x) = E

||D(X)||2 ρ(X) be the clear image, and we have,

Id(x) = J(x)e−σ(||D(X)||+||X||) (3)

3.2. Backscatter Term
Light which is scattered directly into the camera by the

medium without reaching the object is termed backscat-
ter. The fraction of light scattered to each direction is
determined by scattering coefficient β and phase function
P (g, α). We adopt the common Henyey-Greenstein phase
function [9] in this paper.

P (g, α) =
1

4π
· 1− g2

[1 + g2 − 2g cosα]3/2
(4)

Figure 3. Illustration of the geometry of a near field source outside
the medium.

where scattering angle α is given by cos (α) = D̂ · X̂ (D̂
and X̂ denote normalized vectors) and satisfy α ∈ [0, π].
The parameter g ∈ (−1, 1) controls the relative amounts of
forward and backward scattering.

Based on previous work [26, 16], the backscatter is given
by,

Ib(x) = FLb (5)

where

Lb(x) =

∫ ∞
0

e−σ||D(rX̂)||

||D(rX̂)||2
P (α)e−σrdr (6)

and F = Eβ. Note that β is the scattering coefficient and
is related to extinction coefficient σ by σ = β + ε, where ε
is the absorption coefficient. We have absorbed the radiant
intensity of the source E and the scattering coefficient β
into one effective constant F . Note that since backscatter
from a near-field source saturates close to the camera [31],
it is not a problem to integrate to infinity even if the ray hits
an object at a finite distance.

3.3. Extension to Light Sources Outside the Medium
So far, we have assumed the light source is in the

medium. Here we extend the scattering model presented in
the previous sections to the case where the light is near-field
but outside the medium. Consider the geometry in Fig. 3.
Light travels from the source and enters the medium at point
Xw without undergoing any scattering. Then the light con-
tinues into the medium where it undergoes scattering as be-
fore. The direct radiance becomes

Id(x) = J(x)e−σ(||τD(X)||+||X||) (7)

and the backscatter becomes

Lb(x) =

∫ ∞
0

e−σ||τD(rX̂)||

||D(rX̂)||2
P (α)e−σrdr (8)

where the only difference from Eq. 6 is that the attenuation
of the source is scaled by τ ∈ (0, 1]. Note that when τ = 1
the source is in the water.
τ is given by

τ(X) =
Yw − Y
Ys − Y

(9)



where Yw, Ys, and Y denote water surface, source location,
and scattering point location respectively in the vertical di-
rection. It is worth noting that τ is a function of X, which
means we do not assume all points are equidistant from the
source, as in [18].

Note that we have not included terms here to account
for refraction nor the Fresnel effect, as they could be safely
neglected due to the geometry of our experimental setup,
although they could easily be added and do not affect the
derivations in the rest of the paper. In fact, for the rest of
our analysis we just assume the light is in the medium for
notational clarity.

4. Single Image Restoration
Substituting Eq. 3 into Eq. 1 we get

I(x) = J(x)e−σ(||D(X)||+||X||) + Ib(x) (10)

To recover the restored image we need to solve Eq.10 for
J which requires estimating the unknown medium parame-
ters F , σ, and g, as well as the depth for each pixel. To make
the optimization simpler, we first estimate the medium pa-
rameters by examining pixels which only contain backscat-
ter. Once the medium parameters are known, an initial
restoration is computed. This is done using Eqs (2), (3)
and (7), assuming a constant known depth Zref. These re-
stored images are used to estimate depth as described in the
following section, and then the estimated depth is used to
compute a final restoration. Our experiments show that fur-
ther iteration does not improve the results, and are robust to
the initialization Zref.

4.1. Estimating Medium Parameters
For pixels that only contain backscatter, J(x) = 0 and

Eq. 10 reduces to
I(x) = Ib(x) (11)

Let V be a set of points that only contain backscatter
(the assumption of the existence of backscatter only pixels
is common in the literature [31] and often satisfied in un-
derwater imaging conditions, we will describe how to find
such a set of points in the next paragraphs). We estimate F ,
σ, and g by minimizing

min
g

min
σ,F

∑
x∈V
‖I(x)− Ib(x)‖ (12)

while assuming Z = Zref. The inner optimization is solved
using the simplex method [10], while the outer optimization
is solved by brute force search with a step size of 0.01 over
the limited range g ∈ [0.7− 1.0] valid for water [16].

