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Abstract
Cinemagraphs are a popular new type of visual media that lie in-between photos and video; some parts of the
frame are animated and loop seamlessly, while other parts of the frame remain completely still. Cinemagraphs
are especially effective for portraits because they capture the nuances of our dynamic facial expressions. We
present a completely automatic algorithm for generating portrait cinemagraphs from a short video captured
with a hand-held camera. Our algorithm uses a combination of face tracking and point tracking to segment
face motions into two classes: gross, large-scale motions that should be removed from the video, and dynamic
facial expressions that should be preserved. This segmentation informs a spatially-varying warp that removes the
large-scale motion, and a graph-cut segmentation of the frame into dynamic and still regions that preserves the
finer-scale facial expression motions. We demonstrate the success of our method with a variety of results and a
comparison to previous work.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—

1. Introduction

We all use portrait photographs to express our identities on-
line. Portraits are often the first visuals seen by visitors to
our professional webpage, social media profiles, and online
dating sites. However, static portraits can fail to capture the
personality we see on people’s faces in real life, which in-
cludes their neutral expressions, smiles, laughs, and the tran-
sitions in-between. Short videos can capture these dynam-
ics, but videos are awkward as online portraits because they
are too dynamic; videos can contain camera and background
motion, as well as large-scale motions of the head and body.
They also have a timeline — a beginning, middle and end.

Cinemagraphs are a new medium that combines the ben-
efits of static images and videos; most of the frame is static,
but some parts animate in a seamless loop [1]. For exam-
ple, a portrait cinemagraph might show dynamic facial ex-
pressions while maintaining a static overall head pose and
background. Unfortunately, such portrait cinemagraphs are
remarkably difficult to create, taking professional artists sev-
eral hours if not a day [2].

In this paper, we completely automate the creation of
cinemagraph portraits. Users simply capture a short hand-

held video of a person, push a button, and our system out-
puts a portrait cinemagraph. There are a number of re-
cent techniques for creating cinemagraphs, including mobile
apps [3–5] and several research systems [TPSK11,JMD∗12,
YL12,LJH13]. However, these techniques are all challenged
by portraits, because people are not good at keeping their
head and body perfectly still. The existing techniques only
stabilize overall camera motion, and a cinemagraph portrait
requires removing the gross motion of the subject while pre-
serving facial expression dynamics. The exception is the
work of Bai et al. [BAAR12], who do remove the large-scale
motions of objects. However, they require three different sets
of strokes from the user, and the results can be very sensitive
to stroke placement. Since compute time is also quite long,
their system is impractical for casual users.

We contribute a fully automatic pipeline for portrait
cinemagraphs. Our method is inspired by the system of
Bai et al. [BAAR12], but does not require user strokes.
We use face tracking [SLC11] as well as Kanade-Lucas-
Tomasi [LK81] point tracks to automatically segment mo-
tion into two classes: large-scale head and torso motion that
should be removed from the input video, and fine-scale facial
expression motion that should be preserved in the cinema-
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Figure 1: Our method automatically generates a portrait cinemagraph from an input video. The input, warp and output videos
are visualized as averages across time. Notice that the face and torso are blurry due to motion in the input video. After warping,
the face is sharp as it is stabilized, but the mouth and jaw are blurry as we preserve the internal motions of the face. The blurred
border in the average warp video is due to the motion of the background. The average output video is sharp for static regions
and blurry for facial parts which are animated. The key to our algorithm is a fully automatic technique to select KLT tracks
which lie on static regions of the face, which allows us to immobilize the face after warping. We also compute automatic energy
values for a graph-cut optimization which composites the warped video with a still image to create the final cinemagraph.

graph. We use the large-scale motion information to guide
a spatially-varying warp [LGJA09, BAAR12] that removes
the gross motion of the portrait subject. We then use a 2D
graph-cut technique [BVZ01, KSE∗03, ADA∗04] to com-
pute a mask that seamlessly combines the dynamic facial
expressions with a still image for the rest of the subject
and background. Our 2D approach is much faster than the
3D graph-cut of Bai et al. [BAAR12], which makes our ap-
proach amenable to implementation of portable devices such
as phones and tablets. We also compare our method with a
more naive approach that does not first segment motion into
two types.

