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Soft shadows from area lights are one of the most crucial effects in high-
quality and production rendering, but Monte-Carlo sampling of visibility is
often the main source of noise in rendered images. Indeed, it is common
to use deterministic uniform sampling for the smoother shading effects in
direct lighting, so that all of the Monte Carlo noise arises from visibility
sampling alone. In this article, we analyze theoretically and empirically,
using both statistical and Fourier methods, the effectiveness of different
nonadaptive Monte Carlo sampling patterns for rendering soft shadows.

We start with a single image scanline and a linear light source, and
gradually consider more complex visibility functions at a pixel. We show
analytically that the lowest expected variance is in fact achieved by uniform
sampling (albeit at the cost of visual banding artifacts). Surprisingly, we
show that for two or more discontinuities in the visibility function, a com-
parable error to uniform sampling is obtained by “uniform jitter” sampling,
where a constant jitter is applied to all samples in a uniform pattern (as
opposed to jittering each stratum as in standard stratified sampling). The
variance can be reduced by up to a factor of two, compared to stratified or
quasi-Monte Carlo techniques, without the banding in uniform sampling.

We augment our statistical analysis with a novel 2D Fourier analysis
across the pixel-light space. This allows us to characterize the banding
frequencies in uniform sampling, and gives insights into the behavior of
uniform jitter and stratified sampling. We next extend these results to planar
area light sources. We show that the best sampling method can vary, depend-
ing on the type of light source (circular, Gaussian, or square/rectangular).
The correlation of adjacent “light scanlines” in square light sources can re-
duce the effectiveness of uniform jitter sampling, while the smoother shape
of circular and Gaussian-modulated sources preserves its benefits—these
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findings are also exposed through our frequency analysis. In practical terms,
the theory in this article provides guidelines for selecting visibility sampling
strategies, which can reduce the number of shadow samples by 20–40%,
with simple modifications to existing rendering code.
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1. INTRODUCTION

Soft shadows from area lights are a key visual feature in high-
quality and production rendering, and crucial to set the mood of a
scene. Accurate soft shadows are most commonly rendered using
Monte Carlo sampling of visibility to the area light at each pixel.
For complex shadows, there can be considerable Monte Carlo noise,
with hundreds of visibility samples required for acceptable images.
Because of this expense, a number of alternative approximate tech-
niques have been proposed and even used in production, but nearly
all have artifacts or need significant manual parameter turning.

Soft shadow rendering would be considerably more practical if ef-
ficient Monte Carlo sampling strategies for visibility could be found
and analyzed. In this article, we conduct a theoretical study, backed
by empirical results, of different (nonadaptive) sampling strategies.
We obtain new insights based on both the statistical properties of
visibility as a binary function, and a Fourier analysis in the combined
pixel-light space. We differ from previous work in focusing specif-
ically on visibility, rather than Monte Carlo rendering in general.

To develop the theory, we first consider a linear light source and
image scanline, for a 2D visibility field in the pixel-light space. (This
setup introduces the basic insights and methodology, which we then
extend to more general planar area light sources.) While a similar
configuration would apply canonically to flatland visibility, our only
assumption at this stage is a linear light, and we consider a full 3D
scene. For each pixel in this case, the 1D visibility function over
the linear light is binary, switching between 0 and 1 at a finite set of
discontinuities. Our theoretical contributions include the following.

Theory of Visibility Sampling for Linear Lights. First, consider a sin-
gle discontinuity, so visibility is a simple Heaviside step function
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(or its complement) (Section 4.1). In stratified nonadaptive sam-
pling, we show that the lowest expected error is obtained by placing
samples at the center of the stratum for uniform sampling, even
though it is well-known that uniform sampling leads to visual band-
ing artifacts. Some quasi-Monte Carlo methods perform even worse
than stratified sampling in this case, since they often place samples
at the end-points of the stratum.

Uniform Jitter Sampling. Now, consider the case of two discontinu-
ities (Section 4.2), so visibility is a box or rect function, starting at 0
(blocked), moving to 1 (visible), and returning to 0 (blocked)—the
converse case of starting at 1 (visible) is equivalent. In this case, if
the two discontinuities are in different strata, we derive a surprising
result—error comparable to uniform sampling, but without banding
artifacts, can be achieved by “uniform jitter” sampling, where we
jitter a uniform grid, rather than jittering each stratum separately. In
essence, the uniform jitter correlates the sample location at both dis-
continuities, leading to lower expected variance, by a factor of two,
than stratified jittered sampling. While the uniform jitter method has
been reported before in the literature (for example, the jittered offset
quadratures in Ouellette and Fiume [2001]), it is very rarely used
to our knowledge, and our article argues that it has much greater
practical significance.

2D Pixel-Light Fourier Analysis. Of course, uniform sampling is
not used in practice, as it leads to banding. We conduct a novel 2D
Fourier analysis in the pixel-light space (Section 5), showing how
banding arises from amplification of select spatial frequencies. We
also show, through Fourier analysis diagrams, how uniform jitter
sampling alleviates the banding concerns in pure uniform sampling.
Our analysis is based on the sheared shape of the Fourier spectrum
for visibility, as recently derived in Egan et al. [2011].

Planar Area Light Sources. We next seek to extend these linear
light results to planar area lights (Section 6). Interestingly, the
best sampling pattern depends on the type of light source (circular,
Gaussian, square), as shown in Figure 1. For square or rectangular
lights, uniform jitter sampling can lead to undesirable correlations
between different “light scanlines” in the sampling pattern. On the
other hand, for smoother falloffs like Gaussian or circular lights,
uniform jitter sampling outperforms standard stratified sampling,
or extensions like quasi-Monte Carlo sampling, and the method for
circular sources [Shirley and Chiu 1997]. These results can also
be understood with a Fourier analysis of the Monte Carlo sampling
strategy.

We validate all of our theoretical results with a number of empir-
ical simulations and results on actual scenes of varying complexity.
While this article is focused primarily on a theoretical analysis of
visibility sampling, our results also have practical implications. All
of the Monte Carlo sampling strategies discussed here are very sim-
ple, which indicates that 20%–40% fewer samples can be used with
minor modifications of existing code. In fact, we have implemented
all of the methods as simple shaders for both offline rendering us-
ing Renderman (which is what the results in this article report on),
and for interactive ray-tracing using NVIDIA’s Optix (as shown in
the accompanying video). While we focus on still image render-
ing, similar ideas apply to video, since each frame can simply be
rendered with the appropriate sampling method.

2. PREVIOUS WORK

This article draws on a rich literature in Monte Carlo and adaptive
sampling, analysis of visibility, and signal-processing methods.

Monte Carlo Sampling. Different strategies for Monte Carlo sam-
pling have been studied since Cook’s seminal work on stochastic

Uniform Jitter, Circle Light, 20 Samples

Uniform Jitter Stratified Sampling

Circle
Light

Light
Square

(Square 16 samples RMS 13.4%)

(Circle 20 samples RMS 8.32%)(Circle 20 samples RMS 6.59%)

Uniform Jitter Stratified Sampling
(Square 16 samples RMS 10.4%)

Fig. 1. This article shows that different sampling strategies perform better
for different light source types. For circular lights (image and top row),
uniform jitter sampling, that jitters a uniform grid at each pixel, has less
noise than pure stratified sampling. (While the sample in each stratum is
jittered independently in stratified sampling, only a single jitter per pixel is
used in uniform jitter, and applied to each stratum.) For square lights (bottom
row), the converse is true, with stratified sampling performing better. These
images are shown with a relatively small number of samples throughout the
article, to allow the reader to better assess the noise characteristics. Model
courtesy Juan Buhler and Pixar, used with permission. c©Disney/Pixar

sampling [Cook 1986] and earlier studies on antialiasing and ray-
tracing [Dippe and Wold 1985; Lee et al. 1985; Purgathofer 1986].
Mitchell [1987] has conducted some notable work on optimal sam-
pling patterns. It is clear that purely random sampling is usually
suboptimal, and better results can be obtained with stratified sam-
pling [Mitchell 1996], where the sample location in each stratum is
jittered (also known as jittered stratified sampling). A more uniform
distribution of samples can sometimes be achieved by quasi-Monte
Carlo methods [Niederreiter 1992; Heinrich and Keller 1994]. A fre-
quency analysis indicates that the blue noise pattern [Cook 1986]
can be desirable, and many recent works have focused on efficient
Poisson disk sampling patterns [Wei 2008; 2010]. A comprehensive
empirical study of Monte Carlo sampling strategies for linear lights
is conducted in Ouellette and Fiume [2001].

Most strategies discussed in our article are based on stratified
sampling, focusing on where in the stratum to place each sample. We
also briefly discuss quasi-Monte Carlo strategies. We are inspired
by the previous literature, but differ in focusing purely on visibility,
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where its particular form allows us to derive further insights into
the best sampling patterns.

Adaptive Sampling. Greater efficiency can sometimes be obtained
with a variety of adaptive sampling techniques [Mitchell 1991; Guo
1998; Hachisuka et al. 2008; Overbeck et al. 2009]. There are also
methods specialized to exploit shadow coherence [Agrawala et al.
2000; Ben-Artzi et al. 2006], and recent techniques for sheared
reconstruction [Egan et al. 2011]. While these methods show the
promise for great speedups in the future, many of them can some-
times have undesirable artifacts in complex regions, and in some
cases involve manual parameter tuning.

