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Figure 1: (a) We render the Sponza Atrium with 262K triangles, textures and 1-bounce physically-based global illumination at about 2
fps on an NVIDIA GTX 690 graphics card, with an average of 63 Monte Carlo (adaptive) samples per pixel (spp) raytraced on the GPU
with Optix, followed by adaptive image filtering. (b) Adaptive sampling rates and filter widths (in pixels) derived from our novel frequency
analysis of indirect illumination. (c) Insets of the unfiltered result. Adaptive sampling produces lower noise in high-frequency regions with
small filter sizes (see right of bottom inset), with greater noise in low-frequency regions, that will be filtered out. Compare to (d) uniform
standard stratified Monte Carlo sampling with uniformly distributed noise. Our method (e) after adaptive sampling and filtering is accurate
at 63spp. (f) Equal error at 324 spp, which is still noisy. Overhead in our algorithm is minimal, and we provide a speedup vs equal error of
5×. Readers are encouraged to zoom into the PDF for this and all subsequent figures, to more clearly see the noise and image quality.

Abstract

We introduce an algorithm for interactive rendering of physically-
based global illumination, based on a novel frequency analysis
of indirect lighting. Our method combines adaptive sampling by
Monte Carlo ray or path tracing, using a standard GPU-accelerated
raytracer, with real-time reconstruction of the resulting noisy im-
ages. Our theoretical analysis assumes diffuse indirect lighting,
with general Lambertian and specular receivers. In practice, we
demonstrate accurate interactive global illumination with diffuse
and moderately glossy objects, at 1-3 fps. We show mathemati-
cally that indirect illumination is a structured signal in the Fourier
domain, with inherent band-limiting due to the BRDF and geom-
etry terms. We extend previous work on sheared and axis-aligned
filtering for motion blur and shadows, to develop an image-space
filtering method for interreflections. Our method enables 5−8× re-
duced sampling rates and wall clock times, and converges to ground
truth as more samples are added. To develop our theory, we over-
come important technical challenges—unlike previous work, there
is no light source to serve as a band-limit in indirect lighting, and
we also consider non-parallel geometry of receiver and reflecting
surfaces, without first-order approximations.
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1 Introduction

Interactive rendering of indirect illumination is one of the grand
challenges of computer graphics. In this paper, we take an impor-
tant step towards solving this problem for diffuse interreflections,
with both Lambertian and Phong receivers, based on physically-
accurate Monte Carlo ray or path tracing, followed by image-space
filtering. Monte Carlo integration at each pixel has long been re-
garded as the gold standard for accuracy—but not suitable for inter-
active use, with hundreds of samples needed and slow render times.
This has led to a number of real-time but approximate alternatives,
such as point-based gathering [Wang et al. 2009; Maletz and Wang
2011] or voxel-based cone tracing [Crassin et al. 2011]. We seek to
obtain the best of both worlds; physically accurate and interactive.

We are inspired by recent work on sheared filtering for motion blur
and soft shadows by Egan et al. [2009; 2011a; 2011b], which has
demonstrated dramatically reduced sample counts. Most recently,
Mehta et al. [2012] developed an axis-aligned filtering method for
area light soft shadows on diffuse surfaces (axis-aligned or sheared
refers to the pixel-light space, rather than the image domain, al-
though the method also uses an axis-aligned image filter). This
approach trades off a somewhat increased sample count for a much
simpler filter, that reduces to an adaptive 2D image-space gaussian
blur, does not require storage or search over an irregular 4D domain,
and allows for adaptive sampling and adjustment of filter sizes to
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guarantee convergence with more samples. However, none of these
methods is designed for global illumination.

In this paper, we develop an axis-aligned filtering method, based on
an analysis of the frequency-domain structure of the indirect light
field. Our theory considers diffuse interreflections, but receiving
surfaces can have general BRDFs. In practice, since our approach
is based on accurate path tracing and always converges in the limit,
our method works for diffuse and moderately glossy objects. Spe-
cific theoretical and practical contributions include:

Fourier Analysis of Indirect Illumination: Our main theoreti-
cal contribution (Sec. 3) is a frequency analysis of indirect lighting.
We provide an exact derivation (Secs. 3.1, 3.2), without first-order
assumptions inherent in previous works. This is essential for han-
dling arbitrarily oriented surfaces—unlike the constant velocity as-
sumption in motion blur [Egan et al. 2009], we cannot assume par-
allel receivers and reflecting surfaces. Oriented reflectors involve
a nonlinear transformation in the Fourier analysis, but surprisingly
the spectrum of the indirect light field still lies in a double wedge,
bounded by the minimum and maximum depths of the reflector; this
result enables us to leverage much of the filtering theory in previous
work. We also extend the theory to glossy receivers (Sec. 3.3).

Bandlimits for Axis-Aligned Filtering of Indirect Lighting:
Earlier work [Egan et al. 2011b; Mehta et al. 2012] used the light
source (and its size) to bandlimit the occlusion function. However,
there is no single light source in global illumination; we show that
the geometry/parameterization and BRDF play the role of the ban-
dlimit instead, and derive axis-aligned filter sizes, as well as adap-
tive sampling rates for diffuse and glossy surfaces (Sec. 4).

Interactive Sampled Global Illumination: We demonstrate in-
teractive global illumination with one or more indirect bounces—
with adaptive sampling and accurate Monte Carlo path tracing us-
ing NVIDIA’s Optix GPU raytracer, followed by adaptive image
filtering; an example is shown in Fig. 1, and later in Figs. 6, 7, 8, 11.

2 Previous Work

Our method builds on Monte Carlo ray and path tracing, introduced
in seminal papers of Cook [1984] and Kajiya [1986]; these are still
usually regarded as the gold standards for physically accurate ren-
dering; we leverage their accuracy, while achieving interactivity.

Interactive Global Illumination: A number of brute-force
and approximate methods exist for interactive global illumina-
tion [Ritschel et al. 2012], but do not usually guarantee physi-
cal accuracy or convergence. These include interactive raytrac-
ing [Wald et al. 2002; Wald et al. 2007]; we use the fast GPU
raytracer in NVIDIA’s Optix, but focus on reducing sample count
and filtering. Our approach is orthogonal to GPU raytracer accel-
erations [van Antwerpen 2011]. Another method is approximate
voxel-based cone tracing [Crassin et al. 2011] on the GPU. Point-
based approaches include micro-rendering [Ritschel et al. 2009].
[Wang et al. 2009] (with refinements in [Maletz and Wang 2011])
raytrace shading points and partition them into coherent shading
clusters using adaptive seeding followed by k-means, and then ap-
ply final gather to evaluate the irradiance using GPU-based photon
mapping. In contrast, we sample every pixel using Monte Carlo.

