
Dynamic Splines with Constraintsfor AnimationRavi Ramamoorthi, Cindy Ball, Alan H. BarrCalifornia Institute of Technologyravir,cindy,barr@gg.caltech.eduAbstractIn this paper, we present a method for fast interpo-lation between animation keyframes that allows forautomatic computer-generated \improvement" of themotion. Our technique is closely related to conven-tional animation techniques, and can be used eas-ily in conjunction with them for fast improvementsof \rough" animations or for interpolation to allowsparser keyframing.We apply our technique to construction of splinesin quaternion space where we show 100-fold speed-upsover previous methods. We also discuss our experi-ences with animation of an articulated human-like �g-ure.Features of the method include:� Development of new subdivision techniquesbased on the Euler-Lagrange di�erential equa-tions for splines in quaternion space.� An intuitive and simple set of coe�cients to op-timize over which is di�erent from the conven-tional B-spline coe�cients.� Widespread use of unconstrained minimizationas opposed to constrained optimization neededby many previous methods. This speeds up thealgorithm signi�cantly, while still maintainingkeyframe constraints accurately.1 IntroductionMany investigators have examined the problem ofcreating animations from user-supplied keyframes.Spline-based techniques as in [bartels et al 87]have been used with much success.One of the problems with spline-based animation,however, is that many motion quantities do not ideallyfall along the natural spline paths. (In fact, when theundesirable aspects of splines are overly apparent, themotion is sometimes described as being too \spliney.")There have been a number of approaches for im-proving motion and shape aesthetics while retain-

ing user control. Examples of these include space-time constraint methods, as in [witkin & kass 88],[cohen 92], [liu et al 94], inverse dynamics asin [barzel & barr], dynamic nurbs, such as[terzopoulos & qin 94], and interpolation in non-Euclidean spaces, as in [gabriel & kajiya 85],[barr et al 92].These approaches are usually posed as constrainedoptimization problems, and utilize di�erential equa-tions, lagrange multipliers and intensive numerical so-lution techniques.
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Figure 1. In our technique, the splines are constructedso that the animation paths pass through the keyframes(shown as the open circles along the solid curve) with-out using constrained optimization methods. \Variable"keyframes, shown as smaller circles, are created by the sys-tem to minimize an objective function a�ecting the behav-ior between the keyframes. Partially optimized solutions(shown as dashed lines) still pass through the keyframes.In contrast, we use optimization but do not requireconstrained optimization. Our method �rst places aspline path through the user-de�ned keyframes, andmeasures the degree of constraint satisfaction withinthe spline segments. Unsatisfactory segments are au-tomatically subdivided; \variable" points are inserted.An optimizer then improves the degree of constraint-satisfaction by moving the variable points to betterpositions.1
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tFigure 2. Methods that utilize constrained optimizationmust converge to pass through the keyframes. Keyframesare shown as open circles along the solid curve; note thatthe partially converged solutions (shown as dashed lines)do not pass through the keyframes; the optimizer mustreach the full solution, shown in solid form, to pass throughthe keyframes, requiring much more computation.Advantages of our method� Splines are used to quickly create the motionpath so as to ensure that the animation alwaysgoes through the keyframes (�gure 1). Thus,constrained optimization (as would be requiredunder the scheme shown in �gure 2) is not re-quired to satisfy the hard constraints (that thekeyframes be met exactly). There are many ad-vantages of soft constraints | enforced throughpenalty terms that are added to the objectivefunction used in the optimization (soft con-straints need not be exactly satis�ed). The pri-mary advantages are speed and simplicity as il-lustrated in �gures 3 and 4.� The motion is \better" than raw splines, at leastas seen by the penalty function f(), and improveson successive iterations. We do not need to waituntil full convergence.� The method calculates function representa-tions of non-Euclidean interpolation paths as in[barr et al 92], but almost 100 times faster.� Soft auxiliary constraints (which in contrast tohard constraints need not be exactly satis�edbut are more in the nature of strong hints tothe optimizer) are used to substantially reduceunphysical motion like a foot going through the
oor, knees and elbows bending backward etc.� There is an automatic subdivision scheme whichsubdivides in regions of high \unphysicality" orhigh penalty terms. In addition, for splinesin quaternion space, Euler-Lagrange di�eren-tial equations are used to accurately determinewhere the path of the object is locally non-optimal. This constitutes a new approach tosubdivision.
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xFigure 4. Methods that do not require hard constraintscan use simpler numerical optimization methods, such assimple minimization.While our approach is similar to the spacetime con-straints paradigm ([witkin & kass 88], [cohen 92],[liu et al 94]), in that we seek to minimize an ob-jective function, our approach is more closely allied totraditional keyframing and our primary application isto interpolation of keyframes.Unlike [Liu & Cohen 95], we �x the keyframesboth spatially and temporally as is more common inconventional animation techniques (except that we al-low partial keyframes that �x only some degrees offreedom). In addition, we improve on the method pre-sented in [Liu & Cohen 95] in that we optimize theintermediate path between keyframes instead of usinga simple spline or hermite approximation. In our ap-proach, speci�cation of generalized co-ordinate veloci-ties is not necessary since our optimization procedurerequires only the position of keyframes.There has been much work in related areasof research. For example, physics-based or op-timization techniques have been used for model-ing of curves and surfaces ([welch & witkin 92],[terzopoulos & qin 94]). We present several newtechniques such as error metrics and subdivision meth-ods based on the Euler-Lagrange di�erential equa-tions, use of optimization over variable intermediate



