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Abstract—Inverse light transport seeks to undo global illumination effects, such

as interreflections, that pervade images of most scenes. This paper presents the

theoretical and computational foundations for inverse light transport as a dual of

forward rendering. Mathematically, this duality is established through the

existence of underlying Neumann series expansions. Physically, it can be shown

that each term of our inverse series cancels an interreflection bounce, just as the

forward series adds them. While the convergence properties of the forward series

are well known, we show that the oscillatory convergence of the inverse series

leads to more interesting conditions on material reflectance. Conceptually, the

inverse problem requires the inversion of a large light transport matrix, which is

impractical for realistic resolutions using standard techniques. A natural

consequence of our theoretical framework is a suite of fast computational

algorithms for light transport inversion—analogous to finite element radiosity,

Monte Carlo and wavelet-based methods in forward rendering—that rely at most

on matrix-vector multiplications. We demonstrate two practical applications,

namely, separation of individual bounces of the light transport and fast projector

radiometric compensation, to display images free of global illumination artifacts in

real-world environments.

Index Terms—Please provide.
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1 INTRODUCTION

GLOBAL illumination effects are key visual features of real-world
scenes. Simulation of these effects in forward rendering has been
extensively studied in computer graphics, with a theoretical
foundation based on the rendering equation [1]. In contrast, most
computer vision algorithms are forced to simply ignore interre-
flections where one would ideally like to undo their effects.
Recently, Seitz et al. [2] formalized this as the problem of inverse
light transport. However, little is known about the theory and
algorithms for efficient light transport inversion in practical scenes.

This paper lays the mathematical and computational founda-
tions of inverse light transport by exposing a strong duality to the
mature framework of forward light transport. Intuitively, the
duality arises because solving the (forward) rendering equation
itself involves an operator or matrix inverse. Exploiting this
duality allows us to leverage many theoretical results and
algorithms from forward global illumination for the inverse
problem in computer vision.

Specifically, forward rendering readily admits to a Neumann
series solution. We derive a similar series for the inverse problem
and show that just as each term of the forward series adds bounces
of light, each term of the inverse series zeroes out the correspond-
ing bounce (but, unlike in the forward case, also affects higher
order bounces, leading to oscillatory convergence). The forward

series convergence corresponds to energy conservation, but the
inverse condition is more complex—a sufficient condition is that
the albedo of surfaces is below 0.5 so that the net global
illumination is less than the direct lighting component.

Recent techniques for acquiring the light transport of real
scenes [3], [4] have facilitated relighting applications in graphics,
equivalent to matrix-vector multiplication. The light transport
matrices in this paper are of full rank, corresponding to projector-
camera setups (like [2], [5], but unlike [6]). While transport
inversion enables new applications like illumination estimation,
separating bounces of global illumination [2], projector radiometric
compensation [7], and shape recovery [8], the high resolution of
real transports (105 ! 105 or higher) makes standard matrix
inversion impractical.

Inspired by efficient solutions such as finite element radiosity [9]
and Monte Carlo methods [1], [10] for the forward problem, we
propose fast algorithms for canceling interreflections, which require
only matrix-vector multiplications (as opposed to a full matrix
inversion). We demonstrate practical applications of these algo-
rithms, such as radiometric compensation of interreflections while
projecting complex scenes (Fig. 1), as well as separation of local and
global illumination components or individual bounces (Fig. 2).

To summarize, this paper makes several important theoretical,
algorithmic, and practical contributions.

. A theoretical framework that provides novel insights into
light transport inversion by posing it as a dual to
forward rendering.

. Efficient algorithms for high-resolution transport inver-
sion, with rigorous convergence analysis.

. Demonstration of practical applications such as bounce
separation and radiometric compensation in complex, non-
Lambertian scenes.

2 PREVIOUS WORK

This paper builds upon and extends the theoretical framework
proposed in [11].

Inverse rendering. Lighting and reflectance properties are
acquired in [12], [13], and [14] assuming known scene geometry.
Like [2], we observe only the light transport matrix—both
geometry and reflectance are neither known, nor explicitly
estimated. In contrast to all of the above, our algorithms can
handle high resolutions for both lighting and geometry.