2. Overview

Our approach has three distinct stages as shown in Figure
1. In the first stage, we automatically select Kanade-Lucas-
Tomasi (KLT) tracks which can immobilize the face and
torso after a warp. Specifically, our method identifies and
eliminates KLT tracks that follow expression motions in the
face rather than the gross motion of the entire face. We then
use RANSAC [FB81] on the remaining static KLT tracks to
select a subset that can immobilize the face using a homogra-
phy transform. In the second stage, we warp all frames to an
automatically selected target frame using a spatially-varying
warp [LGJA09, BAAR12] to immobilize the face.

In the third stage, we composite dynamic facial regions
from the stabilized face video into a still background im-
age. We use graph-cuts optimization on a Markov Random
Field (MRF) to find the best compositing seam between the

stabilized face video and the selected background frame.
We automatically generate energy penalties corresponding
to the detected moving facial parts in the output to act as
constraints for the energy minimization. We also design new
seam costs to encourage compositing seams to occur at re-
gions with minimal pixel variation over time.

While our approach is similar to Bai et al. [BAAR12],
there are two key technical differences that enable fast, com-
pletely automatic cinemagraph generation. First, we auto-
matically analyze facial motion (Section 3) to differentiate
between overall head motion and internal motion of facial
expressions. Before this analysis the user needed to care-
fully place strokes in regions that only undergo overall head
motion, which was challenging. Second, we improve speed
by two orders of magnitude by using a 2D MRF with new
cost functions based on facial motion analysis (Section 5.1),
rather than a 3D MRF, along with several other optimiza-
tions.

Our approach relies on several assumptions about the in-
put video. First, there is only one person with one facial
pose in the video. We do not handle pose changes at the
moment, although pose selection can be performed as a
pre-processing step. Second, the face of the person should
occupy a significant portion of the image; a good rule of
thumb is about 10% of the image area. Third, the face can be
aligned using a 2D warp, which means that there should not
be large 3D rotations. However, in practice, reasonable re-
sults are obtained even when these assumptions are violated.

c© 2013 The Author(s)
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(a) (b)

Figure 2: Facial features detected in a single video frame (a).
We compute 2 axes per frame, a vertical line bisecting the
face (blue) and a horizontal line across the base of the nose
(green) (b). We measure facial regions by computing the per-
pendicular distance of their corresponding feature points to
the axis perpendicular to their movement.

Facial Region Feature # Axis Motion
Threshold

left eye 38, 39 Horizontal 0.001
right eye 44, 45 Horizontal 0.001
left brows 20, 21, 22 Horizontal 0.003
right brows 23, 24, 25 Horizontal 0.003
left tip of lip 49 Vertical 0.0015
right tip of lip 55 Vertical 0.0015
bottom lip 57, 58, 59 Horizontal 0.0015
bottom jaw 8, 9, 10 Horizontal 0.0015

Figure 3: Each facial region is represented by the mean posi-
tion of the corresponding feature number in the second col-
umn. The distance values for each region are measured from
the assigned axis in the third column. The fourth column is
the threshold value for motion detection after convolution
with a LoG kernel and normalization by nose length l.

3. Track Selection

In the track selection stage, our goal is to select KLT tracks to
guide a single spatially-varying warp to immobilize the face
and torso. Our intuition is that KLT tracks that are useful for
stabilizing the large-scale head motion should be located on
the face, but not fall on any moving facial regions that are
part of expression changes. They should also be consistent
with a per-frame homography transformation, which is usu-
ally a good approximation for the overall motion of a face
that is not significantly changing pose.

We first compute KLT tracks for the input video. KLT
tracks which last for the entire video are denoted K̂A and
tracks which do not are denoted K̂F . This definition is simi-
lar to the anchor and floating tracks of Bai et al [BAAR12].