3frames instead of B-spline coe�cients, and use of un-constrained minimization.The rest of our paper is organized as follows:In section 2, we describe the algorithm; In section 3,we apply the method to covariant interpolation. Insection 4, we compare our algorithm to previous work.In section 5, we illustrate the use of the algorithmapplied to animation of a human-like �gure. In section6, we discuss future work.2 Algorithm DescriptionThe algorithm takes as input K keyframe (or \par-tial keyframe") vectors Xi, which specify the stateof the animation at particular instants of time ti,i = 0; 1; . . . ;K � 1, and an objective function (orpenalty function) f(x) that a�ects the behavior of theanimation between the keyframes. The task is to cre-ate an optimal set of \variable" frames between thekeyframes; the variable frames are selected so that thespline curve that passes through all of the keyframesand variable frames minimizes the net integrated valueof the penalty constraint f(), along the path. Eitherfull keyframe vectors Xi, or \partial keyframes" maybe speci�ed. In partial keyframes, only some of the pa-rameters of the animation are speci�ed. The remain-ing parameters are selected to minimize the penaltyor objective function f().The objective function f() can be thought of asa weighted collection of non-negative penalty terms,f =Pi aifi(x), that measures deviations from desiredstates and behaviors, such as nonunit quaternions, ob-ject interpenetration and over
exing of joint angles.We are looking for the the optimal animation path{that is, we wish to �nd the C2 continuous vector func-tion Y (t) such that the integral:E(Y ) = Z tK�1t0 �1 f1(Y (t)) +�2 f2(Y (t)) +. . . dt (1)is minimized subject to the constraints thatY (ti) = Xi for i = 0; 1; :::K�1. In the above integral,fj is an objective function, i.e., a nonnegative functionthat measures by how much a soft constraint| a con-dition that the user desires but one that need not beexactly met| is violated. The �j are positive weight-ing constants that balance the relative strengths of thesoft constraints.

Overview of Algorithm1. User provides keyframes (or partialkey frames), as well as any softconstraints to be satisfied in theanimation.2. The system inserts variable framesbetween the keyframes. These variableframes (or variable points) are likekeyframes except that they are notfixed but are varied during the courseof the optimization procedure.3. From the variable frames and keyframes (or fixed frames) compute aninterpolating C2 (cubic B-spline)function.4. With the function computed above,calculate E(Y) as in integral 1.Then, move the variable points tominimize E.5. Check to see where the truesolution is badly approximated bythe current set of splines andsubdivide by adding in morevariable points in those regionsonly.Figure 5. Overview of the algorithm. A partial key frameis similar to a traditional key frame except that some orall of the state of the animation at a given time may besupplied. A suitable metric is used in step 5. In the caseof splines in quaternion space, we use the Euler-Lagrangedi�erential equations based on covariant quaternion accel-eration.In general, the N components of Y(t) can be givenas Yi(t) =Xk Cik�k(t) (2)with i ranging from 0 to N � 1 | with N = 3if Y is a vector and N = 4 if Y is a quaternion |where the �(t) are spline basis functions, such as theB-spline or nonuniform rational B-spline bases (see[farin 1992]). The Cik are the basis function coef-�cients.Variable points In general, we can use equation 2to write (where Y is a vector representing the state ofthe animation) Yi(tj) =Xk Cik�k(tj) (3)since equation 2 holds for all t. Equation 3 holds forall keyframe times tj. If we want to interpolate a set



4of M points with times t1; t2; . . . tM , we must haveequation 3 satis�ed at all tj at which the interpolatedpoints occur. But, if we know the values of the vectorsY at the interpolated points, we can write:Yim =Xk Cik�k(tm) (4)for all m from 1 to M . This is a series of M simul-taneous equations. We can write it in matrix formas: [Yi] = [�][Ci] (5)In the above equation, [Yi] is a column matrix with[Yi]m = Yim. [�] is an M �M matrix with [�]mn =�n(tm). [Ci] is a column matrix with [Ci]n = Cin. Ifthe matrix [�] is invertible, we can write[Ci] = [�]�1[Yi] (6)With the help of this equation we can calculate thecoe�cients in matrix [Ci] knowing the points to be in-terpolated, that is the matrix [Yi]. The matrix [�] isinverted only once at the start of the optimization pro-cedure, and the time taken by the calculation in equa-tion 6 is negligible in comparison to the time taken forcomputation of the integral to be minimized.As stated in �gure 5, the user supplies keyframes(or even incomplete, partial keyframes). The systemputs in variable frames and sends these to the opti-mizer. Then, based on the system state at the variableframes and the already known state (hard constraint)at the �xed frames, the matrix [Yi] is created fromwhich the matrix [Ci] can be calculated.
Figure 6. Illustrating the algorithm with reference to ani-mation of a running human-like �gure. The human �guresare drawn thin so their path can be more apparent. Theinitial keyframes are drawn darkest. The variable framesare less dark; the \in-between" frames are drawn in thelightest color.