This article focuses on (nonadaptive) standard Monte Carlo sam-
pling, since that is still the most common method for accurate
evaluation of soft shadows. We believe the approach in this arti-
cle is largely orthogonal to adaptive sampling methods, which can
leverage our insights separately at each refinement level. More-
over, shadow coherence methods like Agrawala et al. [2000] and
Ben-Artzi et al. [2006] are independent of the base sampling
scheme, and are therefore also likely to benefit from our theoretical
analysis.

Analysis of Visibility. The structure of the “visibility skeleton” has
been analyzed in previous work [Durand et al. 1997], but these
results have been employed primarily for finite element radiosity
methods, rather than Monte Carlo rendering. We also draw on fre-
quency and first-order shadow analyses in Ramamoorthi et al. [2005,
2007], and Lanman et al. [2008], but note that these works focus
on different theoretical questions. Our assumptions on the visibility
field are more lightweight, essentially assuming that it is a binary
function, and exploiting basic properties of its Fourier spectrum.

Signal-Processing. Many of our insights are derived from a Fourier
analysis of visibility and Monte Carlo integration. In particular, we
conduct a 2D Fourier analysis in pixel-light space. We are inspired
by the space-angle Fourier analysis in Durand et al. [2005], and its
application to understanding the sheared visibility spectrum [Egan
et al. 2011]. A Fourier analysis or signal-processing view of Monte
Carlo integration is rare in the literature, but we are inspired by
the frequency periodograms in Ouellette and Fiume [2001], and the
similar analysis in Durand [2011]. We extend these works in consid-
ering the full 2D pixel-light space, combining Fourier analysis with
statistical properties of the visibility function, considering area light
sources, and by analyzing different sampling patterns specifically
for visibility.

3. BACKGROUND

We now introduce the basic background and notation for the article.
The direct lighting from an area source can be written as

B(x) =
∫

[0...1]×[0...1]
L(y)T (x, y)V (x, y) dy, (1)

where B is the reflected radiance or image intensity, L is the lighting,
V is the visibility, and the image is parameterized by x, while the
light source is parameterized by y (these will in general be 2D
quantities that we map onto the unit square, although we start by
analyzing the case of 1D linear light sources). T is the transport
term that includes the BRDF, as well as the geometric form factor
from the surface to the light source.

Our main focus is on diffuse soft shadows, since a different
reflection technique (and layer) is often used for glossy highlights
in production applications. One common simplification in previous
work [Soler and Sillion 1998; Agrawala et al. 2000; Egan et al.
2011] is that the transport is sufficiently low frequency that it can

be factored out of the integral, and substituted by its average value
T̄ ,

B(x) ≈ T̄ (x)
∫

[0...1]×[0...1]
L(y)V (x, y) dy. (2)

A more accurate version of this approximation uses stratified sam-
pling for evaluating the visibility integral, where the sample lo-
cations in each stratum are chosen randomly to evaluate V , but
deterministically (typically at the center of the stratum) to evaluate
the lower-frequency T . This approach does introduce some bias,
but the reduced variance is usually an acceptable trade-off. Indeed,
the variance is now only in soft shadow regions, due to visibility
alone.

In this article, we focus on computing

V̂ (x) =
∫

[0...1]×[0...1]
L(y)V (x, y) dy, (3)

where V̂ (x) is the net visibility. An important special case occurs
for a uniform light source, where we can assume L(y) = 1,

S(x) =
∫

[0...1]×[0...1]
V (x, y) dy, (4)

where S(x) is the fractional visibility or attenuation, and we assume
we have normalized, so we are integrating over a unit area.

In the rest of this article, we will consider direct, nonadaptive
Monte Carlo evaluation of Eqs. (3) and (4). In parts of the analysis
we will also assume characteristic features of V , namely that it is a
binary indicator function (either 1 or 0), with a fixed (usually sparse)
set of discontinuities, where its value changes. These specialized
forms, that abstract and isolate the key issues involved in computing
soft shadows, allow us to derive new insights regarding various
Monte Carlo sampling strategies.

4. SAMPLING LINEAR LIGHT SOURCES

We first analyze the simpler case of linear light sources, also focus-
ing on a single image scanline, so x and y are scalars. The visibility
function V (x, y) can now be visualized as a 2D quantity. This anal-
ysis introduces our key statistical methodology, which we extend in
the next sections to Fourier analysis and planar area lights.

To proceed further, we assume the visibility function is binary
(0 or 1), as is the case for opaque objects. Now, we can characterize
the visibility at each pixel V (·, y) solely by the number and location
of the discontinuities, where it toggles between 0 and 1, as shown
in Figure 2. We will gradually consider more complex assumptions
about visibility, which increase the number of discontinuities. We
consider Eq. (4) in this section; Section 5.3 will briefly generalize
the results to a varying light source in Eq. (3).

4.1 Single Discontinuity—Heaviside Function

The case where visibility is a constant at a pixel, with no discon-
tinuities (completely blocked or fully visible) is not interesting,
since any Monte Carlo sampling scheme for Eq. (4) will have zero
variance. Therefore, we first consider the simplest interesting case,
where for each pixel, V (·, y) has a single discontinuity (Figure 2(a)),

S =
∫ 1

0
H (y − y0) dy, (5)

where H is the Heaviside step function, and we omit the variable x
since we are focusing on a single pixel. This assumes the visibility
transitions from 0 to 1 at y0 (we could also use 1−H for transitioning
from 1 to 0 with similar insights).
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Heaviside Function
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Fig. 2. Schematic of visibility for a single pixel V (·, y) for a linear light
source. Visibility is a binary indicator function, and can be completely
characterized by the structure of the discontinuities where it transitions
between 0 and 1. From left to right: (a) a single discontinuity: visibility
is a Heaviside step function, (b) two discontinuities: visibility is a box
function, and (c) multiple discontinuities which are grouped into multiple
box functions.

It is clear that the correct value for the fractional attenuation is
S = 1 − y0. Our goal is to analyze the error in evaluating Eq. (5)
by Monte Carlo sampling, keeping in mind that we do not know a
priori that the visibility has a single discontinuity, nor what y0 is,

S̄ = 1

N

N∑
k=1

H (yk − y0), (6)

where yk are the N evaluation points for Monte Carlo sampling.

4.1.1 Error Analysis of Sampling Schemes. Clearly, the error
of Eq. (6) depends on the number of yk < y0. Calling this number
A(y0; yk), we have that S̄ = 1 − A(y0; yk)/N , with error

|S − S̄| =
∣∣∣∣A(y0; yk)

N
− y0

∣∣∣∣ ≤ D∗
N (yk). (7)

The worst-case error is the highest over all possible values for y0,
and is known as the star discrepancy D∗

N (yk) of the Monte Carlo
sampling pattern [Niederreiter 1992].

In 1D, a lower bound on the star discrepancy is given by the
relation D∗

N (yk) ≥ 1/(2N ). It is easy to see intuitively that the
bound is met by a uniform sampling pattern, that has

yk =
[

1

2N
,

3

2N
, . . . ,

2N − 1

2N

]
. (8)

Figure 3(a) shows how the error varies with the location of y0 for
uniform sampling. The maximum error is 1/(2N ) as expected (it
will vary between −1/(2N ) and +1/(2N )). It is also easy to see that
the average error across all y0 is minimized by uniform sampling (it
must be, assuming a uniform probability distribution for y0, since
no “clumpy” configuration for samples can be preferred).

Uniform and Stratified Sampling. We note that uniform sampling
can be viewed as a special case of stratified sampling, with the
strata boundaries at (1/N, 2/N, . . . , (N−1)/N, 1), and the samples
always placed at the center of each stratum. In contrast, standard
jittered stratified sampling places samples at a random location
within the stratum. The errors in evaluation of S arise only from
the stratum in which the discontinuity y0 lies, which without loss of
generality can be taken as the first stratum, in the range [0, 1/N ].

In this case, the error depends only on the relative location of y0

and the Monte Carlo sample in the first stratum y1, that is, whether
y1 > y0 (stratum value 1) or y1 < y0 (stratum value 0). Plugging
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Fig. 3. Absolute error as a function of the discontinuity location y0, for
uniform sampling, random sampling, stratified sampling with jitter, and
quasi-Monte Carlo (Halton base 2). These plots use N = 8, and the sample
points are shown on the top of each plot. Uniform sampling has maximum
error = 1/(2N ) = 0.0625, while stratified and Halton have a maximum
error of 1/N = 0.125, and (unstratified) random sampling has much higher
errors. Note that Halton performs worse than stratified, because samples are
often placed at the ends of a stratum.

into Eq. (7) (and remembering that y0 ∈ [0, 1/N ]),

S − S̄ = H (y0 − y1)

N
− y0 = 1

N
[H (ŷ0 − ŷ1) − ŷ0] , (9)

where it is convenient to define a normalized ŷ0 = Ny0, as well as
ŷ1 = Ny1, which lie in the range ŷ0, ŷ1 ∈ [0, 1]. The error is

|S − S̄| = 1
N

(1 − ŷ0) : ŷ1 < ŷ0

= 1
N

ŷ0 : ŷ1 > ŷ0, (10)

which is easily verified as the error in sampling a Heaviside function
with one sample (and where the factor of 1/N accounts for the
localization of the discontinuity to a single stratum).