In order to find KLT tracks that are useful for stabilization,
we use a face tracker [SLC11] to mark facial feature points
throughout the video and analyze their motion to identify
which facial regions are moving, as shown in Figure 1 and
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Figure 4: Typical raw distance values for facial regions in
an input video. Notice the eye blinks give rise to distance
drops for the eyes. These time instances are marked with a
blue horizontal arrow. A smile causes the distance of the lips
to change and this time instance is marked with an orange
horizontal arrow.

discussed in Sec 3.1. Removing KLT tracks in moving facial
regions which are not useful for stabilization significantly
decreases the number of iterations for track selection, as dis-
cussed in Sec 3.2.

3.1. Facial Movement Detection

The goal of tracking facial features is to allow our algo-
rithm to not only identify the location of the face, but also
to determine the movement of the major facial regions in the
face. For our application, we only consider four major fa-
cial regions; the eyes, eyebrows, mouth and lower jaw. The
mouth is further sub-divided into three sub regions; the left
and right-most region of the lip and the bottom lip. We use
Saragih et al.’s [SLC11] face tracker to track the location of
66 facial feature points across the face as shown in Figure 2a.

The location of each facial region is the center of its cor-
responding facial feature points which are listed in Figure 3.
We monitor the position of each facial region across time by
using a coordinate transform. We measure its perpendicular
distance from one of two local face orientation axes to detect
finer-scale motions, as shown in Figure 2b. One axis bisects
the face vertically passing through the bridge of the nose,
and the other bisects the face horizontally across through the
base of the nose. The vertical axis (blue) is the best fit line
which passes through the facial feature points through the
bridge of the nose and chin, and the horizontal axis (green)
is the best fit line which passes through the facial feature
points through the base of the nose. We recompute the face
orientation axes for every frame. Note that the two axes are
not necessarily perpendicular. We have found that this fit is
stable for most of our examples as the facial feature tracker
is stable for small facial motions.

c© 2013 The Author(s)
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Inlier 0.6 0.64 0.69 0.75 0.81 0.9
ratio
# of 3159 1378 556 204 65 17
iterations

Figure 5: Here we show the number of iterations needed to
guarantee a probability of 0.99 to find a good homography fit
for varying inlier ratios (total number of tracks = 30). As the
inlier ratio improves, we need significantly fewer iterations
to find a good homography.

We measure the perpendicular distance of each facial re-
gion from the axis where the motion change is dominant.
This gives us fine-grained movement discrimination, so we
can differentiate a slight smile where lips are closed (hor-
izontal displacement of edges) versus a laugh (vertical dis-
placement of lower lip). For example, the position of the eye-
brow is the perpendicular distance measured from the hori-
zontal axis (green). Figure 3 shows which axis each facial
region is measured from.

We also compute the radius r and the nose length l of the
face. Radius r is computed by averaging the three pixel dis-
tances from the center of the nose to the lower jaw, left ear
and right ear (features # 9,1,17). Length l is simply the aver-
age length of the nose in pixels computed from the start and
end feature points of the nose over all frames (features # 28,
31). We normalize all distance computations so that our al-
gorithm is independent of face size by dividing all distances
with l.

We use a median filter of kernel size 5 to smooth temporal
noise after we compute the distances for each facial region
per frame. Figure 4 shows a typical plot of the raw facial
region responses for an input video and the detected move-
ment. Note how the distance measurements change signifi-
cantly for the facial regions when they move. We convolve
the measurements with a Laplacian of a Gaussian (LoG) ker-
nel of size 35 with sigma 4 to detect sudden change within
a 1 second timeframe. The peaks of the convolved response
indicate potential movement for their corresponding regions.
For a facial region to be considered dynamic with respect
to the face, the peaks in the convolved response have to
be larger than a specified value. Figure 3 shows the thresh-
old for movement detection we use, normalized by the nose
length l. These thresholds were determined empirically from
our dataset.

3.2. Track Pruning

KLT tracks in K̂A that do not track large scale motion of
the head should not be used for stabilization. We first select
only the tracks in the facial region by removing tracks in K̂A
that are outside of a radius of 1.5r pixels from the center of
the face. Second, we further prune the tracks that lie on the
dynamic facial regions that form expressions by removing

tracks that are inside or within a 0.2l distance from a moving
facial region.