Addition of variable points We add variablepoints in the region between two frames (�xed or vari-able) where the motion is unphysical as described byour subdivision criteria. We add the variable points atthe midpoint of the region, and also add a knot therein the knotvector for our B-spline basis.Advantages� The variables being optimized are now actualanimation states, so feedback from the systemcan immediately tell a user about the state ofthe animation.� The functions Yi(t) always interpolate the �xedframes. Thus, the hard constraints of the anima-tion having a particular state at the key framesas per the animator's wishes is always satis�ed.The algorithm is illustrated in Figure 6, where thekey frames, variable frames (or variable points) andintermediate frames (given by the spline that inter-polates all the variable and key frames) are clearlyshown.Minimization of the objective As described inequation 1, our functional consists of the weighted sumof several objective functions and soft-constraint de-viations. We use sequential quadratic programming(SQP) to position the variable frames so as to min-imize the value of the integral in equation 1 (as de-scribed in [nag]). One can either use equation 1 di-rectly, or renormalize the various parts of the inte-grand based on the initial values of the soft constraintsas follows:I = Z tK�1t0 �1 f1(Y (t))f1(Y (t))initial +�2 f2(Y (t))f2(Y (t))in +. . . dt(7)The subscript stands for the initial state beforeany optimization has taken place (the original splinepath). We integrated numerically by summing the val-ues of the integrand at a discrete number of uniformlydistributed points and multiplying by the time inter-val represented by each point (the total time rangedivided by the number of points). In keeping withthe approximate nature of soft constraints, we did notfeel that more sophisticated integration methods werenecessary.This renormalized representation depends less onthe scale of the various objectives and soft constraintsand is thus better suited for some applications.For instance, we may measure deviation of quater-nions from unit magnitude by the absolute magnitudeof the deviation or by the square of the deviation.



5While the scales of these two deviations will in generaldi�er largely, our representation makes it easier to at-tach the same relative weight (in comparison to otherparts of the objective) to ensure that the quaternionsremain nearly unitary.Note that in our formulation the integral I de-creases at each major iteration of the SQP solver.Also, we ensure that the hard constraints where pro-vided at the partial key frames are exactly met. Thus,at each iteration we have a better result than we didbefore. As soon as the optimization process is started,we get improved results, and we do not need to waitfor convergence.SubdivisionEven though convergence may have been reached, thesuperposition of basis functions might not come suf-�ciently close to the actual optimal path. In regionswhere this is the case, we add a knot to the knot vec-tor (and a corresponding variable point) for B-splinesto allow that region to be evaluated in further detail.Previous techniques for determining if the superposi-tion of basis functions adequately represents the truesolution include work by [Welch & Witkin 1992]who compare versions of a solution computed at twodi�erent resolutions. Another test commonly used isthe magnitude of the objective in a particular region.However, these approaches are not always theoreti-cally sound. For instance, in a particular region, theobjective might be large but that may be the bestthat can be done. For the case of splines in quater-nion space (discussed in more detail in the section onnumerical results), we present a di�erent approachbased on the Euler-Lagrange di�erential equations,that gives a more direct indication of the di�erencebetween the current path and the optimal one.Euler-Lagrange equations. For an optimizationproblem stated in terms of extremizing an integral asin equation 1, it is possible to derive an alternativeformulation in terms of di�erential equations. Thesedi�erential equations are known as the Euler-Lagrangeequations. See [Zwillinger 89], for instance, for de-tails. Appendix B gives the terms of the canonicalEuler-Lagrange equation.After minimization is completed, the velocity ateach �xed or variable point is known. Thus, we nowhave enough data to apply the Euler-Lagrange formu-lation to each segment. If the path were locally op-timal, we would have EL = 0 everywhere where ELis the left-hand side of the Euler-Lagrange di�erentialequation. By measuring the deviation of the left hand