Forward rendering. This work draws upon operator formula-
tions and error analysis for global illumination [15], Monte Carlo
algorithms [10], and finite element radiosity methods [9]. Many
iterative radiosity techniques are also closely related to numerical
linear algebra methods [16], [17] for solving systems of linear
equations, such as Jacobi and Gauss-Seidel iterations. Our frame-
work enables similar relations to be drawn for inverse rendering.
Similarly, our Monte Carlo method bears similarities to forward
path tracing [1], as well as von Neumann and Ulam’s original
Monte Carlo matrix inversion method [18].

Computational light transport inversion. Clusters of camera-
projector pixels are formed in [7], doing a brute-force transport
inversion within clusters, but not considering intercluster inter-
actions. This method is aimed at efficiency, but without clear error
control. Iterative inverse methods for diffuse scenes are proposed
in [19], which effectively solves (20) of this paper, but assuming a
known form factor matrix. Recently, Ng et al. [5] developed a
series expansion for inverse light transport, referred to as
stratified inverses. We show that this series is a natural analog
to the forward Neumann series. Our dual formulation enables us
to go much further, clarifying the nature of convergence
conditions. Most importantly, we derive new computational
analogs to iterative finite element radiosity, as well as Monte
Carlo methods. The resulting algorithms are significantly faster
since they involve only matrix-vector multiplications (rather than
matrix-matrix ones).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. X, XXXXXXX 2011 1

. M. Chandraker, J. Bai, and R. Ramamoorthi are with the Electrical
Engineering and Computer Science Department, University of California,
Berkeley, CA 94720. E-mail: {manukc, bjiamin, ravir}@eecs.berkeley.edu.

. T.-T. Ng is with the Institute for Infocomm Research, 1 Fusionopolis Way,
Singapore 138632. E-mail: ttng@i2r.a-star.edu.sg.

Manuscript received 13 Dec. 2010; revised 8 Apr. 2011; accepted 2 May 2011;
published online 7 June 2011.
Recommended for acceptance by C.-K. Tang.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2010-12-0947.
Digital Object Identifier no. 10.1109/TPAMI.2011.124.

0162-8828/11/$26.00 ! 2011 IEEE Published by the IEEE Computer Society



Subsequent to this work, Krylov subspace methods have been
implemented in the optical domain [20]. Acquisition and inverse
iterations are coupled within the same loop in such active
methods, which requires a more complex photometric setup. They
require fewer images to invert a specific lighting configuration—in
contrast, we acquire the entire transport matrix, but any input
image can be inverted offline.

Practical applications. Usual approaches to radiometric
compensation [21], [22] do not consider interreflections. Techni-
ques for making one object look like another are also related [23].
Our main practical contribution is a suite of fast algorithms for
light transport inversion. Another application is rapid direct and
global separation for unstructured lighting, related to [24]. Our
work requires prior acquisition of the light transport, but is valid
for the entire light field and under multiple illuminants, while
Nayar et al. [24] work for a single image, assuming a single
source. Moreover, we can separate individual bounces of global
illumination like [2] and can do so with much higher resolution
transport matrices at interactive rates.

3 PRELIMINARIES

Due to the linearity of light transport, the image formation process
is governed by a linear operator S that encodes the effects of global
illumination:

lout ¼ Sld; ð1Þ

where lout is the outgoing “global” light and ld is the direct
lighting on surfaces due to external sources. In continuous form,
lout and ld are functions (of spatial location and outgoing
direction), while S is a linear operator that accounts for global
illumination. When discretized for practical applications, lout and
ld are vectors, while S is the interreflection matrix. Note that (1)
depends only on linearity, and holds for the light field, as well as
a single camera view (image).

Unlike forward global illumination, we do not see the light
source directly, but rather its effect on the scene, which we

denote as the direct component, ld. The inverse light transport
problem is simply

ld ¼ S%1lout; ð2Þ

where we seek to invert the operator S, undoing the effects of
interreflections.

Practical issues. In practice, it is rare that S is measured
directly. Instead, a projector or illumination source lights the scene:

ld ¼ Flin lout ¼ Tlin ¼ SFlin; ð3Þ

where lin is the incident projection andF is the “first-bounce”matrix
or operator. The actual acquired light transport is T ¼ SF. The
above expression holds for any light transport acquisition system.