In the uniform sampling case, ŷ1 = 1
2 , and the maximum error

is 1/(2N ) as expected. For jittered stratified sampling, ŷ1 can lie
anywhere in the range from 0 to 1, and the maximum possible error
is twice that, 1/N . It is also instructive to look at the expected
variance (and corresponding standard deviation or RMS error) over
all ŷ0, given by

〈
(S − S̄)2

〉 = 1

N 2

(∫ ŷ1

0
ŷ0

2 dŷ0 +
∫ 1

ŷ1

(1 − ŷ0)2 dŷ0

)

= 1

3N 2

(
ŷ1

3 + (1 − ŷ1)3
)
. (11)

This expression makes clear that the expected error depends (only)
on where in the stratum the Monte Carlo samples are taken. The
error is clearly minimized when ŷ1 = 1 − ŷ1, that is, for uniform
sampling when ŷ1 = 1

2 . In this case,
〈
(S − S̄)2

〉
UNIF

= 1/(12N 2). For
jittered stratified sampling, computing the expected error requires a
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Sample Location in Stratum Worst-Case RMS Error Variance

End-Points of Stratum 1
N

1√
3N

1
3N2

Random (Jittered) 1
N

1√
6N

1
6N2

Center (Uniform) 1
2N

1√
12N

1
12N2

Fig. 4. Errors in stratified sampling of linear lights with one visibility
discontinuity. Different sample placement strategies are shown, including
end-points (worst), standard jittered, and center of stratum (uniform sam-
pling).

further averaging over ŷ1, and we obtain

〈
(S − S̄)2

〉
STRAT

= 1

3N 2

∫ 1

0

(
ŷ1

3 + (1 − ŷ1)3
)

dŷ1

= 1

6N 2
. (12)

These results are summarized in Figure 4. Uniform sampling has
the lowest expected error, with both worst-case and RMS twice as
good as the extreme of placing samples at one end of the stratum.
Stratified jittered sampling would require

√
2 ≈ 1.4 times as many

samples to achieve the same error as uniform sampling.
Inspite of these advantages, uniform sampling is rarely used, as

it can lead to banding in the image. This is due to the correlation
in sampling pattern for different pixels. In Section 5, we develop
a Fourier analysis that gives important new insights into both the
optimal error nature of uniform sampling, and the banding artifacts.
In Section 4.2, we show how a simple modification of uniform
sampling can potentially achieve the same error performance for
more complex visibility functions, without banding artifacts.

Other Sampling Strategies. We also briefly touch on Quasi-Monte
Carlo (QMC) methods. In essence, these are techniques for generat-
ing low-discrepancy patterns that may have close to ideal blue-noise
spectra, and are superior in many cases to stratified jittered sam-
pling. Figure 3 includes results using the QMC Halton sequence
[Keller 1997]. Surprisingly, the performance for this application is
worse than stratified sampling, and just marginally better than the
worst-case result (end-points of stratum) in Figure 4.

Some intuition is provided by considering the first four points
of the Halton sequence with base 2, [1/2, 1/4, 3/4, 1/8]. In terms
of our discussion of stratified sampling, the strata boundaries lie at
[1/4, 1/2, 3/4, 1]. Three of the four Halton points (1/2, 1/4, 3/4)
lie at the end-points of a stratum, and only one (1/8) lies at the
stratum center. Thus, while the Halton sequence does stratify its
samples well, the placement largely at the boundary of a stratum is
not ideal, and is in fact a poor choice of ŷ1 in Eq. (11).

Much recent attention has focused on sampling and reconstruc-
tion using compressive sensing [Candes 2006; Candes et al. 2006;
Candes and Tao 2006], and the method has been applied to Monte
Carlo rendering [Sen and Darabi 2010]. While a Heaviside function
for visibility is inherently sparse in a wavelet or other basis, the
benefits of compressive sensing arise largely from using random
measurement patterns, not from point sampling. It is possible to use
compressive sensing with a randomly chosen set of point samples,
but the signal needs to be sparse in an incoherent basis, typically
the Fourier series. Since visibility has sharp discontinuities, it is
sparse only in a wavelet or other localized representation, not in
the Fourier basis. Indeed, for any nonadaptive sampling scheme,
the errors are bounded by Eq. (11), and cannot be improved by
compressive methods.

For smooth integrands, higher-order methods such as Simpson’s
rule and Gaussian quadratures can give significantly faster conver-
gence. However, visibility discontinuities correspond to the canoni-
cal nonsmooth indicator function, and therefore mitigate most ben-
efits, as compared to the simple mid-point rule on which uniform
sampling is based. In fact, Simpson’s rule can be seen as approx-
imately the same as uniform sampling, but with different weights
for different strata, which will somewhat increase RMS error.

4.2 Two Discontinuities—Boxcar Function

We now consider the case where the visibility at a pixel V (·, y) is
a boxcar function (also known as a box or rect function), with two
discontinuities (Figure 2(b)). Formally (compare to Eq. (5),

S =
∫ 1

0
(H (y − y0) − H (y − z0)) dy, (13)

where the two discontinuities are noted as y0 (visibility goes from
0 to 1) and z0 (visibility goes from 1 to 0), and we assume that
we have z0 > y0. Such structures are common for many canonical
configurations as shown in Figure 2(b). The true value of the integral
is S = z0 − y0, and Monte Carlo sampling evaluates it as

S̄ = 1

N

N∑
k=1

H (yk − y0) − H (yk − z0). (14)

4.2.1 Error Analysis of Sampling Schemes. We now make the
crucial assumption that the discontinuities in y0 and z0 lie in different
strata. This assumption is generally valid for most scenes, since
different geometric regions are involved (for example, the left and
right parts of a blocker that would be well-separated in angle).
Indeed, the purpose of stratification is to group different visibility
events or regions in different strata.1 Under this assumption, like in
the single-discontinuity case, the error for any stratified sampling
scheme is determined entirely by the sample placement in the two
strata of interest. In fact, Eq. (9) can be generalized to

S − S̄ = 1

N
[(H (ŷ0 − ŷ1) − ŷ0) + (ẑ0 − H (ẑ0 − ŷ2))]

= 1

N
[(ẑ0 − ŷ0) + (H (ŷ0 − ŷ1) − H (ẑ0 − ŷ2))] . (15)

It is important to understand that without loss of generality, we
have placed the two discontinuities in the first and second strata,
with ŷ1 corresponding to ŷ0 and ŷ2 to ẑ0. The normalized values of
all variables lie between [0, 1], corresponding to the fraction of the
stratum they are in. In particular, ẑ0 is the fractional value along the
stratum, not the global value of z0. A schematic is in Figure 5.

Now, define � = ẑ0 − ŷ0 ∈ [−1, 1]. There are four cases of
interest, analogous to Eq. (10),

S − S̄ = �
N

: ŷ0 < ŷ1 , ẑ0 < ŷ2

= − 1−�
N

: ŷ0 < ŷ1 , ẑ0 > ŷ2

= 1+�
N

: ŷ0 > ŷ1 , ẑ0 < ŷ2

= �
N

: ŷ0 > ŷ1 , ẑ0 > ŷ2. (16)

Since � ∈ [−1, 1], the maximum error in preceding lines 2 and 3
can be 2/N . This is expected (the worst-case error is twice that for

1In cases of thin fibers or other tiny geometry, stratification itself often has
little benefit, and the analysis in this article doesn’t apply. Indeed, pure
random sampling performs as well as most other methods, as shown in
Figure 21.

ACM Transactions on Graphics, Vol. 31, No. 5, Article 121, Publication date: August 2012.



121:6 • R. Ramamoorthi et al.

V
0

1

y0 z0

Strata with 
discontinuity
Uniform
Stratified
Uniform Jitter

V
0

1

V
0

1

z0

ŷ
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Fig. 5. Left: Schematic for boxcar function visibility (two discontinuities).
Right: Assuming the discontinuities can be localized into distinct strata, the
results depend only on the discontinuity and sample location within those
strata. We show the sampling schemes for uniform (red, at center of stratum),
uniform jitter (two possibilities shown in green, the sample location is the
same for both strata, but jittered over the full pixel), and for stratified (one
possibility shown in orange; jittering is independent for both strata). The
orange stratified case shown here is the one of highest variance (00 in both
strata). Uniform jitter eliminates this high-variance case (it can only be 01,
11 or 10, not 00 for this example).

sampling a single discontinuity). If we assume without loss of gen-
erality that � ≥ 0, then the maximum error is in the third preceding
line, where |S − S̄| = (1 + �)/N > 1/N . We will now show that
uniform sampling, and a variant we call uniform jittered sampling,
eliminate this “bad” case (when ŷ0 > ŷ1 , ẑ0 < ŷ2 , ẑ0 > ŷ0), and
hence have lower worst-case and expected variance. This is also
shown schematically in Figure 5.