side from 0, we obtain a reliable estimate of the devi-ation of the computed path from the optimal path ateach point (or region by integrating the deviation overthe region).We subdivided in regions whereEL > �where � is a constant. The magnitude of the lefthand side of the Euler-Lagrange equation is a plau-sible estimate for the \unphysicality" if the change inthe displacement from the optimal path with time issmall compared with the change in the deviation of theEuler-Lagrange equations as discussed in Appendix C.Since satisfactory convergence has been achieved(a near-minimal path has been computed given thelimited number of basis functions), this gives us anaccurate indication of whether the current set of basisfunctions su�ces. In regions where there is a largeviolation of the Euler-Lagrange norm, we add variablepoints, assigning the values of variables there initiallyas what they would have been as per our original low-resolution solution.A physical interpretation for the Euler-Lagrangeequations is given as follows (refer to Appendix C fornotation): 4E=(t1 � t0)�opt � ELmax (8)This states that the net time averaged violation(beyond what is required) in the penalty or objec-tive function per unit displacement (from the optimalpath) is less than or equal to the maximal magnitudeof the left-hand side of the Euler-Lagrange equation.We can also apply this equation locally to claim thatthe time averaged violation per unit displacement at apoint is less than or equal to the magnitude of the lefthand side of the Euler-Lagrange equation evaluated atthat point. A derivation of this result can be found inAppendix C.Advantages and Disadvantages of Euler-Lagrange equations A disadvantage of the Euler-Lagrange equations is that one usually needs to spec-ify the velocities at the key frames. These velocitiesare required as boundary conditions for the di�eren-tial equations. Also, a piecewise solution to the Euler-Lagrange equations with velocity speci�ed would giveus onlyC1 continuity, not the C2 continuity that cubicsplines guarantee us. However, an important advan-tage of the Euler Lagrange equations is that they arestated as an explicit equality of the left hand side to0 rather than a minimization.



63 Numerical Results: Algo-rithm applied to Covariantinterpolation of quaternionsOne application of the method is minimizing thecovariant acceleration of the quaternion of a sin-gle body. This is the same problem solved in[Barr et al 1992] except that we optimize overquaternion values at variable points and do not needto create discretized samples. In this case, we speci-�ed that the condition that the quaternions be of unitmagnitude be a soft constraint.We present the results in Figures 7-10. There wereseven keyframes in this run. Initially, we had one vari-able point between any two key frames. The algorithmconverged to a minimum in a few seconds on a singleHP 700. This compares favorably to the time of 4 min-utes reported by [Barr et al 1992] on an identicalarchitecture. The deviations of the quaternions fromunit magnitude was less than 0.2% at all times.Analogous to [barr et al 92], there are two softconstraints: the quaternion is kept close to unit mag-nitude, and the covariant acceleration magnitude isminimized. f() = �f1() + f2() (9)where f1() = (1� q � q)2 and f2() = (q00 n q)2Here q represents the quaternion which | as afunction of time | describes the path of the rotatingobject. f2() refers to the covariant component of thequaternion acceleration. This is the quaternion accel-eration with any radial component removed. � is ascaling factor which a�ects the relative strengths ofthe two soft constraints. Suitable results can also beobtained by using f1() =j 1� q � q j.Figure 7: Showing the path generated by covariant inter-polation of quaternions using our technique. For clarity,the object is translated from left to right. The yellow ba-nanas represent key frames while the white ones representthe variable frames in between.

Figure 8. Covariant interpolation of quaternions using thismethod is approximately 100 times faster than previousmethods. Here we covariantly interpolate through sevenkeyframe quaternions, at most taking a few seconds on anHp700 workstation.
0 1 2 3 4 5 6 7 8 9 10

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

time ->

qu
at

er
ni

on
 m

ag
ni

tu
de

 -
>Figure 9: The unit magnitude of the quaternions is main-tained by the method. Dashed lines are incompletely op-timized results; the solid line is the optimized result, andis seen to be quite close to 1.0.NOTES These results were obtained after completeconvergence. Further, the small constraint viola-tion at the end is present even in the algorithm of[barr et al 1992] but in their case, it comes fromthe post-minimization interpolation between discretepoints. The sources of our speed up are:� Use of splines instead of a discrete basis allowsfor fewer variable points while allowing a largenumber of quadrature points for numerical inte-gration. This compares favorably with the dis-crete method employed by [barr et al 1992].� The use of soft constraints has speed advan-tages referred to earlier. It is clear from theresults that the soft constraint has been ad-equate in maintaining the unitary magnitudeof the quaternions to a small tolerance. Notethat in this example the ratio (using the no-tation of equation 7) of �1(unit magnitude) to