Precomputation: Precomputation-based methods [Sloan et al.
2002] can be used for indirect illumination [Hasan et al. 2006] in
relighting static scenes. Our approach does not require precompu-
tation, and can be used with dynamic geometry.

Adaptive Sampling: Irradiance caching (IC) and gradi-
ents [Ward et al. 1988; Ward and Heckbert 1992] attempt to ex-

trapolate irradiance on diffuse surfaces from neighboring pixels,
tracing a pixel only if the error is high. An extension to general
low-frequency radiance is given by [Krivanek et al. 2005]. [Guo
1998] provides a more general adaptive sampling heuristic.

Note that IC is used to determine where to put caches, not to com-
pute a sampling rate, and is not an interactive technique. Some
IC heuristics approximate our results, but our bandlimits are based
on fundamental Fourier analysis. Closer to our approach, [Kontka-
nen et al. 2004] use the harmonic mean of occluder distances as a
heuristic to set a filter width at each pixel, and use the total filter
weight around each pixel to estimate its sampling rate. Like IC,
they do not guarantee convergence either. In contrast, our adap-
tive filtering and sampling follows directly from the novel Fourier
analysis derivations. We also do not require their 3D tree of pixel
locations to search for potential contributing pixels at each point.
Avoiding this search, and providing a simple gaussian filter, dra-
matically reduces overhead and enables interactivity.

Adaptive Filtering: Recently, several adaptive filtering and re-
construction methods have been proposed, but they are all designed
for offline use. Building on [Hachisuka et al. 2008; Overbeck et al.
2009], Lehtinen et al. [2011; 2012] demonstrate GPU-accelerated
reconstruction for temporal effects and indirect light fields, but their
methods take several minutes. Similarly, we are inspired by re-
cent work on iterative filtering of [Sen and Darabi 2012], and the
anisotropic statistical filtering of [Li et al. 2012] and [Rouselle et al.
2012], as well as simple image denoising in graphics [Rushmeier
and Ward 1994; McCool 1999]. But these are all offline methods,
which enables more complex filtering and adaptive sampling.

In contrast, past work on fast global illumination has involved sim-
ple depth-space heuristic filters [Shirley et al. 2011], edge-avoiding
wavelets [Dammertz et al. 2010], or filtering secondary scene at-
tributes [Bauszat et al. 2011]. We differ in using frequency analysis
to develop a spatially-varying image-space gaussian filter.

Frequency Analysis: We are inspired by Chai et al. [2000]
and Durand et al. [2005], who introduce the basic space-angle and
pixel-light Fourier theory on which we build, as do many previous
works in this area [Egan et al. 2009; Soler et al. 2009; Egan et al.
2011a; Egan et al. 2011b; Belcour et al. 2013]. We build most di-
rectly on the axis-aligned filtering approach of [Mehta et al. 2012],
which reduces to simple 2D image-space filtering rather than irreg-
ular reconstruction from the 4D light field, and can therefore be im-
plemented very efficiently, with minimal time or memory overhead.
We extend it non-trivially from soft shadows to global illumination,
where there is no single light source, and we consider non-parallel
geometry of receivers and reflectors as well as glossy receivers.

3 Fourier Analysis of Indirect Illumination

In this section, we perform a Fourier analysis of the indirect il-
lumination light field (the incoming light from other objects, as a
function of spatial location and incident angle). We assume that
the direct lighting is computed separately, and focus on the global
component, using the geometry in Fig. 2(a). We derive the wedge
shape of the Fourier spectrum (Figs. 3b,c), which allows us (Sec. 4)
to apply a suitable axis-aligned filter, with adaptive sampling rates.

We first consider a receiver, which is the surface seen at a pixel, il-
luminated by a reflector, which is the nearest surface in a particular
direction. We will later see that the theory extends naturally to mul-
tiple reflectors at a range of distances and orientations. In essence,
we are considering final gather, which adds up the full indirect light
(including multiple bounces) from reflectors.

Indirect bounces of light will generally be lower frequency, since
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Figure 2: (a) The (x, v) parameterization for the indirect illumi-
nation light field, and associated notation. (b) Showing how the
indirect illumination is reflected towards the camera.

the BRDF acts as a low-pass filter at each bounce. This dif-
fuse property of global illumination has been exploited in previous
works [Nayar et al. 2006; Ben-Artzi et al. 2008]. We also utilize
it in our theory, letting the receiver have a general BRDF, but as-
suming reflected light from the reflector is diffuse—we set filter
sizes and sampling rates based on this analysis. The practical algo-
rithm always uses radiance values from accurate path tracing and
converges in the limit (but may slightly under or over-blur for non-
diffuse indirect light with fewer samples, as in Fig. 9). Our results
show we can handle diffuse and moderately glossy objects (Fig. 8).

We first derive the equations in flatland or 2D, using the (x, v) light
field parameterization, as in [Durand et al. 2005], and then show the
extension of bandlimits to 3D in Sec. 4. x is measured along the lo-
cal plane of the receiver (globally, the receiver could of course be
curved, as could the reflectors) and v is measured on a plane parallel
to the receiver plane, and a unit distance from it. We make minimal
assumptions on spatial properties of the global illumination; reflec-
tors (and receivers) could have complex textures or high-frequency
lighting. As we will see, the shape of the Fourier spectrum is de-
termined by key features of the geometry and incoming light. The
distance(s) of the reflector will determine the slope (or range of
slopes) of the indirect light field. The BRDF of the receiver, and the
parameterization, determine bandlimits of the Fourier spectrum.

3.1 Indirect Light from the Reflector

We first consider the indirect light from the reflector, and then show
how this is integrated for global illumination at the receiver.