The remainder of the theoretical development focuses on
analyzing and computing S%1. Eventual practical applications do
need to convert from T to S, using S ¼ TF%1. Moreover,
applications like radiometric compensation actually seek to re-
cover lin (rather than ld in (2)) given by lin ¼ T%1lout ¼ F%1ld.

Since we focus on global illumination S, we consider setups
where S is easy to obtain from T, that is, where F is simple and at
least approximately invertible. Therefore, we consider projector-
based acquisition that illuminates a single spatial location, rather
than light sources that illuminate the whole object (F is low rank
for diffuse surfaces [13]). After geometric calibration, we can use
the same parameterization for projection and camera images [2].
F is then a diagonal matrix, with F%1 being trivial to compute.

Note that F need not correspond to the actual first bounce for
an accurate light transport inversion. In numerical terms,
choosing F ¼ diagðTÞ amounts to Jacobi preconditioning, which
is convergent if T is diagonally dominant (also see Section 8.2).

4 DUAL FORWARD-INVERSE TRANSPORT

In this section, we show that the rendering equation underlines
a strong mathematical and physical duality between forward
and inverse light transport. Key theoretical results are summar-
ized in Fig. 3.
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Fig. 3. Duality of forward and inverse light transport, indicating analogous relations for some key properties. (Monte Carlo equations abbreviated, full forms in the text.)

Fig. 1. Example application of inverse light transport for projector compensation in
a real scene. Top: The desired projector output (right) leads to significant
interreflections when displayed (left). Bottom: Our theory determines the pattern
(left) whose projection is close to the desired (right). In effect, we have gone from
global to local illumination, undoing interreflections. Our fast iterative method
involves only matrix-vector multiplications and a Matlab implementation computes
lin for a transport matrix of size 131K ! 131K in 2-3 sec.

Fig. 2. Didactic real-data example illustrating separation of individual bounces of
global illumination. The scene is a white concave dihedral, with flat green
projection on the left half. Top row: Input image and separated direct and net
global components. Bottom row: Recovered indirect bounces. Note that
successive bounces illuminate alternating walls of the dihedral, as expected.



In the notation of [15], the rendering equation is

lout ¼ ld þKGlout ) lout ¼ ðI%AÞ%1ld; ð4Þ

where K considers the local reflection at a surface, governed by the
BRDF, G is a geometric operator that transports outgoing to
incident radiance, and A ¼ KG corresponds to one physical
bounce of light. Note that this formulation is valid for any opaque
BRDF when considering the full light field. While our theory is
fully general, our experiments will consider single view projec-
tions, which introduce practical limitations, as discussed in
Section 8. It follows that

S ¼ ðI%AÞ%1: ð5Þ

This well-known result shows that the forward problem formally
involves a matrix or operator inversion. Also, as noted in [2] and
[25], if the scene geometry and reflectance (and hence A) are
known, we simply have S%1 ¼ I%A. We focus here on cases
where we only measure S, but do not know or compute A.

We can separate lout into direct ld and indirect or global lg
components:

lout ¼ ld þ lg ¼ ld þRld lout ¼ ðIþRÞld; ð6Þ

where R ¼ S% I is a linear operator that accounts only for global
illumination. We are now ready to present an expression for
inverse light transport:

S%1 ¼ ðIþRÞ%1: ð7Þ

The very similar or dual forms of (5) and (7) are a key insight in
this paper, allowing us to directly leverage many forward
rendering theories and algorithms for inverse rendering in
computer vision.

4.1 Neumann Forward and Inverse Series

The forward equations (4) and (5) have series expansions
corresponding physically to light bounces:

S ¼ IþAþA2 þA3 þ ' ' ' ' : ð8Þ

Relating the global illumination operator R to (8):

R ¼ S% I ¼ AþA2 þA3 þ ' ' ' ; ð9Þ

the dual series analogous to (8) is

S%1 ¼ I%RþR2 %R3 þ ' ' ' ' : ð10Þ

Note that the positive sign of R implies the series is oscillatory.
Intuitively, from (6), ld ¼ lout %Rld. Since the unknown ld appears
on the right-hand side, a first approximation as ld ( lout calculates
ld ( lout %Rlout. This overcompensation is corrected by higher
order terms, leading to the alternating signs in (10).