Once these tracks have been removed, we use RANSAC
to fit a per-frame homography to the face motion; RANSAC
also removes additional outliers that do not follow the over-
all face motion. Note that the initial removal of tracks sig-
nificantly improves the ratio of inliers to outliers for ho-
mography fitting. A slight improvement in inlier ratio can
significantly decrease the number of iterations needed for
RANSAC to have a good probability of finding a fit which in
turn decreases the computation required. Figure 5 shows the
number of iterations needed for a 99% confidence of find-
ing a good fit with varying inlier ratios. In practice, we have
found that using this track removal technique decreases the
number of RANSAC iterations needed by up to 2 orders of
magnitude.

At each RANSAC iteration, we attempt to remove the mo-
tion of the face over the entire video by fitting homographies
per frame to the remaining tracks using linear least squares.
The set of tracks which gives the lowest RMS error for in-
liers after fitting homographies are the final set of selected
tracks. We run RANSAC for 50 iterations with a 3.5 pixel
inlier threshold for all of our examples. We label the final
selected tracks from K̂A as KA. Figure 6a shows KA selected
for the face.

K̂F tracks do not last the entire duration of the video,
but can still help to guide the warp if we can be sure they
are within regions which do not contain finer-scale motions.
They provide consecutive frames with constraints during
warping. We find useful KF tracks by warping K̂F tracks
using the homographies estimated to align the frames. If a
K̂F track deviates no more than 3 pixels for each frame from
its mean position, we consider it to be an inlier. The inlier
KF tracks are then used as input for warping along with KA
tracks.

We apply the same technique to stabilize the torso, but set
the center of the torso as 3r below the face and only consider
tracks within a radius of 4r of that center. No torso-specific
track selection is performed, but any tracks removed during
facial track selection are also not used for the torso even if
they fall within the torso radius. Note that the homographies
fit to torso movement are separate from the face homogra-
phies. Figure 6b shows KA selected for the torso.

4. Warping

The goal of warping is to immobilize the face and torso in the
video. Our approach finds a target frame to warp to instead
of picking the first frame or forcing the user to select one.
The automatically selected target frame should generate the
least amount of warping after registering all other frames
to it. Therefore, we find the target frame T by selecting the

c© 2013 The Author(s)
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(a) KA for face (b) KA for torso (e) D(n) for smiles (f ) S(n) for smiles(c) D(n) for eyes (d) S(n) for eyes (g)M(n)

Figure 6: From left to right: (a) KA for face, (b) KA for torso, (c) example D(n) for eyes, (d) corresponding S(n) for eyes, (e)
example D(n) for smiles, (f) corresponding S(n) for smiles, (g) example M(n). The energy values are visualized overlaid with
the portrait to provide spatial reference. High energy values of 1 have high luminance values, while energy values of 0 are black.

input frame t1 that minimizes the L2 distance between the
locations of all KA tracks in all other frames t2.

T = argmin
t1

∑
all tracks,t2

|KA(t1)−KA(t2)|2 (1)

Frame T is also the target frame used in the next com-
positing stage.

We use the same warping algorithm as described in Bai et
al. [BAAR12] (section 5.2 of that paper) with our automat-
ically selected KA and KF as input. The tracks act as con-
straints over a grid mesh defined over each frame. Since the
tracks specify locations on static regions, they should not
move after the warp. Therefore, we solve for a set of meshes
where the tracks KA and KF are stationary over time using
least squares. Since we have selected the tracks KF , we only
have to use the second, refined warp described in Bai et al.
(section 5.2 of that paper), thus reducing computation costs
by up to 50%. The warped output is generated by texture
mapping the frames onto the grid mesh.