Assume the reflector slope is s relative to the receiver, as shown in
Fig. 2a. We parameterize the indirect light field as Li(x, v) for a re-
ceiver point x in a direction v. Similarly, we parameterize a reflec-
tor point by x′, so that its coordinates are (x′, z′) = (x′, z0 + sx′),
where z0 is the intercept of the reflector line at x′ = 0. The
reflected light is then given by Lr(x

′)—this can include high-
frequency illumination, multiple bounces, and texture on the reflec-
tor, but has no directional information; we focus on diffuse inter-
reflections. However, the receiver can be glossy as discussed later
in Sec. 3.3. The reflector lies between (x1, z1) and (x2, z2), so that
Lr(x

′) = 0 unless x1 ≤ x′ ≤ x2.

For a receiver point x in a direction v, the reflecting point is given
by x′ = x + zv, where z is the distance perpendicular to the
receiver, as shown in Fig. 2(a). Simple geometry1 dictates that

1These relations do not apply when x1 = x2, so that s = ∞. Parame-
terizing Lr by z instead of x′ in that case will lead to a similar result.

z = z0 + sx′ from which it follows that

z = z0 + s(x+ zv) ⇒ z =
z0 + sx

1− sv

x′ = x+ zv ⇒ x′ =
x+ z0v

1− sv
, (1)

which implies that the indirect light field Li(x, v) = Lr(x
′) is

Li(x, v) = Lr

(
x+ z0v

1− sv

)
. (2)

This is a simple relation of the indirect light field to the outgoing
reflected light. In the special case that s = 0, when receiver and
reflector are parallel, it reduces to Li(x, v) = Lr(x+ z0v). In that
case, the 2D indirect light field Li is the 1D reflected or outgoing
light Lr, sheared by an amount proportional to the distance z0 of the
reflecting surface. This first-order simplification is analogous to the
free space light propagation discussed in [Durand et al. 2005], and
also mathematically similar to the relation for the visibility function
in [Egan et al. 2011a]. Note however that there is no “visibility”
term in our case; rather we are considering the indirect illumination
field. There is also no separate lighting term, as there is for shad-
ows. In essence, we consider the rendering equation, rather than the
reflection equation, and integrate over the reflector surface. More-
over, we generalize many previous light field analyses, in explicitly
considering a general slope s for the reflector, which leads to the
more general rational form above (with denominator of 1− sv).

3.2 Fourier Spectrum of Incident Light Field

We now conduct a frequency-space analysis.2 We denote Fourier
domain quantities with a hat, and arguments using Ω, and with the
symbol j =

√
−1. Equation 2 now becomes

L̂i(Ωx,Ωv) =

∫ ∞

−∞

∫ ∞

−∞
Lr

(
x+ z0v

1− sv

)
e−j(xΩx+vΩv) dx dv. (3)

We first do the integral along x to compute the partial Fourier trans-
form (denoted with a tilde on top). If v is held fixed, the argument
to Lr is simply a scale and shift of x, with the Fourier transform
being given by standard Fourier scale3 and shift theorems,

L̃i(Ωx, v) = ejz0vΩx (1− sv)L̂r [(1− sv)Ωx] (4)

L̂i(Ωx,Ωv) =

∫
e−jv(Ωv−z0Ωx)(1− sv)L̂r [(1− sv)Ωx] dv.

First, consider the special case of a parallel reflector with s = 0.
In this case, L̂r(Ωx) comes out of the integral, which reduces to
a delta function with L̂i(Ωx,Ωv) = L̂r(Ωx)δ(Ωv − z0Ωx). The
Fourier spectrum is compact, essentially given by a shear of L̂r, and
restricted to the line Ωv = z0Ωx (Fig. 3a). This has the same math-
ematical form as the visibility function in [Egan et al. 2011a; Mehta
et al. 2012]. In those works, they address a range of depths simply
by extending the frequency spectrum to a double wedge bounded by
minimum and maximum depths. However, that extension is heuris-
tic and not formally justified. Equation 4 is more general, explicitly
considering a general sloped reflector; we proceed to formally de-
rive the wedge spectrum in this case. We also explicitly consider
the finite extent of the reflector, thereby treating (dis)occlusion (di-
rections where there is no indirect light).

2For readability, we omit numerical constant factors to normalize the
Fourier transforms, that do not affect the insights or the final results.

3Technically, the Fourier scale theorem requires the multiplicative factor
| 1− sv |. Since the reflector has finite extent and is in front of the receiver
to reflect on to it, we take the positive sign without loss of generality.
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Figure 3: (a) Spectrum of the indirect light field for a diffuse reflector at a single depth z0 is a line, (b) Spectrum of the indirect light field for a
diffuse reflector in the depth range [z1, z2] is a double wedge. Because of discontinuities (high derivatives) at reflector end-points, significant
energy is concentrated at extreme slopes z1 and z2. (c) shows a schematic of the double wedge and our axis-aligned filter determined by the
BRDF/transfer bandlimit Ωmax

h (d) Power spectral density of our flatland diffuse receiver transfer function hd. Ωmax
h = 2.0 captures 95%

energy and (e) the same PSD in 3D, where we need a slightly higher bandlimit of 2.8 (the blue box) to capture the same fraction.

In equation 4, we make the substitutions u = (1 − sv)Ωx so that
v = (1− u/Ωx)/s and dv = −du/(sΩx) so that,

L̂i(Ωx,Ωv) =

∫
e−j(Ωv−z0Ωx)(1−u/Ωx)/s uL̂r(u)

−du

sΩ2
x

(5)

=
− exp[−j(Ωv − z0Ωx)/s]

sΩ2
x

∫
uL̂r(u)e

ju(Ωv−z0Ωx)/(sΩx) du.

The integral is now simply the inverse Fourier transform of uL̂r(u),
evaluated at (Ωv − z0Ωx)/(sΩx). Recall the Fourier transform of
the derivative L′

r is L̂′
r(u) = juL̂r(u), so that,

L̂i(Ωx,Ωv) =
j exp[−j(Ωv − z0Ωx)/s]

sΩ2
x

L′
r

(
Ωv − z0Ωx

sΩx

)
.

(6)

This is a general result, with the Fourier transform of the indirect
light field expressed in terms of the (derivative of) spatial content of
the reflected light, and evaluated at a sheared and scaled argument.
The first term is simply a phase offset and an Ω−2

x falloff. The
second term is more interesting. Since Lr(x) only takes non zero
values for x1 ≤ x ≤ x2 (the extent of the reflector), the same holds
for L′

r(x). Then, L̂r(Ωx,Ωv) takes non-zero values only when4

x1 ≤ Ωv − z0Ωx

sΩx
≤ x2 ⇒ (z0+sx1)Ωx ≤ Ωv ≤ (z0+sx2)Ωx.