In general, the medium parameters, as well as the light
source intensity, depend on wavelength. Although we can
solve Eq. 12 for each color channel independently, we found
it more robust to assume σ and g are wavelength indepen-
dent, while allowing for wavelength dependent sources Ec
and scattering coefficients βc, where c ∈ {R,G,B} color

channels. Note that F c = Ecβc absorbs both wavelength
dependent parameters into a single one per color channel.
We solve the optimization in Eq. 12 for the blue channel,
and then compute FR and FG by

F c =
1

|V |
∑
x∈V

(
Ic(x)

IB(x)
)FB , F c = Ecβ, c ∈ {R,G} (13)

where |V | is the number of pixels in set V .
To find a good set V of pixels that only contain backscat-

ter, we modify the DCP method proposed by He et al. [8].
The dark channel prior states that in most natural image
patches, at least once color channel has some very low in-
tensity pixels. To make our method more robust, we first
convert the input image into HSV color space and extract its
saturation and intensity channels. We then extract regions,
whose intensity and saturation are both low, using Otsu’s
method [21]. In these regions, we further sample points at
twenty pixel intervals in both the x and y directions. Fi-
nally we take the minimum over five pixel neighborhoods
for these sample points to generate set V . Note that we
do not extract the minimum over color channels, as in the
original DCP, because we allow wavelength dependent light
sources.

5. Depth Estimation
After the initial image restoration, assuming a constant

depthZref, we estimate the true depth using shape from light
field [28, 29]. However, for densely scattering media, where
the restored images have a low signal to noise ratio, the de-
focus and correspondence cues are not enough to recover
accurate depth. As such we introduce our new transmission
based depth cue which can be combined with the defocus
and correspondence cues to recover better depth.

5.1. Defocus and Correspondence Cues
We first use the following equation from Ng et al. [20]

to shear the LF data to various depths.

Jκ(x,u) = J(x + u(1− 1

κ
),u) (14)

where J is the initially haze removed 2D LF input image,
Jκ(x,u) is the 4D sheared LF images at relative depth κ,
x = (x, y) denotes the spatial coordinates and u = (u, v)
denotes the angular coordinates. For each pixel, the refo-
cused image Jκ for the shear value κ is calculated by,

Jκ(x) =
1

N

∑
u

Jκ(x,u) (15)

where N is the number of angular pixels. In our implemen-
tation, we shear κ from 0.2 to 2 with 256 steps. Therefore,
we have 256 refocused Jκ(x).

The defocus DE and correspondence CO cues [29] are
given by

DEκ(x) =
1

|W |
∑

x’∈W

|Jκ(x’)− J(x’, 0)| (16)



COκ(x) =
1

N

∑
u

|Jκ(x,u)− J(x, 0)| (17)

When a patch is sheared to its correct depth, it will exhibit
small variance and defocus. Therefore, we choose the cor-
responding depth responses by,

ZD(x) = argmin
κ

DEκ(x)

ZC(x) = argmin
κ

COκ(x)
(18)

5.2. Transmission Depth Cue
Our transmission depth cue is derived from the depth de-

pendent backscatter intensity after the object’s reflected in-
tensity has been removed using the DCP prior.

Taking the minimum over color channels and spatial
neighborhoods Ω(x) of Eq. 10 gives

min
c

min
y∈Ω(x)

(Ic (y)) =

min
c

min
y∈Ω(x)

(
Jc (y) · e−σ(||D(X)||+||X||) + Icb (y)

) (19)

According to the DCP prior [8], min
c

min
y∈Ω(x)

(Jc (y)) = 0.

Let I†(x) = min
c

min
y∈Ω(x)

(Ic (y)). Then Eq. 19 reduces to

(after substituting Eqs. 5,6)

I†(x) = F c
∫ ‖X‖

0

e−σ||D(rX̂)||

||D(rX̂)||2
P (α)e−σrdr (20)

Eq. 20 is a nonlinear equation for the depth ‖X‖, and
could be solved using nonlinear optimization. However, we
found this to be very time consuming and often did not con-
verge to a good solution. As such we made the following
manipulations, followed by a linear approximation which
solved both of these problems.

First we change the variable of integration in Eq. 20 to
dr = ‖X‖ds giving

I†(x) = ‖X‖F c
∫ 1

0

e−σ||D(‖X‖sX̂)||

||D(‖X‖sX̂)||2
P (α′)e−σ‖X‖sds

(21)
where α′ is a function of s. Next we let I†b be defined as the
integral in Eq. 21, and remove the global parameter F c by
normalization, giving

I†(x) = ‖X‖I†b (x) (22)

Finally, we solve Eq. 22 for ‖X‖ by making the approxima-
tion that I†b (x) depends on the constant depth Zref instead
of the unknown depth Z. Let Zs(x) = ||X|| denote our
transmission depth cue.