With suitable algebraic manipulations, one may note that (10)
explains the stratified inverses of Ng et al. [5] and relates it to the
rendering equation.1

4.2 Interpretation as Physical Bounces of Light

The results of this section were originally derived in [26], where
we point the reader for complete details. Here, we present a
brief summary.

Consider an approximation up to order n that we denote as Sn

or S%1
n . In the forward case, this physically corresponds to

considering the first n bounces:

Sn ¼
Xn

k¼0

Ak; Sn % S ¼ OðAnþ1Þ: ð11Þ

A physical interpretation for the inverse series seems non-
intuitive since (10) is expressed in terms of R that includes all
global illumination terms. Nevertheless, in [26], we derive a
surprising result: Each term of the inverse series cancels or zeroes out
the corresponding bounce of light transport. We show

S%1
n ¼ I%Aþ

X1

j¼2

Xminðj;nÞ

k¼1

ð%1Þk j% 1
k% 1

! "" #

Aj; ð12Þ

which, using S%1 ¼ I%A, leads to a key result that the Aj terms
vanish for 2 ) j ) n:

S%1
n ¼ I%AþOðAnþ1Þ; S%1

n % S%1 ¼ OðAnþ1Þ: ð13Þ

Note that, as opposed to the forward series where the higher
bounces are simply 0 until they are added in, the values for
the higher bounces in the inverse series oscillate until they are
zeroed—this is related to the oscillatory convergence of the
inverse series.

5 CONVERGENCE AND ERROR ANALYSIS

For the forward case, we note the results of [15]. For a closed
enclosure, k G k ¼ 1 (less for open scenes). By energy conserva-
tion, excluding perfect reflectors, k K k ) m < 1, where m relates
to surface albedo (for nondiffuse materials, it is the maximum over
all incident directions of the fraction of total energy reflected).2

Since k A k )k K kk G k, it follows that k A k ) m < 1, so the
forward series always converges.

For the inverse series in (10), a bound from (9) is

k R k )k A k þk A2 k þ ' ' ' ) mþm2 þ ' ' ' ¼ m

1%m
: ð14Þ

If m < 1
2 , we obtain k R k < 1, which is sufficient for convergence

(though not necessary). Intuitively, if the diffuse albedo (or
maximum fraction of energy reflected for any incident direction
for nondiffuse materials) is less than 1=2, the norm of the total
global illumination operator R is less than that of the direct
lighting operator I. In matrix terms, S ¼ IþR is diagonally
dominant. Since the inverse series is oscillatory, we require
bounding the full global illumination, rather than just each bounce
separately, as in the forward case.

Error analysis. The error introduced in an n-term expansion for
forward and inverse series (denoted Sn or S%1

n ) can be easily
bounded. In the forward case,

k S% Sn k )
X1

k¼nþ1

k Ak k )
X1

k¼nþ1

mk ¼ mnþ1

1%m
: ð15Þ

Similarly, for the inverse series,

k S%1 % S%1
n k )

X1

k¼nþ1

k Rk k )
X1

k¼nþ1

m

1%m

# $k

¼ mnþ1

ð1%mÞnð1% 2mÞ
:

ð16Þ

Numerical simulations. For simplicity, we consider a synthetic
diffuse box (closed, so k G k ¼ 1), without shadows but with
interreflections. Fig. 4 assumes that ld is constant on each surface,
which have different albedos. From left to right, addition of more
terms from (10) causes oscillations between over and under-
compensating interreflections, till convergence to ld. Interestingly,
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1. In particular, note that R ¼ S% I, which is TF%1 % I. A final binomial
expansion in TF%1 and using T%1 ¼ F%1S%1 enable one to derive the results
in [5].

2. These relations hold in any Lp norm since, from reciprocity, k K k1 ¼
k K k1 ¼ p and k ' kp ) maxðk ' k1; k ' k1Þ.



while forward global illumination in lout results in predictable red
and green color bleeding, odd terms of the inverse series give rise
to cyan and magenta colors. The final inverse light transport
solution for ld has no color bleeding, as desired.