(7)
By definition z0 + sx1 = z1 and z0 + sx2 = z2. Therefore,

z1Ωx ≤ Ωv ≤ z2Ωx. (8)

In other words, the frequency spectrum lies in a double wedge, with
slopes z1 and z2 bounded by the minimum and maximum depths
of the reflector, as shown in Fig. 3(b). (Note also the significant
energy at the extreme slopes z1 and z2, since the derivative L′

r in
equation 6 is large at the end-points of the reflector).

For the special case of a parallel reflector (s = 0), we have that
z1 = z2 = z0, and the spectrum is restricted to the single line
Ωv = z0Ωx, as shown in Fig. 3(a). By taking the limit of s → 0 in
equation 6, one can derive5 L̂i(Ωx,Ωv) = L̂r(Ωx)δ(Ωv − z0Ωx).

4The inequalities hold for s > 0. For s < 0, we must reverse the
inequalities, but the same formula for the wedge in equation 8 is obtained
as long as we adopt the convention that z1 < z2.

5Clearly, as s → 0, the L′
r term becomes a delta function of the

Finally, for multiple reflectors, we combine the spectra for indi-
vidual reflectors6, and use the double wedge bounded by the min-
imum and maximum depths of all reflectors, a schematic of which
is shown in Fig. 3(c). Figure 4(c) verifies this numerically for a
flatland scene with multiple reflectors that also occlude each other.

3.3 Outgoing Light from the Receiver

We now consider the actual image, corresponding to the outgoing
light after it is reflected from the receiver. Let f(v, vc) be the re-
ceiver’s BRDF. We do not explicitly consider texture in this section,
which will simply modulate the reflected light. The reflected outgo-
ing radiance towards camera c from x can be written (see Fig. 2(b)):

Lo(x, vc(x)) =

∫
H2

Li(x, v) f(v, vc) cos θi dω. (9)

In flatland, cos θidω = (1 + v2)−3/2 dv, as is derived in [Durand
et al. 2005] and elsewhere (from Fig. 2, cos θi = 1/

√
1 + v2 and

flatland ‘solid angle’ dω = dv cos θi/
√
1 + v2). Hence,

Lo(x) =

∫ ∞

−∞
Li(x, v)h(v, vc)dv (10)

h(v, vc) =
f(v, vc)

(1 + v2)3/2
. (11)

Here we have combined the BRDF, the cosine and the solid angle
terms into a single transfer function h. The 3D extension of these
results is straightforward, and discussed briefly in Sec. 4.2; we will
see that we can use almost the same band-limits as derived from the
flatland analysis. For a diffuse receiver with coefficient kd,

hd(v) = kd
1

(1 + v2)
3
2

. (12)

form δ(Ωv − z0Ωx). To find the multiplier, by definition of the delta
function, we must integrate equation 6 over Ωv . First, substitute that
w = (Ωv − z0Ωx)/(sΩx) with dΩv = sΩxdw. Then, we simply want∫
(j exp[−jwΩx]Ω

−1
x )L′

r(w) dw. Simply integrating by parts, this re-
duces to

∫
Lr(w) exp[−jwΩx] dw which is simply the Fourier transform

L̂(Ωx). Thus, as s → 0, L̂i(Ωx,Ωv) = L̂(Ωx)δ(Ωv − z0Ωx).
6As in most previous work on light field filtering [Chai et al. 2000; Egan

et al. 2011b; Egan et al. 2011a; Mehta et al. 2012], the spectra do not strictly
combine because of occlusion between different reflectors, and there can
be some leakage outside the wedge for the multiple reflector case. As in
previous work, the extent of leakage is empirically small and we neglect it.
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Fourier transform of Lo obtained by integrating (d) corresponding to equation 14; the red bars mark our spatial domain filter.

An analytic formula for the Fourier transform of hd is known in
terms of Bessel functions, and is plotted in Fig. 3(d).

Now, consider a receiver Blinn-Phong BRDF (with exponent m and
specular coefficient ks). The half-angle is (tan−1 v+tan−1 vc)/2,

hs(v, vc) = ks
cosm

(
1
2

[
tan−1 v + tan−1 vc

])
(1 + v2)

3
2

. (13)

In summary, Sec. 3 has analyzed the indirect light field in both the
primal and Fourier domain. A key result is in formally deriving the
wedge spectrum for an arbitrarily oriented reflector. This result is
mathematically similar to (but more general than) previous analyses
of spectra for soft shadows [Egan et al. 2011a; Egan et al. 2011b;
Mehta et al. 2012]. Our derivation is more accurate, applying to
general configurations of reflector and receiver. Moreover, there is
no single light source per se, unlike shadows. In Sec. 4, we build
on these results to develop the Fourier space bandlimits and filters
for the transfer function, and to select the adaptive sampling rates.

4 Axis-Aligned Filtering

We now develop the bandwidths for an axis-aligned filter (which
reduces to image-space blurring) in a fashion similar to [Mehta et al.
2012]. Our filter in the Fourier domain is shown in Fig. 3(c).

We first write the Fourier equivalent of equation 10, which is simply
a frequency domain integral for L̂o, the spectrum of outgoing light:

L̂o(Ωx) =

∫
L̂i(Ωx,Ωv)ĥ(−Ωv) dΩv, (14)

where we keep the camera direction vc argument in h and ĥ implicit
(or alternatively, since vc(x) is a function only of the spatial pixel
x, we can include it in the BRDF term).

4.1 Fourier and Spatial Reconstruction Filter

In the expression above, the transfer function ĥ (which includes the
BRDF and geometry terms) acts as a low-pass band-limiting filter
on the indirect illumination light field. It plays much the same role
as the low-frequency lighting in [Egan et al. 2011a] or the area light
width in [Mehta et al. 2012]. However, note the different represen-
tation that is necessary, compared to those papers. In essence, our
indirect illumination field Li is analogous to their visibility term,
while our BRDF and geometry term is analogous to their illumina-
tion. Also note that we do not need to explicitly consider visibility.

Of course, there will be directions where no reflector is present and
we receive no indirect light contribution; indeed, our Fourier spec-
trum derivation in Sec. 3.2 explicitly handles finite extent reflectors.