5. Compositing

At the final stage, we use graph-cuts over a 2D Markov Ran-
dom Field (MRF) to composite the warped video with the
target still frame. Each node n corresponds to a spatial pixel
location and is assigned one of two labels: λ = {still,warp}
after a cut is computed. Since our MRF is 2D, the assigned
label at the node determines the pixel source for that spa-
tial location across time; either the target frame T or the
warped video. Our compositing algorithm is based on Bai et
al. [BAAR12], but with three key differences. One, we use
a 2D rather than 3D MRF. Two, we use a single still tar-
get frame, rather than a set. Three, since we no longer have
user-provided strokes to guide the choice between still and
dynamic regions, we must instead design new cost functions
based on our analysis of facial motion that select only tracks
indicating overall head motion.

There are two types of energies for our MRF: node poten-
tials and seam costs. Node potentials are determined by the

label assigned at the node n and seam costs are defined over
two neighboring nodes, n1 and n2. We design our energy
such that when it is minimized over the MRF using graph
cuts, the labeling results in a composite cinemagraph that is
natural with desired animated and static regions that tran-
sition seamlessly. We describe our cost functions (automatic
energy functions) in Sec 5.1 and our overall energy functions
in Sec 5.2.

We loop the output video by finding a pair of starting
and ending frames that are visually similar. We minimize
the total L2 RGB distance in the warped video at the mov-
ing facial regions, using the same technique as video tex-
tures [SSSE00] to find the best loop. We then trim the in-
put video and warped video to this duration. We also create
a seamless cinemagraph by interpolating between the start
and end frames to minimize visual artifacts using optical
flow [Liu09]. We advect pixels from both directions based
on their computed corresponding flows to generate an ad-
ditional 10 intermediate frames. We cross-fade between the
two constructed interpolations to create a temporal seamless
loop.

5.1. Automatic Energy Functions

We compute three sets of energy functions (D(n), S(n) and
M(n)) that range from 0 to 1 and are shown in Figure 6c-
g. The energy terms are computed per node and thus corre-
spond to each pixel. The computation of our energy terms
is dependent on the presence of lip or jaw movements de-
tected in the facial expressions; we use the movement de-
tection approach described in Sec 3.1 and Figure 3. These
automatic terms are designed to provide constraints to guide
the MRF optimization. Specifically, D(n) is designed to en-
courage moving facial regions from the warped video to be
composited in the final result. S(n) is designed to encourage
relatively static regions to become static in the final result
by compositing a still image. M(n) is designed to encour-
age seam transitions to happen at regions with minimal pixel
variation over time.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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Dynamic Region, D(n)
This energy is computed for nodes with label λ = still. We
wish to assign a high energy for these nodes if they are
within dynamic facial expressions, since they should be ani-
mated.

If no lip or jaw movements are detected, each feature point
at a moving eye or eyebrow is assigned an energy value of 1
at its location at frame T with a radius of 0.1l, as shown
in Figure 6c. Pixels without any contributing features are
assigned a 0 energy. The energy region is processed using
morphological closing (image dilation followed by image
erosion) with a radius of 0.25l to fill in holes in the energy
region.

We generate this penalty differently if lip and jaw move-
ments are present as the entire face is usually animated due
to muscle structure. Each feature point at the lower jaw, eyes,
eyebrows, nose and lips is assigned an energy value of 1 at
its location at frame T with a radius of 0.1l. The energy re-
gion is processed using morphological closing with a radius
of 0.5l as shown in Figure 6e to fill in holes in the energy
region.

Static Region, S(n)
This energy is associated with nodes with label λ = warp.
We wish to assign a high energy for these nodes if they are
not within dynamic facial expressions, since they should not
be animated. We also want a ribbon of pixels between S(n)
and D(n) where there are minimal constraints so that the al-
gorithm is free to find seamless boundaries for compositing.

If no lip or jaw movement is detected, we generate this
penalty by an image erosion of the complement of D(n) by
a size of 0.5l. We then compute a linear penalty fall off with
gradient 20 to encourage transitions to happen near the face,
as shown in Figure 6d.

If lip and jaw movements are detected, we generate this
penalty by an image erosion of the complement of D(n) by
a size of 3l. We then compute a linear penalty fall off with
gradient 5 to encourage transitions to happen near the face,
as shown in Figure 6f. We use a larger kernel and a smoother
gradient for image erosion because lips and jaw movements
require a larger region for animation. The linear fall off is
computed by using a Euclidean distance transform [FH04]
multiplied by its corresponding gradient.