First, consider uniform sampling, so ŷ1 = ŷ2 = 1
2 . Now, assume

� > 0 so that ẑ0 > ŷ0. But in this case, if ŷ0 > 1
2 , we must also have

ẑ0 > 1
2 . Therefore, the third line in Eq. (16) can never occur, and

the worst-case error is only 1/N , or half that for general stratified
sampling, as in the case of a single discontinuity.

Uniform Jittered Sampling. In fact, it is easy to see that the same
benefits are obtained by a uniform jittered sampling, which com-
bines many of the benefits of uniform and stratified sampling. While
this scheme is similar to the jittered offset quadratures reported in
Ouellette and Fiume [2001], it is rarely used to our knowledge,
and we believe it deserves more attention. In particular, we set
ŷ1 = ŷ2 = γ as in uniform sampling, but where γ is a randomly
chosen variable as in stratified sampling (rather than 1

2 in uniform
sampling). In other words, we take the uniform sampling pattern,
and jitter it by a constant offset at each shading location (image
pixel). Each stratum has its sample jittered by the same amount, as
opposed to stratified sampling that jitters each stratum separately.
We will see that this approach preserves much of the variance reduc-
tion from uniform sampling for shadows from linear light sources,
while eliminating the banding artifacts (γ is different for each pixel).

As for uniform sampling, if we assume � > 0 so that ẑ0 > ŷ0,
the fact that ŷ0 > γ implies that ẑ0 > γ , so the bad case in the
third line of Eq. (16) is eliminated. In fact, we can now reformulate
Eq. (16) in the general case (with � positive or negative) as

|S − S̄| = |�|
N

: ŷ0 < γ , ẑ0 < γ

= 1−|�|
N

: ŷ0 < γ , ẑ0 > γ

= 1−|�|
N

: ŷ0 > γ , ẑ0 < γ

= |�|
N

: ŷ0 > γ , ẑ0 > γ. (17)

Sampling Method Worst-Case RMS Error Variance

Stratified 2
N

1√
3N

1
3N2

Uniform Jitter 1
N

1√
6N

1
6N2

Uniform 1
N

1√
6N

1
6N2

Fig. 6. Errors in stratified sampling of linear lights with two discontinuities
(visibility is a boxcar function). Uniform jittered sampling achieves the same
expected variance as uniform sampling, and reduces error by a factor of two
compared to stratified sampling.

Expected Variance. Having considered the worst-case error, we
now compute the expected variance for different sampling schemes,
assuming a uniform distribution in the discontinuity locations ŷ0 and
ẑ0. By doing the calculations explicitly in Eq. (15), using a symbolic
integrator, we obtain a rather simple result that generalizes Eq. (11).

〈
(S − S̄)2

〉 = 1

N 2

[
1

6
+ (ŷ1 − ŷ2)2

]
. (18)

For the two-discontinuity case, the expected variance depends only
on the difference in the sample locations for the two strata, ŷ1 − ŷ2.
This is clearly minimized in the uniform sampling case when
ŷ1 = ŷ2 = 1/2. However, the same variance reduction is achieved
by jittered uniform sampling for any choice of γ , where ŷ1 = ŷ2 = γ,
and γ is chosen randomly for each pixel (but then offsets the sample
in each stratum by the same amount). The expected variance is now
1/(6N 2). This is twice as much as the expected variance for uni-
form sampling for one discontinuity, as expected. The variance for
stratified sampling is obtained by considering ŷ1 and ŷ2 as uniform
variables, and is given by

〈
(S − S̄)2

〉
STRAT

= 1/(3N 2), also twice
that for a single discontinuity.

Perhaps most interestingly, the error for uniform jittered sampling
(1/(6N 2) as for uniform sampling) is the same as in the single-
discontinuity case (in that case, uniform jitter is the same as standard
stratified sampling, since we only care about the sample location
in the one stratum of interest). For a single discontinuity, uniform
jitter cannot help, but with two discontinuities, the error at both
strata is decorrelated by the sampling pattern, to an extent that the
net variance remains the same. These results are summarized in
Figure 6, and should be compared to Figure 4.

4.2.2 Multiple Discontinuities. A more complex visibility
function with multiple discontinuities can be treated by grouping
the discontinuities into individual box functions (reducing to the
two-discontinuity case given before, with possibly an additional
single odd discontinuity), as shown in Figure 2(c). Therefore, this
case reduces2 to the analysis earlier in this section, with each pair or
box function treated separately. Of course, the variance will increase
linearly with the number of discontinuities.

Figure 7(a) shows the variance as a function of the complexity
of the visibility function, for the common case of up to 7 discon-
tinuities. We normalize the variance, multiplying by N 2 to allow
direct numerical comparison with the theory in Figures 4 and 6. As
expected, the variance from uniform sampling is the lowest (given
from Figure 4 by 1/12 times the number of discontinuities), and
that for stratified sampling is twice as large (1/6 per discontinuity).

2It is theoretically possible to construct scenes that have some correlations
between the pairs of discontinuities, that must also be taken into account.
However, we have not found this to occur in practice for general scenes.
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Fig. 7. Graphs showing the expected variance (over 1000 trials, with the
number of samples N = 256) as a function of the number of discontinuities
in visibility for a number of different simulated sampling schemes on linear
lights. The left plot shows the common case of up to 7 discontinuities,
while the right plot shows more extreme behavior, when we have very
complex visibility with possibly multiple discontinuities in a single stratum;
in this limit the performance of all schemes becomes comparable to stratified
sampling. The variance is normalized by multiplying by N2.

Uniform jitter has an error similar to stratified and twice as large
as uniform for a single discontinuity (1/6 versus 1/12). However,
the error does not change as we go to two discontinuities (Fig-
ure 6) and is now comparable to uniform. Indeed, this holds for any
even number of visibility discontinuities, since they can be grouped
into independent box functions. If there is an additional odd dis-
continuity, the variance increases by a constant 1/12. The results
for Halton sampling are even more interesting, and nonmonotonic
between odd and even numbers of visibility changes. For even dis-
continuities, errors behave similarly to uniform jitter and uniform
sampling. However, the errors are larger for odd discontinuities,
since samples are often placed at the end of a stratum (Figure 4).

Figure 7(b) is the extreme case, with very large numbers of dis-
continuities. Since the errors of Halton and uniform jitter are only
a constant offset over uniform for odd numbers of discontinuities,
all three graphs look very similar at this scale. However, stratified
sampling still has about twice as much variance even up to 100 dis-
continuities. However, for extremely complex (essentially random)
visibility, where there are multiple discontinuities in a stratum, our
theory no longer applies and the variance of all methods approaches
that of stratified sampling.

4.2.3 Results . Finally, we verify the analysis with the scene in
Figure 8 using 16 visibility samples. The grids lead to complex soft
shadows that are a good test for the theory. Uniform sampling leads
to banding, even though the numerical error (an average of 3.97%)
is lowest. Uniform jitter achieves almost the same quality (average
error of 4.21%) but without banding. Both methods perform better
than stratified (average error of 5.36%); Figure 8(c) is clearly noisier
than Figure 8(b). Our theory predicts the variance (square of the
standard deviation or error) should be twice as much for stratified
as for uniform sampling. There is good agreement, with the variance
over the whole image being 83% higher for stratified (some parts
of the scene have no visibility events).

In summary, for linear light sources, the extremely simple step
of switching from stratified to uniform jitter sampling for visibility
can reduce the number of samples needed by about 30% in practice
(the maximum theoretical benefit is

√
2 or approximately 40%;

moreover, uniform jitter almost never increases the error relative to
stratified). While this 30% benefit is small, it is concrete, and comes
at minimal implementation or visual cost (no banding), while also
being grounded in a careful theoretical analysis.

5. 2D PIXEL-LIGHT FOURIER ANALYSIS

Section 4 has considered the variance at each pixel separately. Fur-
ther insight can be obtained from a Fourier analysis that simulta-
neously considers an image scanline (spatial) and the linear light
(angular). We refer to this as 2D pixel-light Fourier analysis, since
the spatial and angular dimensions interact [Durand et al. 2005].

5.1 Preliminaries: Fourier Analysis of Monte Carlo
and Visibility Spectrum

To proceed with a frequency analysis, we must first introduce two
important concepts—the Fourier analysis of Monte Carlo integra-
tion, and the form of the visibility spectrum. While Monte Carlo
methods are usually studied statistically, using concepts like mean
and variance, it is known that a Fourier analysis can convey some
insights [Ouellette and Fiume 2001; Durand 2011]. Our contribu-
tion is to extend these ideas to a combined pixel-light analysis, and
consider the effects of various sampling schemes (uniform, strati-
fied, uniform jitter). To do so, we will need to know the form of the
visibility Fourier spectrum. We draw on the recent results of Egan
et al. [2011], who show that the spectrum is a wedge in pixel-light
space for blockers in a range of depths. For simplicity, we consider
blockers at a fixed depth, in which case the spectrum is a line, and
we can derive considerable intuition.