7�2(covariant acceleration) was 2 : 5. While[barr et al 1992] used hard constraints ata �nite number of points (they required thequaternions to be unitary at these points), sub-sequent interpolation between these points tocreate a continuous representation would violatethe unitariness of quaternions.Note that our use of variable frames is not a source ofspeed-up in this case since [barr et al 1992] essen-tially used variable frames with a \box" basis.SUBDIVISION As discussed in the section onEuler-Lagrange based subdivison, we use criteria foradaptive re�nement of the solution based on the Euler-Lagrange di�erential equations. For the case of covari-ant acceleration of quaternions as de�ned in equation9, these are as given below (a sketch of the derivationis presented in Appendix B):De�ne: a = 3Xj=0 qjq00jb = 3Xj=0 qjqjT = abX(i) = qiT 2 � q00i TY (i) = q00i � qiTZ(i) = 2�(b � 1)qiThe Euler-Lagrange equation is then:X(i) + d2dt2Y (i) + Z(i) = 0 (10)Here , we have:d2dt2Y (i) = q0000i � (q00i T + 2q0iT 0 + qiT 00) (11)In the notation of the canonical equation 24, X(i)corresponds to the term @F=@y for covariant accelera-tion. Z(i) is the corresponding term for maintenanceof unitary quaternions. Y (i) corresponds to the term@F=@y00 in equation 24. The term @F=@y0 = 0 sincethe objective function does not depend directly on q0.Analytical expressions for T 0 and T 00 can be de-rived but these are complicated. It is simpler to di�er-entiate T numerically. We have found that this yieldssatisfactory results.Note that by varying the subscript i from 0 to 3 inequation 10, four independent equations are generated

that must separately be satis�ed. Figure 10 shows theresults of our tests.
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>Figure 10: Showing the average Euler-Lagrange deviationas a function of time (we plot the integrated deviation overequal tenths of the path). The dotted line is the deviationof the initial spline path. The dashed line represents theresult using one variable point between each �xed pointwhile the solid line represents the result upon using 3 vari-able points between each �xed point. The dashdot lineis a result obtained by adaptively adding variable pointsat the ends of the path (where the Euler-Lagrange devi-ation is high). This is a more e�ective and e�cient tech-nique for solution (a total of only 2 variable points wasused). It is seen that the result is nearly identical to theresult for global subdivision with one variable point be-tween each �xed point (dashed line) at the ends and onlyslightly worse in the intermediate region. This exampleclearly shows that the optimizer reduces the covariant ac-celeration in mainly those regions where there is a largeneed for improvement. Further, the Euler-Lagrange equa-tions provide a good metric for adaptive re�nement (oradaptive subdivision) of the solution which can be muchmore rapid and e�ective than addition of variable pointsglobally.4 COMPARISON TO PREVI-OUS METHODSUSE OF SPLINES The use of splines for opti-mization was introduced by [Cohen 92] where op-timization was done over spline coe�cients. Thiscorrects the problems with discrete methods like[Witkin 88] and [Barr et al 92]. In those ap-proaches, interpolation to create a continuous rep-resentation must be done after minimization of theobjective and the fact that interpolation itself al-ters the objective is not taken into account. Thus,a much larger number of variable points is neededto get the same accuracy as a continuous approach.This is one of the reasons for the speed up of our



8method when applied to creation of quaternion splinepaths. More sophisticated basis functions like wavelets[Liu et al 94] have also been proposed.VARIABLE POINTS While our use of splines isnot completely new, we do not optimize over splinecoe�cients as in [Cohen 92], but over the value ofvariables describing the state of the animation at in-termediate or variable points. Our method has thefollowing advantages:� For the end user, the value of coe�cients is notalways an intuitive way of thinking about theoptimization. Also, large coe�cient changes donot necessarily correspond in a very direct waywith changes in the actual path. By contrast,we use variables more intuitive under severalcircumstances | actual animation states. Fur-ther, changes in their values correspond to clearchanges in the animation path.� Hard equality constraints in the minimizer arenot needed in our approach to enforce the de-sired values at key frames. In [cohen 92], thekey frame constraints are treated as similar toother constraints with the same complicated nu-merical methods used to enforce them.USE OF UNCONSTRAINED MINIMIZA-TION We have shown that constrained optimiza-tion methods are not necessary. This has been doneby the following devices:1. We have used variable points instead of B-splinecoe�cients. Thus, no constraints are needed toensure that the objects pass correctly and at alltimes through the key frames.2. By including soft-constraints in our objective,we have shown that constrained optimization isnot always needed.We believe our methods to show certain im-provements over previous methods. For instance,[Welch & Witkin 92] used Lagrange multipliers orpenalty functions to enforce linear constraints. Ourkeyframe constraints are indeed linear in the coe�-cients of the spline basis. However, the method in[Welch & Witkin 92] either increases the numberof variables as more variables must be used for La-grange multipliers or allows for (possibly large) con-straint violations through the use of a penalty func-tion. By contrast, our approach uses fewer variablesand ensures that the constraints are always satis�edexactly (within double precision error).There is a further important disadvantage ofconstrained methods like [Welch & Witkin 92] or[Cohen 92]. Constraints may be violated by large