The spatially varying but depth independent term I†b (x)
in the approximation can be seen as a non-uniform correc-
tion factor to the standard DCP depth algorithm. Although

Figure 4. (a) A scene with no object yields a backscatter only
image. (b,c) Plots of the blue and green cross sections show that
the backscatter is not spatially uniform. (d) An image of a toy
lobster in a dense scattering media. (e) Depth from UDCP [6].
(f) Depth from our new non-uniform corrected transmission depth
cue. Note the incorrect low frequency height variations from top to
bottom and center out in (e), caused by the non-uniform backscat-
ter, which are absent in ours (f)

Figure 5. Combining depth cues. We see that any one depth cue is
not enough, and only after combing all three we get good results.
(a) Input image. (b) Defocus depth. (c) Correspondence depth.
(d) Combined LF defocus and correspondence depth. (e) Our new
transmission depth. (f) All three depth cues combined.

this correction can be neglected in mild scattering, in dense
scattering, the backscatter varies spatially and cannot be ig-
nored (see Fig. 4). As such, our transmission depth can
achieve better results than both the classical DCP and the
improved underwater DCP.

5.3. Depth Fusion and Propagation

As can be seen in Fig. 5, any one depth cue on its own
does not produce a reliable depth estimate. However, by
combining all three complementary cues, we can recover
good depth estimates.

To combine the defocus, correspondence, and trans-
mission depth cues, we need to determine the confidence
weights Γ(x) of each component. ΓD(x) and ΓV (x) are



given in [29]. We define our transmission confidence as,

ΓS(x) =
∑

c1={R,R,G}
c2={G,B,B}

|Jc1(x, 0)− Jc2(x, 0)| (23)

The intuition for this is that properly restored images will
be less white than images with backscatter. Thus if the
color channels are very similar then there is likely to still
be backscatter.

The goal now is to combine different depth cues and to
propagate information to regions with low confidence (us-
ing a smoothness term). The final depth is obtained by,

min
Z

λ1

∑
j=D,V,S

Γj ||Z − Zj ||2 + λ2||Z ⊗∆||2
 (24)

where ⊗ is the convolution operator and ∆ is the discrete
Laplacian. We used λ1 = λ2 = 1 in our implementation,
and solved (Eq. 24) using the Trust-Region-Reflective Al-
gorithm [4].

Now we can use the estimated depths to obtain an im-
proved image restoration.

6. High Quality Images from Shearing and Re-
focusing LF

Although the backscatter and attenuation are removed by
restoration, the resulting images are often noisy (see Fig. 6
and Fig. 7 (b)), especially for densely scattering media. This
is because the backscatter takes up most of the dynamic
range of the camera, and the attenuated signal from the
scene is weak. To recover a single high quality image, we
propose shearing and averaging multiple views of the light
field.

Without scattering, a point on a Lambertian surface will
appear the same from different views of an in focus LF
image. On the other hand, in a scattering medium, these
different views will have slightly different scattering paths,
and thus the point may appear different. In densely scat-
tering media, after our restoration, the effect becomes very
noticeable, as shown in Fig. 6. Our restoration algorithm
does not explicitly handle this variation of scattering with
respect to LF view. However, by combining the different
information from multiple views, we can produce a single,
all in focus, high quality image with less noise than what is
possible from a single view (Fig. 7).

For comparison, we also show that simply averaging the
different views into a single 2D image reduces the noise, but
adds blur since the rays of the LF have not been properly
aligned (Fig. 7 (c)). In section 7 we will show another com-
parison that simulates noise reduction from a single large
aperture, as in a standard DSLR.

7. Experimental Results
First we did a simple simulation experiment to verify our

backscatter removal under a wide variety of scattering con-

Figure 6. Different views of LF data under different degree scat-
terings. We can see that without scattering, different views are
similar and with good image quality. With scattering, the restored
images from different views are different and affected by noise, and
this phenomenon becomes more severe with more scattering.

Figure 7. Restoration (d) by shearing and refocusing on initially
haze removed LF data can produce a better result than restoration
only using the center view image (b) or simply taking the mean
of different view directions (c). The final restoration result (f) by
repeating the same shear and refocus procedure and incorporating
the estimated depth (e) can produce an even clearer result.

Figure 8. Our experimental setup.



Figure 9. Image restoration comparison. Results for all methods except our final results are obtained from the central LF view only. We can
see that our central view results are better than previous methods. None of the other methods can recover the uniform black background.
Our final results are even better than our central view results because they contain less noise.

ditions. We rendered 2100 images of near-field backscat-
ter using the single scattering model [26] and randomly se-
lecting the three parameters in the ranges F ∈ (100, 350),
σ ∈ (0.001, 0.1), and g ∈ (0.5, 1). We then evaluated
how well our restoration method, He’method [8], and Tsiot-
sios’s method [31] were able to recover the pure black back-
ground. The mean squared error (MSE) are 2.45, 36.71, and
79.18 respectively for pixels in the range [0,255]. Further-
more, our method recovers the true scattering parameters to
within 1% in the simulation. We can see that our method out
performs existing methods, and is robust in a wide variety
of media.