Pixel Movement, M(n)
This energy measures a component of the cost of seams be-
tween neighboring pixels. We want seam transitions between
warp and still regions to happen where there are minimal
pixel fluctuations across time. Hence, we take the maximum
RGB L1 distance of each pixel from the mean image of the
warped video Ŵ (x,y) across all frames, as shown in Fig-
ure 6g.

M(x,y) = maxt(|Ŵ (x,y)−W (x,y, t)|); (2)

5.2. Energy Function

There are two types of energies; node potentials Ψ and seam
costs Φ. Each node n in the MRF has an energy associated
with it depending on its label. A is a constant set to 1000000
to discourage any dynamic regions from being assigned a
static label. Then the node potential Ψ is defined as:

Ψ(n,λ) =

{
A×D(n), if λ = still
S(n), if λ = warp

(3)

Seam costs are defined over 2 neighboring nodes n1 and n2
depending on their assigned labels. Let λ(n) be the assigned
label at node n and C(n,λ(n), t) be the color of the pixel p
at the node location from its respective label source at frame
t. If the labels of the neighboring nodes are equal (λ1 = λ2),
the seam cost is zero. Otherwise, the seam cost Φ̂ at time t is

Φ̂(n1,n2,λ1,λ2, t)=
γ(n1,n2,λ1,λ2, t)
Z(n1,n2,λ1,λ2, t)

(4)

γ(n1,n2,λ1,λ2, t)=|C(n1,λ1, t)−C(n1,λ2, t)|2 (5)

+|C(n2,λ1, t)−C(n2,λ2, t)|2

This seam cost is based on the work of Agarwala et
al. [ADA∗04]. Function γ measures the color similarity of
the source pixels at the two nodes along the seams, while Z
measures the edge strength of the warped video. Therefore,
Φ̂ encourages seams to have similar colors or lie at edges in
the warped video.

Z(n1,n2,λ1,λ2, t) = (6)
σ(n1,n2,λ1, t) λ1 ∈ warp ∧λ2 ∈ still
σ(n1,n2,λ2, t) λ1 ∈ still ∧λ2 ∈ warp
1
2 [σ(n1,n2,λ1, t)
+σ(n1,n2,λ2, t)] Otherwise

where σ(n1,n2,λ, t) is the edge strength within a pixel
source λ and is computed with a 3× 3 Sobel filter averaged
across RGB.

Since we are using a 2D MRF instead of a 3D MRF, we
collapse the seam cost across time to compute the best over-
all static compositing matte. We also include M(n) in the
seam cost to encourage seams to occur in regions that have
minimal pixel variation over time.

Therefore, the total seam cost Φ, across all time is

Φ(n1,n2,λ1,λ2)=∑
t

Φ̂(n1,n2,λ1,λ2, t)+α(M(n1)+M(n2))

(7)

where α = 200. In total, our energy function which we
seek to minimize is:

N
4 ∑

n
Ψ(n,λ)+ ∑

n1,n2
Φ(n1,n2,λ1,λ2) (8)

where N is the total number of frames in the output video. Ψ

provides constraints on which general region should be static

c© 2013 The Author(s)
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(a) User strokes (b) Automatic (c) User strokes (d) Automatic (e) User strokes (f ) Automatic

Figure 7: Comparison of the tracks selected using user-provided green strokes [BAAR12], versus our automatic method. Notice
that our method selects fewer but more crucial tracks for stabilization. Our method has the advantage of selecting tracks that are
very near moving regions where it is hard for the user to draw appropriate strokes.

or dynamic while Φ encourages seams to occur between pix-
els with similar colors and a stable appearance over time,
or lie at an edge. We minimize this energy function using
the alpha-expansion algorithm [BVZ01]. Once a labeling is
computed, we create a final video simply by copying pixels
from their respective sources.