amounts in the search for a minimum even if the �-nal constraint violation is small or zero on conver-gence. Since we want the user to interact with thesolution process, an approach where the constraintsare always met even without convergence is attrac-tive. Our method forces the keyframe constraints tobe met throughout the optimization process.USE OF SOFT CONSTRAINTS We have usedsoft rather than hard constraints (which must be meton convergence) for the following reasons:1. In [Welch & Witkin 92], there is a discus-sion of how a �nite basis cannot satisfy the con-straints completely. The authors of that paperused a least squares �t. However, their func-tionals were of a quadratic form, while we seekto minimize highly nonlinear nonquadratic ob-jectives. Thus, we cannot use a least-squaresapproximation. Since the constraints cannot besatis�ed completely, use of hard constraints isinappropriate. To clarify this point, considerthe case of maintaining quaternion magnitude.Because the number of basis functions is �nite,the basis is incomplete: quaternion magnitudecannot be maintained over the entire animationpath and we cannot have a hard constraint forc-ing the unitariness of quaternions to be exactlysatis�ed everywhere. We could have the uni-tary condition exactly satis�ed at a �nite num-ber of points, but this would not guarantee uni-tary quaternions over the entire path as we de-sire.2. Use of soft constraints speeds up the solutionprocess considerably as compared to the lengthof time it would take if hard constraints wereused. Calculation of constraint violation andconstraint gradients are not required. This canincrease the speed tremendously.3. Simpler minimization packages may be used.A few points deserve note. Even with a com-plicated minimization algorithm such as sequentialquadratic programming that can handle constraints,the absence of constraint evaluations (and constraintgradients) makes the speed of using soft constraintsvery attractive. Note that it is also possible to in-troduce an inequality constraint thereby requiring themagnitude of constraint violation to be less than somesmall value. However, most minimization packagescannot deal with this. Even a more complete packagesuch as the E04UCF routine of the NAG libraries is ex-tremely slow when dealing with inequality constraintsas compared to even hard constraints.



9SUBDIVISION SCHEMES We believe our sub-division approach based on the Euler-Lagrange equa-tions to be new and superior to previous subdivisionschemes discussed earlier.5 Foot placement for a Run-ning Articulated SystemIn this section, we apply the method to the animationof a person-like running �gure. We treat the person asan articulated body, and choose to represent the rota-tion of each body by a quaternion that gives its rota-tion in world co-ordinates. These rotations along withthe translation of the root body are su�cient to com-pletely specify the state of the body. (See AppendixA for representing articulated bodies with quaternionsand computing forces and torques.) This example isintended to demonstrate the use of our technique foranimation of complicated objects. The running �g-ure has thirty nine degrees of freedom and is thus ahigh-dimensional system. Unlike many previous op-timization methods, our approach is fast enough tohandle this complicated system. Our tests took nolonger than a few minutes at most.Improvement of Motion Several simple improve-ments of the original spline motion can be made. Wedescribe one such example where our technique helps�ne-tune the animation to prevent penetration of therunner's leg with the 
oor and a step. Note that hereagain, for the sake of speed, we use soft constraintsto enforce non interpenetration. The advantages ofsoft constraints have been dealt with earlier. In thisexample they provide a means of making fast auto-matic corrections to a speci�c problem in the originalanimation.Penetration of the 
oor by the foot We calcu-late the position of the heel and toe on both feet. Referto Appendix A for details. Then, we de�ne for each ofthe four points considered, the left heel and toe as wellas the right heel and toe, the constraint violation tobe equal to the distance from the point to the 
oor ifthe point is below the 
oor and 0 otherwise. Compu-tation of distance from a given point to the 
oor is anelementary co-ordinate geometry problem. If the 
oorlies along one of the co-ordinate planes, this compu-tation is especially simple. For instance, for the 
oorat y = 0 and the direction of y > 0 being above the
oor, we have:Constraint = 4Xy=1�footposy if footposy < 0 (12)

where the subscript refers to the four points being con-sidered. We implement other auxiliary constraints assoft constraints such as:� Quaternions should remain unitary.� Elbows and Knees should not bend backward.In our tests it is clear that ordinary spline inter-polation is unable to handle the 
oor penetration andoverbending constraints; our technique copes well withthese.
Figure 11. We show keyframes and a sample frame froma human �gure running and jumping onto a step. This isthe original spline and a foot passes through the step.
Figure 12. Optimizing the animation from the samekeyframes, the foot does not pass through the step. Thesoft constraints have lifted the foot out of the way.