Second, we demonstrate our method using real experi-
ments conducted in a glass tank filled with tap water (see
Fig. 8). A Lytro Illum light field camera with an 18mm
lens was placed 1cm away from the tank. The light source
was an incandescent light bulb placed at Xs = 5cm, Ys =
65cm, and Zs = 10cm. The turbidity was increased by
adding varying amounts of milk.

We compare our restoration on real captured images with
four single-image based methods: He’s method [8], Meng’s
method [13], UDCP method [6], and Tsiotsios’s method
[31]. We also compare our depth results with two transmis-
sion based methods [8, 6] and two LF based methods: Tao’s
method [28] and Wang’s method [32]. Since we are the first
to do LF depth estimation in a scattering media, we also
compare to a simple “combined” method that first removes
the backscatter using [31] and then does depth estimation
using [28]. We also note that our method roughly recovers
the scattering parameters as predicted by [16] (within 10%)
which is reasonable since our method is not optimized for
this task.

Fig. 9 shows comparisons of our restoration with exist-
ing methods. We can see that the three methods that are
based on Narasimhan–Nayar model [8, 13, 6] cannot ac-
count for the non-uniform backscatter, and thus don’t im-
prove the image quality that much. Tsiotsios’s method [31]
is better able to remove the scattering, but fails in dense
scattering where their quadratic approximation is no longer
valid. Our method consistently produces the best results.
And after shearing and refocusing multiple views our re-
sults look even better.

Fig. 10 shows comparisons of our depth with existing
methods. Similar to the restoration shown in Fig. 9, [8, 6]
cannot handle the non-uniform scattering and thus do not
give a uniform depth to the background. Also note that
the same non-uniformity can be seen as a residual height
gradient across the objects (bluer towards the top). The
LF methods [28, 32] don’t take scattering into account and
thus produce bad depth. We also did a simple combined
experiment for depth estimation (shown as “combined” in
Fig. 10), which is haze removed by [31] followed by depth
estimation by [28]. From the comparison, we can see that
our method produces by far the best depth estimates.

Fig. 11 shows a plot of turbidity level vs image qual-
ity (measured using SSIM) for each of the restoration al-
gorithms. SSIM [33] is a widely used metric that is more
consistent with human perception than other metrics like
mean squared error (MSE) and peak signal-to-noise ratio
(PSNR). We use an image captured in clear water as ground
truth. We can see that our restored central view is better than
all previous restoration methods and degrades more grace-
fully with increasing turbidity. By shearing and refocusing
multiple views we get even better results across all turbidity



Figure 10. Depth estimation comparison. We can see that our method produces better results than recent related methods as well as the
simple “combined” method both in details and uniformity of the background. Note that the depths are relative and thus the colormaps do
not correspond to the same absolute depths.

Figure 11. Plot of image quality vs increasing turbidity for various
restoration methods. The thumbnails give sample input images for
turbidity levels 0,1,3,7 and 9. It is clear that our restorations are
better than previous methods across a broad range of turbidities.

levels.
Shearing and refocusing reduces noise by averaging over

many small apertures. For fair comparison we compare
our method with a baseline that simulates a single large
aperture with less noise (Fig. 12). We shear and refocus
the light field to a single 2D image, which we then re-
move the backscatter from using our backscatter subtrac-
tion. Our method clearly out performs the large aperture
baseline showing that combining information from many
sub-apertures of a descattered LF is better than using a sin-
gle large aperture.

In summary, our transmission depth cue can effectively
be combined with the standard LF depth cues to produce su-
perior depth estimates than existing methods. These better
depth estimates combined with our near-field illumination
scattering model allow for better haze removal than existing
methods. Finally, by shearing and refocusing our dehazed
LF’s we can achieve better restorations than is possible from
a single large aperture image as well as each single view.

8. Conclusion
We have proposed the use of light field imaging in a scat-

tering medium. Towards this end we have made three main
contributions: an image restoration algorithm for near-field
illumination, a novel transmission depth cue which we com-
bine with existing light field cues, and a multi view image

Figure 12. Comparison of LF dehazing with effective large aper-
ture single image restoration. (a) central view of input LF (b)
our descattering applied to the central view (c) our descattering
applied to the sheared and refocused effective large aperture 2D
single image (d) our proposed method of descattering the LF fol-
lowed by shearing and refocusing. We can see that our method
produces the best results.

fusion procedure for improved signal to noise ratio. Our
image restoration algorithm outperforms existing methods,
particularly for densely scattering media where prior meth-
ods often fail. Our combined depth estimation produces bet-
ter depth estimates than previous methods. And our sheared
and averaged final image has less noise and has higher qual-
ity than other methods for restoring single view images.
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