Consider the frequency bandlimits from equation 14. Assume ĥ has
a frequency bandlimit Ωmax

h . Then, frequencies in L̂i higher than
this value in Ωv need not be considered during integration. This in
turn induces a limit on the maximum spatial frequency of L̂o, as
seen in Fig. 3(c). The width of our reconstruction filter Ωr

x is:

Ωr
x = µ ·min

{
Ωmax

h

zmin
,Ωmax

x

}
, (15)

where µ is a scale factor (for now µ = 1) that enables over-
sampling and convergence, as discussed in Sec. 4.3, zmin is the
minimum world-space distance to any reflector, and Ωmax

x is the
maximum spatial frequency that is always a limit (even if zmin is
small). Similar to previous work, we define Ωmax

pix as the maximum
frequency in pixel space, with Ωmax

x = αΩmax
pix = αd−1, where d

is the projected distance per pixel7 and 0 < α < 1 is a constant.
We use α = 0.3 in most of our renderings.

We integrate over the v dimension (or in Fourier space Ωv). There-
fore, axis-aligned filtering of the indirect light field in x-v space
reduces to a spatial filter over the noisy indirect illumination, which
is effectively a screen-space filter. In other words, we first compute
the standard noisy Monte Carlo global illumination result L̄o(x)
using relatively few samples to evaluate equation 10. We then filter,

Lo(x) =

∫
N (x− y;β) L̄o(y) dy, (16)

where N is the primal domain gaussian filter with standard devia-
tion β = 2/Ωr

x, since the Fourier space standard deviation is taken
to be 0.5 × Ωr

x (in practice, we use Gaussian filters in spatial and
frequency domains as in previous work, instead of sincs or boxes).

4.2 Bandlimit of the Transfer Function

The remaining question is to find the numerical bandlimit Ωmax
h for

the transfer function. In these calculations, we can ignore the dif-
fuse and specular coefficients kd and ks. For a Lambertian receiver,
given by equation 12, Fig. 3(d) shows the power spectral density
(PSD) of the transfer function, |ĥd(Ωv)|2. Ωmax

h = 2.0 captures

7The lateral size in terms of actual distance that pixel covers. This term
also naturally accounts for perspective effects and foreshortening.



Ωx
*

Ωv
*

Ωx Ωx
r max

Ωh
max

zmaxΩx
r

0.8 1.0 1.2 1.4 1.6 1.80

100

200

300
zmax
zmin

2

4
{

nmin= 80

nmin= 29

Filter scaling µ

n
Figure 5: (a) Compact packing of spectra of the indirect light field
in the Fourier domain. Ω∗

x and Ω∗
v are the minimum sampling rates.

(b) the per-pixel minimum sampling rate vs. fourier-space filter
scaling µ (image space filter size is inversely proportional to µ) for
two different occluder depth ranges.

95% of the energy in ĥ. Moreover, as shown in Fig. 4(d,e), we see
that Ωmax

h = 2.0 is usually sufficient to capture approximately 99%

energy in L̂o since L̂i also usually decays with frequency.

For the 3D case (4D light field), the transfer function depends on
the v = (v1, v2) coordinates, and we denote this 3D extension as
H(v,vc). We still have cos θi = 1/

√
1 + v · v and the solid angle

is given by dω = dv1 dv2 cos θi/(1 + v21 + v22). Therefore,

H(v,vc) =
f(v1, v2, vc1 , vc2)

(1 + v21 + v22)
2

. (17)

Note that our final filter is only along the x dimension, and the PSD
of H is symmetric in Ωv1 and Ωv2 . Figure 3(e) shows the PSD
for the diffuse transfer function—we can use a bandlimit slightly
higher than the flatland case, Ωmax

h = 2.8, to capture 95% energy.

For the Blinn-Phong BRDF, the bandlimit Ωmax
h depends on vc

and the exponent m. There is no closed form analytic expression
for the Fourier transform, but we can still obtain a simple numerical
linear fit between the exponent m and the band-limit for moderately
glossy BRDFs, as discussed in the Appendix for the 3D case. In
summary, we use the numerical values,

Ωmax
h,d = 2.8 Ωmax

h,s (m) = 3.6 + 0.084m. (18)

The appendix also gives bandlimits for the Phong BRDF.

4.3 Adaptive Sampling Rates

Discrete sampling of a continuous signal (here, the indirect light
field) can cause aliasing if the sampling rate is not sufficient, even
if we subsequently use the proper axis-aligned reconstruction filter.
The minimum sampling rate is that which just prevents adjacent
copies of spectra from overlapping. As in [Mehta et al. 2012], the
most compact packing is that shown in Fig. 5(a), and the minimum
sampling rates in the Ωx and Ωv axes are:

Ω∗
x = Ωr

x +Ωmax
x =

Ωmax
h

zmin
+ αΩmax

pix (19)

Ω∗
v = Ωmax

h + zmaxΩ
r
x = Ωmax

h

(
1 +

zmax

zmin

)
.

The per-pixel sampling rate is then given as:

n =
[
(Ω∗

x)
2 ×Ap

]
×
[
(Ω∗

v)
2]

=

(
Ωmax

h

√
Ap

zmin
+ α

)2

× (Ωmax
h )2

(
1 +

zmax

zmin

)2

,(20)

where Ap is the spatial area in world-space subtended by a pixel
Ap = d2, with

√
ApΩ

max
pix = 1.

As in [Mehta et al. 2012], we can also increase the sampling rate
beyond the minimum required, and simultaneously reduce the filter
size, so that our algorithm converges to Monte Carlo ground truth
in the limit. In the Fourier domain, we increase the filter size by a
factor of µ > 1, such that Ωr

x = µΩr
x0, where Ωr

x0 is the critical
size given by equation 15. Then, the sampling rate increases to

n(µ) = γ ·

(
µΩmax

h

√
Ap

zmin
+ α

)2

× (Ωmax
h )2

(
1 + µ

zmax

zmin

)2

,

(21)
where γ is a scaling factor for importance sampling discussed
shortly. We can also use equation 21 with µ < 1; in practice, we
find µ = 0.9 adequate in most cases. Figure 5(b) shows how the
effective samples per pixel vary with µ.