6. Results

We captured 15 portrait videos and produced cinemagraphs
to demonstrate the wide range of results our algorithm can
create. Input sequences range from 5 seconds to 10 seconds.
We resize the frame to 405 by 720 pixels. The videos are
captured using DSLRs as well as mobile phones. Please refer
to our main video and portrait cinemagraphs for each model
for the final results, as well as the supplementary material
for comparisons.

Comparisons: To evaluate the quality of our result, we
show some comparisons of our automated cinemagraphs
against a user-directed cinemagraph [BAAR12] in Figure 7.
Notice that the stabilization in the result video is equally
good even though our method selects fewer (but the most
critical) tracks. Our method is capable of selecting tracks
within the face that might be too tedious for the user to se-
lect with fine strokes, such as tracks that are between the eyes
(Figure 7b,d,f). The compositing seams are also comparable
even though our method uses only a 2D matte (see videos).
In some cases, our method includes a small portion of the
background in the final output, which can be distracting as
the background will be animated. This could be due to the
use of a static 2D matte or the automatic approach failing to
find a compositing seam within the face.

In some examples, the motion of the camera and face is
simple and a regular video stabilization algorithm will be
able to stabilize the input video well enough for creating
cinemagraphs. However, input videos with moving back-
grounds or erroneous tracks in the background region can
cause regular video stabilization to fail. Our method does

not suffer from this issue because we only use tracks which
lie on stationary regions on the face and torso. Please refer
to the supplementary material for comparisons.

Another comparison we perform is to a naive algorithm
that does not first prune tracks on dynamic facial expres-
sions. Given the inlier/outlier ratios for each of our 15
videos, we simulate the number of RANSAC iterations
needed to give a 99% probability of finding the correct ho-
mography. We find an average reduction in the number of
iterations to be a factor of 27, with the largest reduction a
factor of 185 across our examples.

Timings: The timings for each stage of our pipeline are
shown in Figure 8. Our current implementation is single
threaded and timings are measured on a 2 Ghz Intel i7 lap-
top. Our method is faster than previous work in all stages of
the pipeline. For track selection, our method averages 0.70
seconds while a user will take 90 seconds [BAAR12], on av-
erage. Since our warp is simpler, our timings are also much
faster. Our 2D graph cut is significantly faster than previ-
ous work due to the smaller number of nodes as well as
the smaller set of labels. Our average compositing times are
14.41 seconds while the average compositing time in previ-
ous work is about 600 seconds for shorter videos [BAAR12].
Also, previous work often required iterations from the user
to improve the input strokes.

Eyes and Eyebrow: All the input videos have eye move-
ment from blinking. Our algorithm successfully composites
the blinks as well as any eyebrow movements into the final
cinemagraph. The large movements of the eyebrow in Model
A are successfully retained and animated in the output cin-
emagraph. However, for some examples such as Model R,
slight movements beyond the eye are also included in the
output cinemagraph as seen in the video.

Lips and Jaw: Most of our examples have mouth move-
ments such as smiles that are successfully animated in their
output cinemagraphs. Jaw movements are the hardest to
composite as the face usually changes its appearance signif-
icantly. Track selection becomes harder as there are fewer
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Eg. # Track Warp Comp Total
frames (Sec. 3) (Sec. 4) (Sec. 5)

A 131 0.43 s 3.86 s 5.53 s 9.82 s
B 235 0.69 s 6.78 s 12.97 s 20.44 s
C 383 0.69 s 11.19 s 43.62 s 55.5 s
D 243 0.93 s 7.38 s 14.51 s 22.82 s
E 157 0.76 s 5.10 s 7.77 s 13.63 s
F 157 0.44 s 4.49 s 8.33 s 13.26 s
G 157 0.56 s 5.39 s 9.28 s 15.23 s
J 279 0.60 s 8.53 s 19.91 s 29.04 s
M 181 0.76 s 6.33 s 12.12 s 19.21 s
N 281 1.70 s 9.64 s 21.88 s 33.22 s
R 292 0.83 s 9.02 s 22.52 s 32.37 s
S 153 0.57 s 4.02 s 6.57 s 11.16 s
T 180 0.43 s 5.48 s 10.18 s 16.09 s
U 180 0.53 s 5.70 s 9.61 s 15.84 s
Y 180 0.72 s 5.93 s 11.37 s 18.02 s