In Fig. 5, we analyze errors and convergence. Fig. 5a indicates
similar oscillatory convergence behavior near corners, edges, and
face centers. Fig. 5b shows excellent agreement, up to a constant
factor, between error for the whole S%1 operator and the theoretical
bound in (16). Fig. 5c illustrates the inverse relation of convergence
rate and albedo. Even albedos near the theoretical limit (like 0.45)
converge in a few iterations; those very close to 0.5 converge
slowly and those greater than 0.51 diverge. Fig. 5d shows the
variation of convergence with geometry (that is, k G k). For an
albedo of 0.62, close to the theoretical limit for a five-sided box, we
observe very slow convergence for a five-sided box, divergence for
a six-sided box, and rapid convergence for more open geometries.

Finally, Fig. 6 shows a scene with occlusions and glossy
surfaces. Similar behaviors hold as above, with convergence of the
inverse series to direct lighting.

6 FAST ITERATIVE COMPUTATION

In this section, we introduce the first of our algorithmic
contributions—a fast iterative method to compute inverse light
transport, using only matrix-vector multiplications. This method is

dual to iterative forward rendering methods like finite element
radiosity. We also explore analogous wavelet accelerations.

For forward rendering, one rarely computes the series in (8) to
explicitly determine S. This is mainly because of the high cost of
matrix-matrix multiplications on high-resolution scenes. Instead,
finite element and radiosity methods [9] try to solve

lout ¼ ld þAlout ð17Þ

iteratively, which corresponds to (4). This iteration is numerically
stable and requires only the matrix-vector multiplication for Alout.
Each step computes

lðkÞout ¼ ld þAlðk%1Þ
out ; ð18Þ

where the superscript stands for step k, with lð0Þout ¼ ld. Importantly,
note that n steps correspond simply to computing the effect of the
first n terms of (8).

Using (6), one can similarly derive the analog to (17) for
inverse rendering:

ld ¼ lout %Rld: ð19Þ

With lð0Þd ¼ lout, the iterative solution dual to (18) is

lðkÞd ¼ lout %Rlðk%1Þ
d ; ð20Þ

where again the first n steps correspond to the first n terms in (10).
Note %R (compare to þA in (18)), corresponding to the oscillatory
nature of the series.

As written, (20) and (18) correspond to the Jacobi iteration for
solving systems of linear equations [16]. If ld are updated in place
(instead of at the end of a step), this is the Gauss-Seidel method.
Both techniques are popular in forward radiosity. By framing
inverse light transport as dual to forward transport, we could also
leverage other computational methods in the future, such as
Southwell iteration, successive overrelaxation, and conjugate
gradient solutions.

Matrix iteration. To precompute S or S%1, there are corre-
sponding iterations for the full matrix:

Sk ¼ IþASk%1; S%1
k ¼ I%RS%1

k%1; ð21Þ
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Fig. 5. Error analysis for convergence of inverse series. (a) Similar convergence
behavior at different points (center, edge, and corner). (b) Comparison of error to
theoretical bound for different albedos showing good agreement. (c) Convergence
for different albedos. As predicted by theory, convergence is faster for lower
albedos, up to the limit of 0.5. An albedo of 0.51 leads to divergence. (d) An albedo
of 0.62 diverges for a closed box (six sides) and shows very slow convergence, as
expected for a five-sided box, but rapid convergence for more open environments
(fewer sides, smaller k G k).

Fig. 6. Validation of the theory for shadowed and non-Lambertian scenes. Our
iterative method recovers ld in 10 iterations for the shadowed scene and 20 for the
glossy one.

Fig. 4. Top: From left to right, we add more terms of the inverse series, going from the simulated global illumination lout to the “direct lighting” ld (leftmost). These terms
also correspond to the iterations in Section 6. Bottom: Contributions of individual terms (neutral gray is 0).



with S0 ¼ I and S%1
0 ¼ I. These iterations are not significantly more

efficient than a direct factorization for (8) and (10) and, thus, rarely
used. But they do provide an elegant and numerically stable
iterative scheme.

Wavelet and hierarchical methods. The matrix-vector multi-
plication Rld in (20) is the time-consuming step. We can wavelet-
transform and approximate the vector ld, as well as the rows ofR, to
speed up the matrix-vector multiply. This is analogous to wavelet
radiosity and light transport in forward rendering [27], [28]. Other
hierarchical approaches, analogous to [29], can also be explored.