First, consider Monte Carlo evaluation of Eq. (4),

S(x) =
∫ 1

0
V (x, y) dy ≈ 1

N

N∑
k=1

V (x, yk)

=
∫ 1

0
V (x, y)

(
1

N

N∑
k=1

δ(y − yk)

)
dy

S̄(x) =
∫ 1

0
V (x, y)P (x, y) dy, (19)

where we make clear that the discrete Monte Carlo summation
can also be considered as integration against a sampling pattern
P (x, y) that has delta functions at the chosen samples yk . We have
made explicit the dependence of P on x, since for a given sampling
scheme, yk may depend on x (in our case, they are either the same
for all x for uniform or different for stratified sampling).

Now, Eq. (19) can be transformed into the Fourier domain, where
we use bold letters for the Fourier transforms, and � for the frequen-
cies. The multiplication of V and P in the primal domain becomes
a Fourier domain convolution

Q(x, y) = V (x, y)P (x, y) S̄(x) =
∫ 1

0
Q(x, y) dy

Q(�x, �y) = V(�x, �y) ⊗ P(�x, �y), (20)

while the integration in Eq. (19) restricts to the �y = 0 line

S̄(�x) = Q(�x, 0) = (V ⊗ P)�y=0 . (21)

Next, we need the form of the visibility spectrum V, for which
we use the results in Soler and Sillion [1998] and Egan et al. [2011].
A schematic of the setup is shown in Figure 9(a). We will further
need to define G() for the visibility function at the blocker plane,
with Fourier transform G, and β > 1 as a measure of depth; β is the
ratio of distances between source and receiver to source and blocker
(β = 1 when the blocker is at the receiver, and is large for blockers
close to the light). It is easy to see from basic trigonometry that

V (x, y) = G

(
x

1

β
+ y

(
1 − 1

β

))
. (22)
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Fig. 8. Images with a linear light source and 16 visibility samples. The grids create interesting soft shadowing patterns with multiple visibility discontinuities
at a pixel. The top row shows images and the bottom row error plots (red and green are different signs for the error, and intensity is proportional to magnitude;
the errors are scaled up for display). (a) Uniform has the lowest error but leads to banding. This is also clear in the bottom row, from the structured nature of
the error image. (b) Uniform Jitter has almost as low an error without banding, and considerably less noise than (c) Stratified. The reader may wish to flip
between the supplementary images to see the differences most closely.

d1

x

d2

y

Receiver

Blocker

(a)

Light
Occlusion

(b)x

y

x

y

(c) Real Scene

Fig. 9. Canonical visibility. (a): Schematic of setup; the blocker is in be-
tween light and receiver; the slope of the Fourier spectrum is determined by
the ratio β = d2/d1. (b): Visibility function V (x, y). Note that the occlusion
is constant along lines with slope (1−β)−1. (c): Similar occlusion function
for a real scene. While more complicated, it has a similar sheared form. The
Fourier spectrum of (b) is analyzed in Figure 10.

The occlusion pattern is shown in Figure 9(b), and remains constant
on lines of slope (1 −β)−1. In essence, the occlusion pattern in G is
sheared based on the depth of the blockers. For a real scene, as seen
in Figure 9(c), the occlusion pattern may be more complicated but

still has the same basic form, largely being a shear applied to G.3

Now, we can proceed to consider the Fourier spectra for Figure 9(b),
shown in Figure 10. From Eq. (22), it is possible to derive (see Eq.
(7) in Egan et al. [2011])

V(�x, �y) = βG(β�x)δ((β − 1)�x − �y). (23)

The spectrum is shown in Figure 10(a) and the energy is con-
centrated on a line with slope β − 1, as seen from the previous
expression. Note that the spectrum on that line is also modulated by
the original blocker spectrum G per the preceding Equation

In practice, because the light and receiver are finite, and the
Fourier transform is not computed on a toroidal domain, there will
also be some energy along the axes, in particular the �y = 0 line.
Indeed, it is this line in the Fourier diagram that corresponds to the
final result, since integration in the primal domain corresponds to
restricting the Fourier spectrum to the horizontal axis �y = 0. In our

3While the occluder depth, and hence amount of shearing, may not be
constant in the whole scene, the range of depths locally is often bounded.
This observation has been exploited, for example, by Egan et al. [2011].

ACM Transactions on Graphics, Vol. 31, No. 5, Article 121, Publication date: August 2012.



A Theory of Monte Carlo Visibility Sampling • 121:9

Ω

Ω

y

Visibility Spectrum

(a)x x

y

(b) Uniform

Ω

Ω

y

x (c)

Ω

Ω
-4

-2

0

2

4

0 200 400 600 800 1000

FFT of Image Function from Integration

(Banding)
Aliasing

Ωx (d)

Fig. 10. Fourier analysis of Monte Carlo visibility sampling for the canonical uniform sampling case. (a): Fourier spectrum for visibility in Figure 9(b). Most
energy lies on a line in the frequency domain (and also on the axes; the horizontal axis is the actual integrated visibility). (b): Fourier spectrum for uniform
sampling. We have shown frequencies on a 1000 × 1000 grid with 100 samples, so there are 10 “aliases” all lying on the vertical axis. (c): Fourier spectrum
for visibility multiplied by sampling pattern, which is a convolution in the frequency domain, leading to vertical replicas of the sheared visibility spectrum.
Inaccuracies and aliasing occur when these replicas touch the final signal on the horizontal axis. (d): Fourier spectrum of net visibility. Notice the spikes (seen
as banding) at select spatial frequencies, corresponding to the sampling pattern.

analysis of sampling schemes, numerical error will be introduced
when aliases (due to sampling) of the sheared spectrum of Eq. (23)
influence the horizontal line �y = 0.

Summary. Ours is a Fourier view of Monte Carlo sampling,
wherein numerical error corresponds in frequency space to aliasing
at the zero frequency. Also note that unlike traditional analyses of
aliasing, we only care about aliasing to the �y = 0 line, since that is
all that is preserved by Monte Carlo integration; aliasing elsewhere
has no effect on the final result. We now proceed to analyze various
sampling schemes in this context.

5.2 Analysis of Sampling Schemes

5.2.1 Uniform Sampling. We start with an analysis of uniform
sampling, providing intuition about both the low numerical error,
as well as artifacts from banding. Fourier spectra for the various
steps for uniform sampling, corresponding to Eqs. (20) and (21),
are shown in Figure 10.

We first consider the frequency spectrum P of the sampling pat-
tern, as shown in Figure 10(b). Formally, for uniform sampling,

P (x, y) = 1

N

N∑
k=1

δ

(
y − k − 1

2

N

)
. (24)

This is essentially a comb pattern in the y dimension, as is common
in sampling theory, while there is no x dependence (hence the
Fourier transform will be restricted to the vertical axis with �x = 0).
The Fourier transform is also a comb along the vertical or y axis,
and is given by

P(�x,�y) ∼ δ(�x)
∞∑

k=−∞
δ(�y − kN ), (25)

where we have omitted the exact phase information in P for sim-
plicity. The spectrum for P is shown in Figure 10(b).

Now, the multiplication of visibility and sampling pattern to ob-
tain Q is the standard sampling operation, which leads to replicas in
the Fourier domain. In other words, since Q = V⊗P from Eq. (20),
we will have replicas of the visibility spectrum along the vertical
axis, at frequencies a multiple of the sampling rate N . This effect can
clearly be seen in Figure 10(c), where the sheared shadow spectrum
is repeated vertically. Note that there are no horizontal repetitions,

since the sampling pattern has a Fourier spectrum only along the
vertical �y axis.

Unlike traditional sampling analysis, this aliasing is in itself not
a problem, since integration will restrict us to the line �y = 0 in
the Fourier spectrum. Hence, it is only aliasing onto this line that
will affect the final answer. To proceed further, we note that the
convolution for Q = V ⊗ P can be turned into a finite sum, because
P is a comb, composed of a sum of delta functions for each k.
For each visibility replica k, we consider the error introduced by
aliasing onto the �y = 0 line, and sum these errors. Each replica
of offset kN from Eq. (25) only interesects the line �y = 0 at
�x = kN/(β − 1), per Eq. (23). It can be seen that the numerical
error is

S̄ − S ∼
∑
k �=0

βG
(

kN
β

β − 1

)
δ

(
�x − kN

β − 1

)
. (26)

Often, the error will be dominated by the first (or first few) terms.
The aliases/bands can be seen as large numerical error, leading to
spikes in the Fourier spectrum in Figure 10(d).
Discussion. Eq. (26) provides considerable insight. First, it gives
a Fourier domain explanation for banding from uniform sampling.
Error is concentrated on select spatial frequencies, which is what
is perceptually distracting, even though the actual numerical error
may be small. This can clearly be seen in Figure 10(d). In fact, we
will see that uniform jitter sampling resolves banding by spreading
the error through all spatial frequencies.