106 Conclusions and FutureWorkIn this paper we have presented a technique tosmoothly interpolate key frames in animation, sub-ject to covariant acceleration constraints and to forceand torque constraints. The algorithm can provideimprovements to ordinary spline-based interpolationwhile leaving control in the animator's hands. Wehave presented a general method for producing morephysically realistic motion from the spline paths.When the objective functions are well known suchas in covariant interpolation of quaternions or main-tenance of non-penetration constraints, the methodworks well, with few signi�cant problems.For complex behaviors, such as human locomotion,ideal objective functions are not easily derived. Inthat case, there are di�culties in the algorithm, theresolution of which is future work. Unruly spline be-havior can cause skidding, 
oating, and undesirablebackwards motion; the optimizer has di�culty elim-inating the objectionable behavior completely. It isalso possible to try to make articulated body motionmore physical by requiring the net torque on eachbody to be the sum of torques exerted on it at eachof its joints. Further, we require equal and oppositetorques exerted on the objects held together at a joint.We have observed however, that simple ideas like thisare insu�cient to signi�cantly improve the realism ofthe motion. Considerable further research is requiredto �nd appropriate objective functions for articulated�gure animation.7 ACKNOWLEDGEMENTSWe want to thank everyone at the Caltech graphicsgroup for their help and encouragement. This workwas supported in part by grants from DEC, HewlettPackard, and IBM. Additional support was providedby NSF (ASC-89-20219), as part of the NSF/DARPASTC for Computer Graphics and Scienti�c Visualiza-tion. All opinions, �ndings, conclusions or recommen-dations expressed here are those of the authors onlyand do not necessarily re
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11in body co-ordinates. The state of the body is repre-sented by the translation T of the center of mass ofthe root body and a set of quaternions Qi represent-ing the orientations of the bodies. Further de�ne forany object, b to be the vector from the center of massof its parent to the point of attachment, and cu tobe the vector from the center of mass of the body todescendant u. Let d be the vector from the point ofattachment of an object to its parent to the center ofmass of the object.We then have the following scheme of equations:Xrootcm = TXicm = Xparenticm +QparentibQparenti�1 + QidQ�1iXia = Xicm + QiaQ�1i (13)Since the articulated body has no cycles, the aboveequations are non-recursive and su�ce to supply theposition of any point on any body. They can also beanalytically di�erentiated to obtain velocities and ac-celerations if required. The equations for the positionof the center of mass can be di�erentiated to yieldthe acceleration of the center of mass. By multiplyingby object mass, we can compute the net force on anobject.A note on computation of derivatives. Quater-nion products are di�erentiated similarly to ordinaryfunction products. However, a little care must betaken when di�erentiating q�1. Note that the formu-lae below are summed over repeated indices.Let qy be the quaternion formed from negating thevector components of q. Then, we have:q�1 = qyqiqi (14)The correct formulae for �rst and second derivativesof the inverse are: [Note that q(n)y = qy(n)]q(�1)0 = q0yqiqi � 2qy qjqj 0(qiqi)2 (15)q(�1)00 = q00yqiqi � 4q0y qjqj0(qiqi)2 +Cqy (16)where C is given by:C = �2(qjqj 00 + qk0qk0(qiqi)2 ) + 8((qjqj 0)2(qiqi)3 ) (17)Computation of rotational Inertia, force andTorque Let I be the inertia tensor of a body, ! bethe angular velocity, Q be the quaternion rotation, L

be the angular momentum, and R be the rotation ma-trix. Both R and Q are in world co-ordinates. Wehave: I = RIbodyR>I0 = R0IbodyR> + RIbodyR>0 (18)= !�RIbodyR> + RIbodyR>!�>= !�I + I!�>Here, !� is the dual matrix of the vector !. We furtherhave ! = 2Q0Q�1 (19)!0 = 2(Q00Q�1 + Q0(Q�1)0) (20)Finally, we can write:Torque = L0= (I!)0= I 0! + I!0 (21)See [goldstein 50] for further details.Appendix B: Euler-LagrangeequationsA general extremization problem (generally minimiza-tion) can be written as (where y(t) describes the path)min Z t1t0 F (y; y0; . . . ; y(n)) dt (22)The natural boundary conditions are:y(t0) = X0; y0(t0) = X1; . . . ; y(n�1)(t0) = Xn�1y(t1) = x0; y0(t1) = x1; . . . ; y(n�1)(t1) = xn�1 (23)The corresponding Euler-Lagrange equation isgiven by:@F@y � ddt @F@y0 . . . + (�1)n dndtn @F@y(n) = 0 (24)For instance, minimization of R t1t0 (x00)2 dt subjectto known velocities and positions for x(t) at t0 and t1gives x0000 = 0. For acceleration in 
at space, we wantto minimize R t1t0 [(x00)2 + (y00)2 + (z00)2] dt. This givesthree independent equations for x(t), y(t), z(t). Thus,we have: x0000 = y0000 = z0000 = 0. This is why cubicsplines are very suitable for interpolation in 
at spacesince these equations are always satis�ed. However,