Numerical simulations. As baseline, we use matrix-matrix
multiplications for the series in (10) (explicit matrix inversion is
intractable for high resolutions). In Fig. 7, we compare to
iterations in (20) and wavelet accelerations. For transport
resolution N , the series method scales as OðN3Þ and rapidly
becomes impractical. The iterative method uses only matrix-vector
multiplications and is much faster OðN2Þ, with a speedup of three
orders of magnitude for large sizes. Wavelet acceleration leads to
linear OðNWÞ performance, where the number of wavelets W in
each row is relatively insensitive to N . The benefits are more
noticeable at higher resolutions, where wavelet sparsity out-
weighs the transform overhead—wavelets provide significant
savings at real-world resolutions.

7 MONTE CARLO ALGORITHMS

Besides finite element methods like radiosity, forward rendering
has developed a suite of Monte Carlo techniques [1]. Treating A as
a matrix, we need to consider all permutations of indices:

loutði0Þ ¼ ldði0Þ þ
X1

k¼1

X

i1 ;i2 ;...;ik

Ai0i1Ai1i2 ' ' 'Aik%1ik ldðikÞ; ð22Þ

where the first summation is over all terms k in the series or all
path lengths in a path tracing context. The different indices
correspond to all matrix sums, or equivalently all paths, where
each ij chooses a particular point on the path. In Monte Carlo path
tracing, essentially the above form is implicitly used, but the A
matrix is not usually computed explicitly, and elements of it are
generated on the fly.

The inverse series in (10) has an analogous form

ldði0Þ ¼ loutði0Þ þ
X1

k¼1

ð%1Þk
X

i1 ;i2 ;...;ik

Ri0i1Ri1i2 ' ' 'Rik%1ik loutðikÞ; ð23Þ

where the oscillatory behavior requires the additional ð%1Þk factor.
A direct Monte Carlo algorithm is to use a number of samples, for
each of which the indices i1; i2; . . . ; ik are drawn at random. The
expectation of these samples gives the desired result. Our
implementation makes a number of optimizations, corresponding
to analogous techniques in forward rendering.

First, for each sample, we choose a path length k. We assign
probabilities to different path lengths in proportion to their
expected contribution, which decays with k. From the convergence
and error analysis in (16), we use the normalized probability

pðkÞ ¼ m

1%m

# $kð1% 2mÞ
m

; ð24Þ

with m being an estimate of the average albedo of the scene. We
next choose indices i1; i2; . . . ; ik. These can be chosen randomly or
we can use importance sampling on each row of the matrix R:

pðijjij%1Þ ¼
Rij%1ijP
ip
Rij%1ip

¼
Rij%1ij

j Rij%1 j
; ð25Þ

where we normalize by the sum of elements over the full row and
the last step simply denotes the row sum as j Rij%1 j¼

P
ip
Rij%1ip .

These row sums correspond to a generalized analog of albedos or
BRDFs along the path, suitably weighted. Note that importance
sampling in forward rendering is usually based on some partial
information like lighting or BRDF, but we have the luxury of the
full R matrix to importance sample.3 This greatly simplifies the
final expressions.

Finally, the net image is just the expected value over all paths/
samples. For each path, we must divide the value f by the
probability (in this case, f is simply the appropriate term in the
summation on the right-hand side of (23)). Since f involves
expressions of the form Rij%1ij , they cancel with the above
probabilities, as they should for good importance sampling:

fðk; i1; i2; . . . ; ikÞ
pðk; i1; i2; . . . ; ikÞ

¼ ð%1Þk

pðkÞ j Ri0 jj Ri1 j . . . j Rik%1 j loutðikÞ; ð26Þ

where we must average (take the expected value) over all samples
to obtain ld and also add the initial term loutði0Þ, as per (23). Note
that the above simplified form is valid only if we importance
sample properly when choosing the next index along a path.

Hybrid methods. Besides the above pure Monte Carlo path
tracing analog, we can also explore hybrids of iterative and Monte
Carlo techniques. For example, we can speed up the matrix-vector
multiplication Rld in (20) by Monte Carlo sampling only some of
the columns for each row, using the importance sampling scheme
above. We also explore an analogy to final gather in forward
rendering where we use fewer samples for the iteration, but then
compute the final step with a direct matrix-vector multiplication.
For many applications, this may be sufficiently accurate and faster
than a full multistep iterative approach. We point the reader to
[30] for a detailed exposition on hybrid methods, while noting
that our duality theory ensures that the benefits observed there for
forward rendering translate directly to the inverse problem.