Moreover, we have explicitly found the spatial frequencies,
�x = kN/(β − 1) that band, relating them to the angular sam-
pling rate, and the depth of the blockers. This allows for a number
of insights. First, increasing the sampling rate N pushes the banding
to higher frequencies. Assuming the initial spectrum G is decaying,
the numerical error and perceptual artifacts will be less, as ex-
pected. Although it is not the focus of the article, Eq. (26) also leads
to some potentially intriguing possibilities. If some prior knowledge
of G is available, it may be possible to choose a sampling rate so
that the G(kNβ/(β − 1)) terms are small or vanish, or to combine
information from different sampling rates with different banding
frequencies in a postprocess. (Our preliminary tests indicate this
is indeed possible for very simple scenes, but is difficult in more
complicated real-world situations with a range of depths, which is
why we do not discuss it further in this article.)
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Fig. 11. Fourier analysis of visibility sampling for uniform jitter and stratified sampling (the visibility spectrum is shown in Figure 10(a)). (a): Sampling
pattern for uniform jitter, which has the same vertical �y frequences as in Figure 10(b), but with energy distributed over all �x frequencies. (b): Fourier
spectrum for product of uniform jitter sampling and visibility. The energy on the �y = 0 line is now distributed, rather than having discrete replicas as in
Figure 10(c). (c): Sampling pattern for stratified sampling, which replaces structure with noise. Notice a “band-gap” at the center, that is, however, much smaller
than that for uniform or uniform jitter. (d): Fourier spectrum for product of visibility and stratified sampling. There is no discrete aliasing, but it is replaced by
noise. (e) and (f): Final results (Fourier spectrum) for uniform jitter and stratified sampling. In both cases, errors due to banding are replaced by noise.

Finally, the preceding analysis also provides considerable intu-
ition into why uniform sampling should lead to the lowest numer-
ical error. Banding simply concentrates the error in select spatial
frequencies, as opposed to noise, but does not affect the overall
numerical values. More importantly, the separation of replicas in
the uniform sampling pattern in Figures 10(b) and (c) is the largest
that can be obtained, as compared to alternatives like stratified or
quasi-Monte Carlo sampling (this is also verified numerically in
Ouellette and Fiume [2001]). Consider the visibility for a single
pixel, that is, V (y): As seen in Eq. (5), visibility is a Heaviside
function in the simplest case, and it has a Fourier transform whose
overall magnitude decays with the inverse of the frequency. Hence,
numerical error or aliasing comes from higher-frequency regions of
the visibility function that will be expected to have lower magnitude.
However, uniform sampling leads to banding effects that make it
unacceptable for most graphics applications. Indeed, uniform jitter
is an attempt at a compromise, to get low numerical error without
banding.

5.2.2 Uniform Jitter Sampling. We now turn our attention to
a Fourier analysis of uniform jitter sampling. Recall that we now
have a uniform sampling grid, but one that is jittered at every pixel

P (x, y) = 1

N

N∑
k=1

δ

(
y − k − γ (x)

N

)
, (27)

where γ (x) is a uniform random variable chosen for each pixel or
spatial location x between [0 . . . 1]. For pure uniform sampling, we
simply set γ (x) = 1/2 for all pixels.

The Fourier transform can be easily obtained by considering the
transform first along y and then along x. The final spectrum is
actually separable, since the γ (x) factor just introduces a spatially-
dependent phase, but the basic form of the spectrum is the same at
each pixel. In particular, the y transform is the same as in uniform
sampling, with the comb function leading to a comb in the Fourier
domain. However, the phase depends on γ (x) and is different at each
pixel, unlike in uniform sampling where it is the same. Since γ (x)
is drawn from a random (white noise) distribution, so too will the
Fourier transform along �x and we obtain (compare with Eq. (25)),

P(�x, �y) ∼ �(�x)
∞∑

k=−∞
δ(�y − kN ), (28)

where � is a random (white noise) variable. The magnitude of the
resulting Fourier spectrum is seen in Figure 11(a), and is nonzero at

the same �y frequencies as for uniform sampling, but is distributed
over the entire �x axis instead of being concentrated at �x = 0.

Now, convolving visibility with the sampling pattern will diffuse
error through all spatial frequencies, since replicas are created at all
horizontal shifts (but only at discrete vertical frequencies). This is
seen in Figure 11(b). As before, we care about aliasing only onto the
�y = 0 line. It is easy to see that the same frequencies in G as for
uniform sampling will affect the result, but the numerical error will
now be diffused into all spatial frequencies (since there are replicas
at all horizontal shifts). Analogous to Eq. (26),

S̄ − S ∼
∑
k �=0

βG
(

kN
β

β − 1

)
�

(
�x − kN

β − 1

)
. (29)

Discussion. Figure 8 compares images rendered with uniform
and uniform jitter sampling, along with error images. We see that
uniform sampling has a distinctive structure corresponding to band-
ing, while uniform jitter does not, while having comparable error.

An interesting point is that the G term in Eq. (29) indicates that the
same frequency in the original blocker visibility is diffused as error
to all spatial frequencies. This error term can vary in an oscillatory
fashion over the image as β changes, and could in principle lead
to some structure in the noise patterns. However, this structure in
noise is much less distracting than banding structure in the actual
image, and we have not observed it at all in most realistic scenes
(including Figure 8 and most of our other examples).

5.2.3 Stratified Sampling. The sampling pattern for standard
stratified sampling is similar to Eq. (27), but with γ (x, k) now
being random for each stratum in each pixel,

P (x, y) = 1

N

N∑
k=1

δ

(
y − k − γ (x, k)

N

)
. (30)

Analytic formulae for the resulting Fourier transforms are harder
to derive, since they are no longer separable. However, the key
insights are clear from Figure 11. For uniform and uniform jitter
sampling (Figure 11(a)), there is a vertical “gap” of �y = N ,
corresponding to frequencies until the first replica. For stratified
sampling in Figure 11(c), there is a smaller vertical gap.4 These
observations are also consistent with the frequency periodograms of

4A more sophisticated sampling approach like blue noise would make this
gap larger, but still less than that for uniform sampling; we make some obser-
vations on Poisson Disk and quasi-Monte Carlo methods later in Section 8.
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Ouellette and Fiume [2001]. Because of the randomness in stratified
sampling, there is no banding, and error is diffused to all spatial
frequencies.

In summary, a Fourier analysis indicates the key reason why
stratified sampling can have higher numerical error than uniform—
the frequency gap for the aliases is smaller, and for a decaying
visibility Fourier spectrum, numerical error will come from higher-
amplitude regions. Uniform jitter addresses this by incorporating the
same separation of replicas as in uniform sampling, but diffusing
the error among all spatial frequencies like in stratified sampling,
avoiding the banding inherent in pure uniform sampling.

5.3 Varying Light Source

We now briefly consider a light source that has spatially-varying
intensity. As discussed earlier, our focus is on visibility. We can
treat smooth lighting and shading variation in the standard way, by
using uniform sampling for the lighting terms and Monte Carlo only
for visibility. In this way, our preceding analysis still holds.

Nevertheless, it is also instructive to consider directly applying
our theory to a varying light source.5 Combining Eqs. (3) and (19),

V̄ (x) =
∫ 1

0
V (x, y)L(y)P (x, y) dy, (31)

where we have added the lighting term L(y) to the integral, and we
now use V̄ to signify the modulated visibility, instead of just the
average attenuation S̄. This is a multiplication of three terms inside
the integral (analogous in some ways to the triple product integral
in Ng et al. [2004]), and not as amenable to convolution-based
frequency analysis. Instead, considerable insight that leverages our
earlier results can be obtained by grouping the lighting term L with
either visibility V or the sampling pattern P .

First, consider a single pixel (so we fix x), and group the lighting
with the visibility, defining V ′(y) = V (y)L(y). Now,

V̄ =
∫ 1

0
V ′(y)P (y) dy = (V′ ⊗ P)0

V′ = V ⊗ L. (32)

As a canonical example of a varying light source, we consider one
with a Gaussian distribution of intensity. In the Fourier domain,
V′ is then obtained by Gaussian-filtering or smoothing the Fourier
spectrum of the original visibility V. Figure 12 shows the origi-
nal and smoothed visibility. Note that because of the nature of the
visibility spectrum, arising from discontinuities, the original visi-
bility spectrum is oscillatory, in addition to the inverse frequency
decay. However, the filtered version behaves more smoothly. This
smoother behavior is more amenable to frequency analysis (with-
out consideration that a particular frequency or phase will skew
the results), and we have noticed that Gaussian6 or other smooth

5Although we do not consider it in this article, these results are also easily
extended to the case when shading effects like Lambertian cosine falloff
or inverse square falloff are taken into account, since we can include all of
these effects in the “effective” light source modulation function L(x, y).
6Of course, in practice, importance sampling may be used within the Gaus-
sian that effectively reduces it back to the case of a constant intensity light
within each stratum. The irregular sampling patterns from importance sam-
pling do not fit well within our theoretical framework and we do not consider
this issue further in our article. However, we will see in the next section that
for planar area lights, the benefits of Gaussian lights are also achieved by
shapes like circular sources, where importance sampling is not possible.
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Fig. 12. Visibility Fourier spectrum for one pixel (for a single discontinuity
on a linear light) for a constant source (left) and a Gaussian light (right). The
RMS error in (a) is the same for uniform jitter and stratified as expected for
a single discontinuity, while in (b) the smoother spectrum enables uniform
jitter to perform essentially as well as uniform sampling.

light sources often show greater advantages of uniform jitter over
stratified sampling than square or constant lights.