Figure 8: The timings for track selection, warping, composit-
ing and total time taken of our automatic algorithm for all
our examples. Please look at our accompanying video for
the results. Models E,F,T are shot with a mobile phone.

static tracks. The margin of error for compositing is also
greatly reduced as most of the face is animated. Therefore,
no previous work demonstrates animated smiles. None the
less, our algorithm successfully composites large jaw move-
ments and smiles such as Model B and Model R, as shown
in our video. Notice that while there are large motions for
the entire face for Model R, we are still able to generate a
good portrait cinemagraph.

Failures: Our method fails at times when the facial defor-
mation is too large and too fast. Our seam cost is an average
of the seam costs across time. Therefore, if a large deforma-
tion lasts for only a short period of time, the aggregate seam
cost will not change significantly and the composite will be
poor as shown in Figure 9a as well as our video result.

User Study: The aesthetics of portrait cinemagraphs can
be rather subjective as some people find the motion of only
parts of the face surreal or uncanny. Therefore, we con-
ducted a user study on Amazon Mechanical Turk to bet-
ter understand how the general population would respond to
portrait cinemagraphs. We showed 30 users 7 sets of results
(30 HITs, each HIT has 7 sets). For each set, we showed
the still image, the input video and our cinemagraph result
side-by-side and asked them to pick their favorite medium
to represent each person. We recorded 218 total votes and
80.3% of them were in favor of dynamic portraits (either in-
put video or cinemagraph). 53.0% of the total votes were for
cinemagraphs and only 19.7% were for a still image. Our
collected votes yield χ

2 = 40.5229 when computed against
an expected uniform distribution and exceeds the χ

2 value of
13.82 for p = 0.001 with 2 degrees of freedom. Therefore,

(a) (b) (c) (d)

Figure 9: The example in (a) has a poor compositing result
at the mouth due to the sudden large movement. The average
seam cost is dominated by the rest of the video. The facial
features detection is bad in examples (b),(c) and (d). While
example (c) still produces a good result due to the correct
estimates for the mouth and jaw, examples (b) and (d) are
failures.

the survey supports our hypothesis that people do in general
prefer cinemagraphs for portraits. We also asked the users
if they would use an automated technique to generate their
own cinemagraphs and 73.3% of them indicated that they are
willing to try such a technique.

Limitations: Since our method is dependent on accurate
facial feature tracking, we will not always produce good re-
sults if the facial feature tracker fails. In the example shown
in Figure 9b, the jaw is moving but the face tracker fails to
accurately detect its location. As a result, the video is stabi-
lized with respect to the jaw causing the head to move up and
down in the result video. Our method works in some cases
when the facial feature tracker is partially correct as shown
in Figure 9c but will certainly not work when it misses the
face entirely as in Figure 9d.

Since we are using a spatially-varying warp to align faces,
we cannot handle large rotations of the face, where occlu-
sions as well as depth discontinuities become prominent.

7. Conclusions and Future Work

We have presented a fully automated technique for creating
portrait cinemagraphs that requires no user input; the user
simply captures a hand-held video and receives a portrait
cinemagraph. Our technique also runs faster than previous
work due to a more efficient MRF optimization and a sim-
pler one-stage warp. The key contribution is a technique for
segmenting facial feature tracks into those that are part of
facial expressions, and those that track the overall face pose.
Also, by defining energy functions unique to our problem,
we can automatically composite the warped video to create
a portrait cinemagraph.

One avenue for future work would be to automatically de-
tect and composite additional moving regions such as cloth
or hair onto the final cinemagraph. These regions are signifi-
cantly more difficult to handle, especially when the person is
moving in the video, because of motion ambiguity between
the background, cloth, hair, and rest of the person.
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In summary, we believe our automatic technique will em-
power novice users with the ability to create their own cin-
emagraph portraits without effort and expertise. As cinema-
graph portraits are more expressive than static photographs,
we think that they will eventually become a popular alterna-
tive to conventional portraits in webpages and social media.
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