Importance Sampling Adjustment: The theory is derived as-
suming uniform angular sampling. In rendering, more efficient im-
portance sampling is used, where samples in the important regions
are already closer together. This enables us to adjust γ < 1 in equa-
tion 21 for lower sampling rates, where γ depends on the receiver
BRDF. For the diffuse cosine lobe, the incident angle may vary in
[0, π/2] but about 80% of energy is in [0, π/4], enabling γ ≈ 1/2.
In practice, we use γ = 0.4, which we find provides adequate
quality with lower sampling counts. For the specular lobe, setting
c = cos(π/4) = 1/

√
2, about 80% of energy is concentrated in the

range [0, cos−1(c1/m)], and so we set γ = cos−1(c1/m)/(π/2).
For Blinn-Phong exponent m = 20, this sets γ = 0.11.

5 Implementation

Given our derivation, the final implementation is simple. Our code
uses the NVIDIA OptiX real-time raytracing framework [Parker
et al. 2010] on a GTX 690 GPU. We only need to implement a
simple extension for multi-bounce path tracing where desired, as
well as the core of our adaptive sampling and filtering passes in the
OptiX GPU framework. Our method runs entirely on the GPU in
three passes, as described below:

Initial Raytracing for Filter Sizes and Adaptive Sampling:
We first trace 16 stratified rays over the visible hemisphere from
each pixel/shading point, to compute the per-pixel zmin and zmax,
which are simply min/max world-space distances to geometry (re-
flectors).8 Example outputs are shown in Fig. 6(f). Direct lighting
is also computed in the standard way in this pass (for this paper,
we used a single point light source in all examples), and we create
buffers for pixel kd and ks values so we can separate textures from
radiance computation. We then use zmin and zmax to compute the
filter sizes and sampling rates according to equations 15 and 21 re-
spectively, separately for the diffuse and glossy components of the
pixel. We use µ = 0.9 and α = 0.3, with γ set as discussed earlier.

For efficiency, we also use radiance values from the initial 16 sam-
ples, so we actually only need n − 16 samples in the second pass.
Finally, we clamp the maximum sampling rate (the minimum must

8As in most adaptive sampling approaches, using only 16 initial rays can
give noisy or incomplete estimates of zmin and zmax, but we never visual-
ize them directly, and only use these to set filter sizes and sampling rates.
As seen in our results, we found the final images to be high quality, with
any additional accuracy not worth the cost of more rays. We also tried filter-
ing the z estimates, but found this actually worsened image quality/speed,
leading to overly conservative or aggressive sampling rates and filter sizes.



(a) 1-bounce indirect illumination,
60 spp

(b) Equal Time
64 spp

(c) Our Method (d) Equal Error
440 spp

(e) Gr. Truth
1024 spp

(f) (g)

Figure 6: (a) The diffuse Conference scene with 331K triangles is rendered at 3 fps with our method and 60spp, using 1-bounce of indirect
illumination. Insets show (b) Equal time uniform MC at 64 spp is still very noisy, (c) our method compared to (d) equal error uniform MC at
440 spp and (e) ground truth at 1024 spp; (f) minimum and maximum reflector distances zmin, zmax (g) screen-space filter radius in pixels,
and per pixel sampling rates. Our algorithm obtains accurate results 7× faster that basic path tracing.

(a) 3-bounce indirect, 56 spp (b) Our Method,
56 spp

(c) Equal error,
298 spp

Figure 7: A Cornell Box scene (a) 3-bounce Indirect illumination,
our method using an average 56 spp; insets showing (b) our method
compared, to equal error (c) at 298 spp, a 5× speedup.

already be at least 16 because of initial sampling). We use a max-
imum of 100 samples, scaled up when µ > 1, i.e., 100µ. Corre-
spondingly, we also clamp the minimum zmin to about 2% of max-
imum scene dimension, since a zmin = 0 implies no filtering and
leaves corners and edges (such as wall intersections) noisy.

We visualize the resulting sampling rates and filter widths in
Figs. 1(b) and 6(g). It is clear that smaller filter sizes and higher
sampling rates are used for close-by geometry, while regions with
further reflectors, such as the floor in Fig. 1, can use lower sampling
rates and wider filters.

Path Tracing: We use OptiX to (stratified and importance) sam-
ple each pixel’s hemisphere with the adaptive sampling rates. If
more than one bounce is desired, we use standard path tracing for
higher bounces. We compute the incoming radiance values and
multiply with the BRDF (excluding textures). This gives a noisy
estimate L̄o at each pixel, as shown in Fig. 1(c). Notice that adap-
tive sampling ensures almost accurate results in high-complexity
areas, such as the bottom of the curtain (right of second inset),
while showing considerable noise (many fewer samples) on the
floor. This is as desired with sampling optimized for filtering; larger
filter widths on the floor ensure an accurate final image (Fig. 1(e)).

Screen-Space Filtering: In the final pass, we actually do Gaus-
sian filtering on L̄o, using the spatial filter (equation 16). As

in [Mehta et al. 2012] we use a 2D screen-space filter, with a depth
buffer giving the world-space coordinates and distances required.
Moreover, we perform the standard separation of the Gaussian fil-
ter into two 1D filters along the image dimensions for efficiency.9

Finally, we modulate filtered radiance by the textures for kd and ks.

In summary, the method consists of path-tracing (the core opti-
mized OptiX raytracer), coupled with initial estimates to set filter
sizes, adjust sampling rates, and do screen-space filtering. The lat-
ter steps are simple to implement and extremely fast. Overhead
is minimal compared to Optix (Table 1), and we achieve interac-
tive speeds of 1-3 frames per second, often with nearly an order of
magnitude fewer samples than basic GPU path tracing.

6 Results

We show results of interactive global illumination on five scenes in
Figs. 1, 6, 7, 8 and 11. The accompanying video shows animations
and screen captures with moving light source, viewpoint and ex-
amples of dynamic geometry (no precomputation is required; each
frame is rendered independently). To focus on the global compo-
nent, all paper images show indirect light only; direct illumination
is added separately in the first step (initial raytracing in Sec. 5).
Visual Fidelity and Speedups: Our method is accurate in a
range of different scenarios, with consistent reductions in sample
counts over basic path tracing. Figure 1 shows an example of
the Sponza scene (262K triangles) with 1-bounce diffuse indirect
illumination (surfaces are Lambertian) and textures. Our image
(Fig. 1a,e) is accurate with 63 average samples per pixel. Equal
error with stratified Monte Carlo is only achieved for 324 samples,
and is visually still noisy. Our method adds minimal overhead, so
this is a speedup of 5×. Figure 6 shows similar results for the dif-
fuse conference scene with 331K triangles. Our method requires
only 60 samples per pixel. The overhead is minimal, with equal
time Monte Carlo being only 64 samples. Equal error (still noisy) is
only obtained for 440 samples, a speedup of about 7×. We demon-
strate the extension to multi-bounce diffuse indirect illumination by
path tracing in Fig. 7. Note the curved surfaces of the dragon, and
complex structures on the elephant’s trunk in the insets, that our
method renders accurately at 56 samples per pixel (close examina-
tion will show a slight overblur on the trunk).