For the 2D pixel-light analysis, it may be more insightful
to group the lighting term with the sampling pattern, defining
P ′(x, y) = P (x, y)L(y), and the Fourier transform P′ = P⊗L. For
uniform sampling and uniform jitter sampling, this diffuses or fil-
ters the Fourier spectrum vertically along the �y axis. Banding still
occurs with uniform sampling, but is less concentrated in specific
discrete frequencies (instead diffusing to frequency bands). Simi-
larly, the error in uniform jitter averages the magnitude of several
frequencies, rather than coming from particular discrete frequencies
in the visibility spectrum. More insights, including an analysis of
different light source shapes, will follow in our discussion of planar
area lights in the next section.

6. PLANAR AREA LIGHTS

In this section, we discuss a generalization from linear to planar
area light sources. With any kind of stratification, the samples on
the light are effectively divided into “scanlines”, and we can directly
apply the statistical analysis for linear light sources from Section 4
to each “light scanline” independently; similar arguments apply
to the Fourier analysis in Section 5.7 In this sense, the extension
to planar area lights is straightforward. However, there are some
important caveats, and the shape of the light source can make an
important difference. Indeed, much of the research in this article
was motivated by a surprising observation shown in Figure 13. For
a circular light source, uniform jitter sampling performs better than
stratified sampling, as expected. However, for a square light source,
the opposite is true!

A schematic of stratified and uniform jitter sampling on a single
pixel with a canonical visibility pattern is shown in Figure 14. For
2D planar area lights, visibility discontinuities typically become
lines rather than single points for 1D linear lights. When these
line discontinuities are (close to) aligned with the sampling grid,
the integrals or sampling patterns for different “light scanlines” are
highly correlated for uniform or uniform jitter sampling and do not
further reduce variance, diminishing the benefits. Note that this is
the other side of the coin in terms of correlation; the decorrelation

7While a single horizontal light “scanline” might have each sample at a
different vertical location if we jitter, the visibility function at that scanline
is still a 1D function, being binary 0 or 1 at each sample, and with discon-
tinuities where it moves from blocked to visible. In this sense, we are still
considering a 1D function on each light “scanline”, even though samples
are distributed in 2D on the light even for a single row or column.
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(h) Error of (f)

(g) Error of (e)

(d) Error of (b)

(c) Error of (a)

(a) stratified (b) uniform jitter

Square Light

Circle Light

(e) stratified (f) uniform jitter

Fig. 13. Comparison of stratified (left) and uniform jitter (right) sampling, for a square light (top) and circular light (bottom). These images show a simple
scene with two spherical occluders above a ground plane, rendered with 50 samples. The error images shown on the top and bottom right-hand side (where
red is positive and green is negative) are multiplied by 10× for visualization. Curiously, uniform jitter performs better than stratified for circular lights (bottom
row), but not on square lights (top row).

De−Correlated SamplesCorrelated Samples

Blocked Visible
Samples on Light
(a) Uniform Jitter

Blocked Visible
Samples on Light

(b) Stratified

Fig. 14. Canonical visibility configuration for uniform jitter (left) and
stratified (right). The correlation among the different “light scanlines” for
uniform jitter can lead to poor results with square lights, since each “light
scanline” obtains the same result, without further decreasing variance.

at multiple discontinuities for linear lights leads to the benefits of
uniform jitter in the first place. We also experimented with a number
of variants, such as the more closely packed quincunx pattern, but
did not find any significant difference.

This effect can also be analyzed in the Fourier domain, where we
limit our attention to a single pixel (it is still 2D because of the 2D

(a) Visibility (b) Sampling: 

Gaussian Light

(c) Sampling: 
Uniform Jitter

Fig. 15. (a): Fourier spectrum (at a single pixel) for the visibility on the
square light, for a vertical discontinuity, similar to Figure 14. Discontinuities
are typically lines or curves in light space, as well as in Fourier space. In this
case, the spectrum is horizontal. (b): Spectrum of uniform jitter sampling,
that is a comb, with energy concentrated at discrete frequencies. Large errors
can result, since the frequencies on the horizontal axis overlap the visibility
spectrum. (c): A Gaussian light is equivalent to convolving the sampling
spectrum with a Gaussian. The energy is now diffused away from discrete
frequencies, reducing the aliasing or overlap with visibility.

light, but should be distinguished from the 2D pixel-light analysis
in Section 5). We know in this case that S̄ = (V ⊗ P)0, and error
is obtained by aliasing into the zero or DC frequency. Pictorially,
if we overlay the visibility and sampling spectra, and they have
strong overlap outside the DC component, the numerical error will
be large. In terms of the figures, imagine Figure 15(a) overlayed
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(a) box and sphere: 
circle light, uniform jitter

(b) stratified, 20 samples (c) uniform jitter, 20 samples (d) halton, warp 25 samples
circular light: uniform jitter better than stratified

Fig. 16. Comparison of sampling methods for a simple scene with a sphere and a box, shown in (a,c) rendered with 20 uniform jitter samples and a circular
light source. Next, we show an equal sample (b) and equal quality (d) comparison with stratified and quasi-Monte Carlo sampling. Note that (d) uses the Halton
sequence, and the Shirley-Chiu [1997] square to disc warp, that we empirically determined performs best among the stratified sampling schemes.

on Figure 15(b); they will overlap strongly along the horizontal
aliases in Figure 15(b). In constrast, if we overlay Figure 15(a) and
Figure 15(c), they will still overlap on the horizontal line, but the
energy in Figure 15(c) is no longer concentrated in delta functions
at fixed locations on that line, but diffused, so the overlap is less
pronounced.

More formally, for a uniform or uniform jitter pattern, since the
primal domain pattern is a comb, the Fourier domain pattern is a
comb as well, with energy concentrated at discrete frequencies. On
the other hand, the visibility spectrum for edge or line discontinuties
also lies along a line. Thus, energy is concentrated in this line, and
if it overlaps strongly with any of the discrete frequencies in the
sampling spectrum, high numerical error can result. In 1D, this is
unlikely, but for 2D lights, as shown in Figure 15, the visibility
spectrum could be horizontal or vertical, leading to high numerical
error. This is simply a Fourier interpretation of Figure 14. Note that
even for other edge directions, the line will often overlap somewhere
with the discrete frequencies in the sampling spectrum.

For varying light sources (Section 5.3), we know that the sam-
pling pattern can be regarded as convolved with the light source.
Thus, the sampling energy is diffused or filtered away from a dis-
crete frequency to a band, and the numerical error from overlap
of the visibility spectrum line is less severe. We show this for a
Gaussian light source in Figure 15(c) and a similar analysis applies
to circular lights (which have a frequency spectrum correspond-
ing to the Airy disk). Hence, uniform jitter often performs better
than stratified sampling for circular, Gaussian, or other smooth light
sources, while it performs worse for square or rectangular lights (see
Figure 13).

7. RESULTS

So far, we have developed the theory of visibility sampling, show-
ing simple canonical examples to verify the key ideas. We now
present results on more realistic scenes that demonstrate the theory
holds broadly in practice. In particular, we show that uniform jitter
sampling outperforms stratified sampling for circular light sources.
To focus on visibility, we render these scenes with one sample per
pixel without antialiasing, with simple diffuse shading.

We have implemented two separate experimentation platforms:
one using the (offline) RenderMan shading language, and another
using NVIDIA’s Optix GPU (real-time) ray-tracing API. The for-
mer is used for all of the images in this section, and allowed us to
easily prototype different light source types and sampling patterns,
as well as being readily applicable to standard RIB scene files. The

supplementary video shows a few of the scenes using the Optix
platform. The sampling patterns were easily integrated into a sin-
gle closest hit kernel, allowing for interactive manipulation for
visualization and comparison.

First, we show a simple scene with a sphere and a box in Fig-
ure 16(a) (courtesy Christophe Hery). In Figures 16(b) and (c),
closeups compare uniform jitter and stratified sampling with 20
samples8 for a circular light. We clearly see lower error for uni-
form jitter. Numerically, the errors are 3.5% for uniform jitter sam-
pling, and 4.5% for stratified. As an equal quality comparison, in
Figure 16(d) we show 25 samples using quasi-Monte Carlo with
the Halton sequence, and the Shirley-Chiu warping transforma-
tion [1997]. We found empirically that this was the best competing
method (which is verified in the literature), but uniform jitter sam-
pling still performs approximately 25% better. As predicted by the
theory, uniform jitter outperforms stratified and quasi-Monte Carlo
sampling for linear, circular, and Gaussian light sources, but is worse
for square lights (Figure 18).

Next, we show a more complicated shadowing pattern from three
grids (this and the tentacles scene are courtesy Florian Hecht, from
Egan et al. [2011]). Figure 17 shows the image with a circular
light source. Uniform jitter with 20 samples in Figures 17(a) and
(c) has substantially less noise than stratified with the same num-
ber of samples in Figure 17(b), and even than quasi-Monte Carlo
sampling with the Shirley-Chiu transformation and 25 samples in
Figure 17(d). This is a clear benefit of approximately 30% over
conventional sampling methods. Similar benefits hold for a light
with a Gaussian falloff (Figure 19(d), compare to (c)). Surprisingly,
uniform jitter is even slightly better for square lights in this scene
(Figure 19(b) has less noise than (a)). This is because of the com-
plexity and irregularity of the shadows, as compared to some of
the simpler scenes. The benefit for linear lights has already been
shown in Figure 8. Finally, Figure 20 shows a graph of the error as
a function of the number of samples, indicating a clear benefit for
uniform jitter sampling on both circular and Gaussian lights.