12the equations for quaternion space are more compli-cated | no analytic solution has been found | andcubic splines are no longer su�cient.To derive the Euler Lagrange equation for splinesin quaternion space, we use (sum over repeated in-dices):min Z t1t0 j q00i � qi q00j qjqlql j2 + � j qnqn � 1 j2 dt= min Z t1t0 q00i q00i � (q00j qj)2qlql + �(qnqn � 1)2 dt (25)To derive the corresponding four independentEuler-Lagrange equations, we simply use equation 24for each of the quaternion components. The Euler-Lagrange equations are given as equation 10. A briefsketch of the derivation is presented below:We have: F1 = q00i q00i � (q00j qj)2qlqlF2 = �(qnqn � 1)2F = F1 + F2As per the canonical equation 24, we calculate:@F1@qi = 2(qi[q00j qjqlql ]2 � q00i q00j qjqlql )@F1@q0i = 0@F1@q00i = 2(q00i � qi[q00j qjqlql ])@F2@qi = 4�qi(qnqn � 1)Now, plugging into equation 24, and simplifying,we derive equation 10. The terms X(i) , Y (i), Z(i) ofequation 10 correspond in order to the nonzero termsof the above derivation.Appendix C: Physical Interpre-tation of Euler-Lagrange equa-tionsThis section discusses the physical interpretation ofthe Euler-Lagrange equations. A summary of the keyresults is given in the section on subdivision in themain text.We are seeking a relation between the actualminimal solution of the Euler-Lagrange equationsEL(Y ) = 0, and the approximate optimized solution

obtained by minimization with an (incomplete) set ofspline basis functions.Let Ysoln refer to the actual optimal solution of theEuler-Lagrange equations EL(Y ) = 0. Let anotherarbitrary path be represented as:Y (�; �(t); t) = Ysoln(t) + ��(t) (26)where �(t) has norm (R t1t0 j phi(t) j) equal to unity and(positive) � measures the magnitude of the deviationfrom Ysoln. Ysoln(t) can be written in this notation asY (0; �; t) where � is arbitrary.Let a path (subscripted with \opt" since in ourapplications, this will be an optimized path) Yopt beclose to Ysoln. We assume that Yopt is close enough toYsoln so that the partial derivative of the integratedobjective function E(Y (�; �(t); t)) with respect to � is0 for the optimal path Ysoln and increases as we moveaway from Ysoln toward Yopt. Note that E is now afunction of � and �(t). We assume that the variationof E with � is quadratic near Ysoln. This is becauseYsoln is assumed to be a local minimum and Yopt isassumed to be su�ciently close to Ysoln so that for 0 <� � �opt, d2E=d�2 > 0. Here, �opt refers to the valueof � corresponding to the speci�c path Yopt. Similarly,�opt(t) refers to the value of � corresponding to thespeci�c path Yopt(t)Thus, we have (where EL(Y ) stands for the lefthand side of the Euler-Lagrange equation | equation24) :(@E@� )�=�opt;�=�opt = Z t1t0 EL(Yopt)�opt(t) dt (27)4E = Z �opt0 (@E@� )�=�opt d� (28)where4E represents the gain in the objective fromthe minimal objective at Ysoln|E(Yopt)� E(Ysoln).Since we know @E=d� is maximal at �opt [for 0 �� � �opt], we can write:4E � �opt Z t1t0 j EL(Yopt) j dt (29)since j EL(Y )�(t) j � j EL(Y ) j j �(t) j. If ELmaxis the maximalmagnitude of EL(Yopt) between t0 andt1, we can write:4E � (t1 � t0)�optELmax (30)4E=(t1 � t0)�opt � ELmax (31)



13This states that the net time averaged violation(beyond what is required) in the penalty or objec-tive function per unit displacement (from the optimalpath) is less than or equal to the maximal magnitudeof the left-hand side of the Euler-Lagrange equation.We can also apply this equation locally to claim thatthe time averaged violation per unit displacement at apoint is less than or equal to the magnitude of the lefthand side of the Euler-Lagrange equation evaluated atthat point.Equation 30 can be written in pointwise form as:4E4t � �opt(t)EL(t) (32)Here the left hand side represents the unnecessary \un-physicality" (as measured by the integrated objectiveE) per unit time in the neighborhood of time t. �opt(t)represents the magnitude of the deviation of Yopt fromYsoln in the neighborhood of time t (in this formulation�opt is a function of time because we consider an in-�nitesimal neighborhood near t �xing the position andvelocities at the end points to be those of the spline so-lution). If �opt is relatively independent of t comparedto EL, we can estimate the unnecessary unphysicalitymerely by considering the magnitude of the left handside of the Euler-Lagrange equations (EL). This isthe approach we use.Equation 31 can be used more accurately to esti-mate the time averaged violation in the penalty func-tion if a value for �Y can be calculated. This can bedone either by solving the Euler-Lagrange equationEL(Y ) = 0 and comparing this solution to the op-timized spline solution calculated after minimization.Here, the boundary conditions (described in AppendixB) at t0 and t1 are �xed by the corresponding valuesfor the optimized spline solution. An alternative is tocalculate a solution to the Euler-Lagrange equationslocally (for instance with a simple low-order power-series solution). We then have:�opt = Z t1t0 j Yopt(t) � YEL(t) j dt (33)where Yopt is the optimized solution, and YEL is thesolution calculated by the methods discussed above.We can also use this equation pointwise :�opt(t) =j Yopt(t) � YEL(t) j (34)where �opt is now a function of time.