9As in [Mehta et al. 2012], this separation is strictly accurate only if the
gaussian width β is the same across all pixels in the filter but in practice we
find almost no noticeable difference, since β usually varies slowly.



(a) 2-bounce indirect, 85 spp (b) our method (c) ground truth (d) 2-bounce indirect, 86 spp (e) Our method (f) ground truth

Figure 8: (a) 2-bounce indirect illumination on a Cornell Box scene with glossy vase and teapots (m = 12), with average 85 spp. A close
comparison to ground truth is shown in (b) and (c); in (d) we show 2-bounce indirect illumination on the Sibenik Cathedral scene, with a
glossy textured floor and red carpet (m = 20), with average 86 spp. Insets in (e) and (f) show the accuracy of our filtering on glossy receivers.

(a) Our Method, 86 spp (b) Ground Truth (c) Our method, 226 spp

Figure 9: Evaluating the theoretical approximation of diffuse indi-
rect light. (a) Shows over-blurring (and hence darkening) of glossy-
to-diffuse and glossy-to-glossy in an inset from the Sibenik Cathe-
dral scene, when using µ = 1 at 86 spp. However, we match ground
truth (b) closely using µ = 2 at 226 spp, shown in (c).

Figure 8 shows that we can handle moderately glossy receivers for
a modified Cornell box (vase and teapots are glossy with Blinn-
Phong exponent 12), and for the Sibenik scene with textures and
75K triangles (floor and red carpet have Blinn-Phong exponent 20).
Nevertheless, the method matches accurately, capturing the glossy
reflections, and color-bleeding near edges. Again, a speedup of
about 5× is achieved, over simply using path-tracing in OptiX.

Figure 9 evaluates our use of the “diffuse interreflection” approx-
imation to set sampling rates in Sec. 3, which does not fully con-
sider high frequencies in glossy-to-diffuse or glossy-to-glossy in-
teractions (however, receiver glossiness is fully handled as noted
above). While our filter sizes depend on this approximation, note
that our method operates on accurate path tracing input, and will
therefore always converge in the limit with more samples. In Fig. 9
we see that we slightly overblur (and hence darken) for µ = 1, but
glossy-to-diffuse transfer is almost fully accurate for µ = 2.

Quantitative Accuracy: We also evaluated our method quan-
titatively in Fig. 10, showing RMS errors vs average number of
samples for the conference scene from Fig. 6. The error of our
method (blue curve) is significantly below stratified Monte Carlo at
all sample counts. Moreover, even just using filtering on uniform
sampling (green curve) gives a substantial improvement. Note that
our method is physically-based and consistent. As we increase the
number of samples (higher µ), we do converge to ground truth and
error decreases (also shown visually in insets), This is in contrast to
most other solutions for fast, approximate global illumination.
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Figure 10: (a) Shows a log-log plot of the RMS pixel error vs aver-
age sampling rate for the Conference scene of Fig. 6. In (b) we show
insets from the conference scene (showing error relative to ground
truth magnified 10×). It can be seen that our method converges to
ground truth both numerically and visually with more samples.

Timings and Overhead: In table 1, we show timings for steps
of our algorithm on different scenes, rendered at a resolution of
640 × 480. We obtain most of the benefits of axis-aligned filter-
ing, first shown in the soft shadow work of [Mehta et al. 2012],
even though our algorithm is somewhat more complex (involving
additional texture buffers, and passes to handle diffuse and specu-
lar components). The total overhead in a frame is about 60-70 ms,
which is small compared to the cost of OptiX path tracing, and re-
sults in only a marginal decrease in the performance of the real-time
raytracer. Note that additional bounces in path tracing do cause a
slowdown in the Optix raytracer, essentially linear in the number of
bounces as expected, but do not affect our algorithm.

Note that our filter operates only in image-space and therefore has
limited memory requirements (buffers for the noisy image, depth,
and textures). We achieve a sample count reduction and speedup
of 5 − 8× on most scenes, with interactive frame rates of 1 − 3
fps. Note that we are limited only by the speed of the real-time ray-
tracer, and using further GPU raytracing accelerations would pro-
vide further speedups. To our knowledge, this is one of the first



Optix Ray/Path tracing Our algorithm Total
scene triangles avg.

spp
num.
bounces

1st pass
(ms)

2nd pass
(ms)

total
(ms)

compute
spp (ms)

adaptive
filtering (ms)

total
overhead (ms)

total time
(ms)

fps (with/
without alg)

Sponza (Fig. 1) 262 K 63 1 181 580 761 10 55 65 826 1.21 / 1.31
Conference (Fig. 6) 331 K 60 1 87 274 361 9 46 55 416 2.40 / 2.77
Cor. Box (Fig. 7) 145 K 56 1 70 291 361 9 63 72 433 2.31 / 2.77

2 70 802 872 10 62 72 944 1.06 / 1.14
3 72 1423 1495 10 64 74 1569 0.63 / 0.67

Sibenik (Fig. 8d) 75 K 86 1 110 440 550 10 50 60 610 1.64 / 1.82
2 108 1402 1510 12 52 64 1574 0.64 / 0.67

Cor. Box (Fig. 11) 16.7 K 59 1 70 248 318 12 49 61 379 2.64 / 3.14
2 68 622 690 10 57 67 757 1.32 / 1.44

Table 1: Timings of our scenes rendered at 640× 480. Our filtering overhead is small compared to the sampling time, and our impact on the
fps is small.