In Figure 1, we show that our theory holds, even with large
geometric models (scene composition courtesy Juan Buhler). The
main image is shown with a circular light source and 20 samples (as
with all of the examples in this article, a lower sampling count is used
to allow the reader to better judge the noise patterns). Closeups and
overall numerical RMS errors indicate a clear benefit for uniform

8In both cases, this is an average of 20 samples per pixel, and we use rejection
sampling, with 25 original samples.
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(a) grids: 
circle light, uniform jitter

(b) stratified, 20 samples (c) uniform jitter, 20 samples (d) halton, warp 25 samples
circular light: uniform jitter better than stratified

Fig. 17. Comparison of sampling methods for a scene with complex shadows from three grids (same geometry as in Figure 8) and a circular light source. As
in Figure 16, images (a,c) are rendered with 20 uniform jitter samples. An equal sample comparison with stratified sampling (b) clearly indicates the benefit of
uniform jitter (c), which is also somewhat better than even 25 samples with the Halton sequence and Shirley-Chiu [1997] warping (d).

square light, uniform jitter worse than stratified
(a) stratified, 16 samples (b) uniform jitter, 16 samples

Fig. 18. Comparison of stratified and uniform jitter for a square light source
for the sphere and box scene in Figure 16. For a square light, uniform jitter
sampling performs worse than stratified sampling, as expected.

jitter over stratified sampling for circular lights (top row), while the
situation is reversed for square lights (bottom row), as expected.

We also include a supplemental video that compares the different
sampling strategies for different light source types, for different
sample counts. These clips were captured in real time using our
(unoptimized) Optix demo. These results confirm the still images
shown in this section, and in particular the benefits of uniform jitter
for circular lights. Temporal stability is maintained in a comparable
fashion for all sampling methods as expected, since each frame is
rendered separately: per-pixel random jitter buffers are reset when
either the lighting, sampling scheme, or view are manipulated.

Finally, we show a limitation of the theory, with the very com-
plex shadows from the tentacles scene in Figure 21 (also shown in
the supplementary video). In this case, there are multiple visibility
discontinuities within a stratum, and so the assumption of isolated
discontinuities in Section 4 does not hold. In fact, stratification itself
gives only a minor benefit for such complex cases [Mitchell 1996],
and we also compare to pure random sampling (see graphs in Fig-
ures 21(e) and (f)). The closeups and graphs validate that while
uniform jitter is marginally better, all methods including purely
random sampling perform almost the same. In these very difficult
cases, a more complicated approach of exploiting interpixel and
shadow light field coherence as in Egan et al. [2011] seems to be
the only possibility for further speedups. We emphasize, however,
that such complex visibility patterns are not common for most parts
of ordinary indoor and most outdoor scenes.

(d) uniform jitter, gaussian falloff(c) stratified, gaussian falloff

(b) uniform jitter, square light(a) stratified, square light

Fig. 19. The same insets as in Figure 17, this time for square lights without
(a,b) and with (c,d) a Gaussian falloff. Uniform jitter is clearly better for
Gaussian lights (d is better than c), and in this example with its complex
geometry and irregular shadows, surprisingly even for square lights (b has
less noise than a). All of these examples use 16 samples per pixel.

8. DISCUSSION AND FUTURE WORK

In this article, we focus on stratified sampling patterns, since those
are very commonly used, and are shown by the theory to provide
optimal results in many cases. Sampling methods based on blue
noise [Yellot 1983] are attractive alternatives. These include both
the Poisson Disk methods [Dippe and Wold 1985; Cook 1986],
for which many recent fast sample generation schemes have been
proposed [Dunbar and Humphreys 2006; Wei 2008], as well as
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Fig. 20. Graphs of fractional error vs. number of samples for the grids
scene, for a circular light (a) and a Gaussian light (b). Uniform jitter provides
a clear benefit in both cases over stratified sampling.
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Fig. 21. A scene with very complex shadows from the thin geometry of
the tentacles (a). The closeups shown on the right (for a circular light, with
20 samples) are comparable for purely random sampling, stratified, and uni-
form jitter (b-d). The graphs (e-f) show that essentially any sampling scheme
performs not much better than random sampling, given this complexity in
shadows. Fortunately, this case is not typical in common scenes.

Quasi-Monte Carlo (QMC) approaches [Niederreiter 1992; Keller
1997] that exhibit blue-noise properties [Ouellette and Fiume 2001].

In the limit that the minimum Poisson Disk sample spacing is
set to the stratum length, these methods essentially reduce to uni-
form jitter sampling (technically with a hexagonal packing in 2D
rather than a grid), with very similar properties. In practice, how-
ever, the relative radius is typically set to ρ = 0.75 of this value
(Lagae and Dutre [2008] recommend ρ = [0.65 . . . 0.85]) in order
to avoid regular configurations. For linear lights, the advantages of

uniform jitter stem from correlated sample placements in the strata
where visibility discontinuities occur. Poisson disk sampling does
not guarantee this correlation, given the more irregular distribution
of samples. Moreover, since ρ = 0.75 < 1, the “band-gap” in Fig-
ure 11 around the DC term will be smaller than for uniform (jitter)
sampling, even though it will be larger than for stratified sampling.
Moreover, in our initial tests, we found that the more uneven spac-
ing and stratification caused by ρ < 1 leads to larger errors than the
sampling strategies (both stratified and uniform jitter) considered in
this article. Further investigation of these insights is worthwhile.

We have briefly touched on QMC approaches like the Halton
sequence earlier in the article; there are also many other sequences
described in the literature. While the canonical Halton sequence
performs poorly in Figure 7, one can jitter the offset independently
at each pixel for rendering much like uniform jitter, in which case
Halton will perform very similarly to uniform jitter sampling. This
leaves open the possibility that another suitably chosen QMC se-
quence could be competitive with uniform jitter even for linear and
circular lights; initial results in this direction are encouraging.

More generally, the theory of this article indicates that uniform
sampling often has low numerical errors. Uniform jitter seeks to
preserve the numerical properties while removing banding. But
both methods can give poor performance in 2D for square lights.
Techniques like QMC and blue-noise sampling offer some of the ad-
vantages of both worlds, with near-uniform sample spacing, while
removing some of the correlation effects; however, this article indi-
cates they are not always competitive. Further research is needed to
see if modifications of these approaches can provide the best perfor-
mance for visibility sampling. Moreover, all of our work has looked
at the constants involving errors in different sampling methods. The
convergence rate itself is the same, and not affected (for example,
variance decays as 1/N 2 in all cases in Figures 4 and 6); we do not
believe this can be improved.

Finally, we have provided only initial guidance about different
sampling patterns for square and circular lights. It remains an in-
teresting avenue of work to consider a broader class of light source
shapes and develop a general theory of when different sampling
methods are expected to work better. Moreover, while we have
tested the predictions with a range of different blockers, as seen in
our figures, it is still possible the shape of the occluder also plays
some role.

9. CONCLUSIONS

In this article, we have derived a comprehensive theory of Monte
Carlo visibility sampling. Instead of considering a general shading
integral, we focus on the hardest component, the binary visibility
function. This allows us to derive novel statistical insights. Starting
with the simplest case of a linear light source, we show how the
number of discontinuities in the visibility pattern can affect the
efficiency of sampling, and that the new approach of uniform jitter
sampling is often preferred for more complex visibility.

Perhaps the most important contribution of this article is the de-
velopment of new analytical tools for analyzing sampling. Besides
the statistical analysis in Section 4, we introduce a new Fourier ap-
proach in Section 5 for analyzing Monte Carlo integration in both
the spatial (pixel) and angular (light) domain together. This analysis
precisely identifies the nature of banding in uniform sampling, by
focusing error in specific spatial frequencies. We also see how the
error is diffused out to alleviate banding for uniform jitter sampling.
Finally, we show in Section 6 that the extension to planar area lights
surprisingly depends on the shape of the light source, with uniform
jitter sampling preferred for linear, circular, and Gaussian lights,
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but not rectilinear sources. While the benefits of different sampling
patterns are relatively modest, we show practically that gains of
20–40% can be achieved with very minimal modifications in code.
This understanding will allow more efficient rendering algorithms
targeted to the specific scene and light source.

An interesting observation is that the shape of the light source
has not so far been a major factor in shadow algorithms based
on Monte Carlo sampling. Perhaps the most common approach is
to use a square light source by default. However, our analysis has
shown that the sampling strategy can differ significantly for different
lights, and indicates that linear and circular lights may therefore be
preferable to square lights in some applications.

In the future, we believe a thorough analysis of different sampling
patterns can shed key insights on Monte Carlo integration for other
shading problems. We believe our insights on 2D pixel-light Fourier
analysis, and considering the shape and spectrum of the light source,
can have many implications for other challenging topics like motion
blur, glossy highlights, and depth of field.
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