(a) 1-bounce indirect, 59 spp (b) 59 spp
unfilt., 0.32 sec

(c) our method,
0.38 sec

(d) Equal error
361 spp, 2 sec

(e) IPP,
1 sec

(f) BM3D,
5 sec

(g) gr. truth
1024 spp, 6 sec

Figure 11: A Cornell Box scene (a) 1-bounce indirect illumination, our method using an average 59 spp at 2.7 fps; insets showing (b) our
method unfiltered, (c) our method, filtered, (d) Equal error image with uniform MC 361 spp, (e) Importance Point Projection (IPP, arrows
show high frequency details are lost and some regions are over-darkened) (f) Image denoising (BM3D, arrows show blurred geometry edges
and artifacts due to noise in input) (g) Reference image with 1024 spp.

demonstrations of accurate interactive global illumination, based on
principled Monte Carlo sampling. Alternative methods, discussed
next, either sacrifice accuracy, or are offline, adding overheads of
seconds to minutes.

Comparisons: In Fig. 11, we include comparisons to two alter-
native approaches. First, Fig. 11(e) considers the importance point-
projection (IPP) method for global illumination ([Maletz and Wang
2011], building on [Wang et al. 2009]). We use the authors’ code on
their scene. Because only a few shading points are used, errors can
occur in regions of complex interreflections, especially near edges,
as shown the insets. Figure 11(f) compares to standard image de-
noising using a state of the art denoiser bm3d [Dabov et al. 2007];
this still takes a few seconds, and can overblur or underblur (re-
tain noise) in some regions, since it is not informed of the precise
filter size from our frequency analysis. Newer denoisers for render-
ing [Li et al. 2012; Rouselle et al. 2012] have impressive results, but
often report render times in the minutes, as does the indirect light
field reconstruction approach of [Lehtinen et al. 2012]. Thus, pre-
vious approaches aim for high quality or high accuracy; we differ
in providing accurate results for interactive global illumination.

Extension—Ambient Occlusion: Our theory applies to any
outgoing function on the reflectors. If we simply set it to 1, then we
will directly compute the complement of ambient occlusion (rays
that hit a reflector return 1, rays that miss return 0). This is an ac-
curate interactive ambient occlusion calculation, several orders of
magnitude faster than [Egan et al. 2011a]. We show an example
result in Fig. 12, computed at interactive rates of 1-2 fps.

(a) Ambient Occlusion, 63 spp (b)

Figure 12: Ambient Occlusion on the Sponza scene using an aver-
age of 63 spp runs at 1.2 fps.

Limitations: As shown in our numerical simulations and real ex-
periments, the double wedge model is a good representation of the
Fourier spectrum for indirect illumination. However, highly curved
receivers and reflectors can lead to ‘leaking’ spectra outside theoret-
ical predictions. This is not usually a significant practical problem
(see accurate dragon and elephant insets in Fig. 7), and we also al-



leviate it in a number of ways. We implement a normal threshold
(set to 10◦), beyond which radiance values are not used in the filter-
ing. This avoids filtering across very different orientations.10 Our
axis-aligned filter is looser than previous sheared filters to capture
more of the spectrum leaks. And, we can always increase sample
count (and µ) to converge to ground truth.

Our average sample counts are low (∼ 60) for global illumination,
but still high enough to prevent fully real-time performance on com-
plex scenes. However, we are 1-3 orders of magnitude faster than
equally accurate Monte-Carlo based rendering methods, providing
interactive frame rates. Finally, the theory is limited to diffuse in-
terreflections on general BRDF receivers; in practice (Figs. 8, 9) it
works for Lambertian and moderately glossy receivers/reflectors.

7 Conclusions and Future Work

A large body of recent work has shown that physically-based sam-
pling followed by adaptive reconstruction, sharing samples between
pixels, can be effective at rendering complex effects like motion
blur, depth of field and soft shadows. However, the challenge of
accurate interactive global illumination has remained elusive. This
paper bridges that gap, presenting an interactive method for sam-
pled physically-based interreflections. We show how to map the
indirect illumination field into the double wedge Fourier spectrum
even for non-parallel reflectors and receivers, how to band-limit this
spectrum based on the BRDF and geometry (rather than lighting)
terms, and how to handle general Blinn-Phong receivers. We show
a variety of results with 1 to 3-bounce interreflections involving dif-
fuse and Phong surfaces rendered at 1-3 fps, and our method guar-
antees convergence as more Monte Carlo samples are added. While
we have focused on interreflections in this paper, similar ideas could
be applied in future to other global illumination effects like ani-
mated scenes, caustics, multiple specular transports, or Metropolis
sampling, filtering over path space. We believe the “sample and
denoise” paradigm to be quite powerful as a unifying approach to
achieve real-time physically-based global illumination.
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Figure 13: (a) Geometry for Phong and Blinn-Phong BRDFs in
our parameterization. (b) Our linear approximation for the transfer
function bandlimit Ωmax

h for Blinn-Phong and Phong BRDFs, as a
function of the exponent m, is a close match to the numerical data.
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A Appendix: Bandlimits for Glossy BRDFs

The 2D Blinn-Phong BRDF in the v parameterization was de-
scribed in equation 13. Here, we discuss the extension to 3D and
resulting bandlimit Ωmax

h . Referring to Fig. 13(a), the half vector
in the v plane is

vh =
lvc + lcv

l + lc
(22)

where l =
√

1 + v21 + v22 and lc =
√

1 + v2c1 + v2c2 . Then the 3D
Blinn-Phong transfer function is

Hs(v,vc) =
cosm θh

l4
=

1

l4(1 + v2h1
+ v2h2

)m/2
(23)

The Fourier transform of Hs will depend on the direction vc and
has no simple analytic form. However, since the choice of the
v1, v2 axes is arbitrary (and we never actually compute using this
parametrization), we simply use Ωmax

h as an upper bound on the
bandlimit of Hs for any value of vc (given fixed m). For 95% en-
ergy, we can plot a curve of Ωmax

h vs m, as shown in Fig. 13(b),
which can be fit with a simple linear approximation in the range
4 < m < 50,

Ωmax
h (m) = 3.6 + 0.084m. (24)

Similarly, in the Phong case, the angle of interest θr,c is between
the reflection direction (1,−v) and the camera direction (1,vc).
Hence, the 3D Phong transfer function is

Hs(v,vc) =
cosm θr,c

l4
=

(1− v1vc1 − v2vc2)
m

l4 lm lmc
(25)

The bandlimit now closely fits the approximation,

Ωmax
h (m) = 4.27 + 0.15m. (26)