Numerical simulations. Fig. 8 first demonstrates that variance
varies inversely with the number of samples per pixel as expected.
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Fig. 7. Timings for series, iterative finite element, and wavelet accelerated
methods (using Daubechies4 wavelets). N is the transport resolution (matrix
size is N2). We normalize timings so that 1.0 corresponds to 5:57! 10%4 sec,
with experiments in Matlab on an Intel i7 machine. All methods are run until
1 percent error.

Fig. 8. Left: Graph of variance in Monte Carlo methods, which varies inversely with
the number of samples per pixel, as expected. Right: In the top row, we show that
only 30 samples per pixel (that in itself is extremely noisy) are adequate to produce
good results using final gather. In the bottom row, as expected, Monte Carlo
becomes more accurate with more samples. The transport resolution in these
experiments is N ¼ 5;120.

3. Note that building the probability tables for importance sampling
requires a preprocess for each row of the matrix. This is done once, after
acquisition and before any specific lout is chosen.



The top row shows the power of final gather—Monte Carlo with
30 samples is noisy, but is smoothed out almost completely using
one direct iteration (the final gather). In the bottom row, we see
that, as expected, pure Monte Carlo converges as the number of
samples is increased.4

8 EXPERIMENTS WITH REAL DATA

In this section, we illustrate practical applications of our iterative
inverse light transport algorithm. The accuracy of our algorithms is
established by a few didactic examples, while their computational
utility is demonstrated on high-resolution transport matrices.
Where appropriate, we discuss the limitations imposed by our
choice of experimental conditions.

8.1 Acquisition Details

Our acquisition setup consists of a Dell 4310WX projector and a
Canon EOS 5D Mark II camera. An accurate, one-time, radiometric
calibration of the projector and camera response curves is
performed to ensure linearity of the corresponding signals. While
prior work has obtained transport matrices at comparable
resolutions [31], it has mainly been for applications akin to
relighting. In contrast, our inverse applications require greater
fidelity of the transport matrix. Thus, a judicious consideration of a
signal to noise ratio is necessary to capture as many of the weaker
interreflection bounces as possible while discarding sensor noise.
To faithfully capture the energy of the transport matrix, up to eight
images at various exposures are assembled into a high dynamic
range image. The projector’s black offset is computed at the highest
exposure to average out high-frequency fluctuations. For higher
resolution scenes, a hierarchical subdivision scheme is used to
simultaneously acquire portions of the transport matrix which are
not in mutual conflict [31].

Limitations. Our setup shares the restrictions of other
projector-camera systems, such as shutter speeds limited by
projector refresh rates, color bleeding, and nonlinear color mixing
ratios. Clipping artifacts may arise in applications due to the
inability of projectors to display negative values. Note that we
require a prior acquisition of T, for which methods like [31] may
become expensive under strong interreflections.

8.2 Projector Radiometric Compensation

The ubiquitous use of projectors may necessitate inverting
photometric distortions and interreflection effects to simulate any
desired appearance in nonflat, non-Lambertian spaces. In terms of
our theory, given a desired appearance lout, we seek to invert the
light transport to find ld ¼ S%1lout. As discussed in Section 3, we

must account for the first bounce F from the projector, and actually
compute lin ¼ T%1lout.

Fig. 1 shows results for radiometric compensation to project a
desired image onto a scene with non-Lambertian materials,
occlusions, and interreflections. Clearly, the desired appearance
is closely matched. The size of the transport matrix is 131K ! 131K,
for which our iterative algorithm performs radiometric compensa-
tion in only about 3 sec. While such high resolutions may be
infeasible for a straightforward matrix inversion, based on
the patterns in Fig. 7, the stratified inverses method in [5] will
require one to two orders of magnitude more time. Also, in contrast
to the method in [7], our algorithms are physically motivated and
not contingent on any tunable parameters.

Note on generality. Even when F ¼ diagðTÞ is not the actual
“first-bounce” operator, it is a valid Jacobi preconditioner, which
leads to a convergent inversion for any light transport as long as
global effects do not dominate. Thus, our radiometric compensation
is accurate for any opaque BRDF, including non-Lambertian ones.

8.3 Separating Bounces

One consequence of our theory is that once the light transport has
been acquired, we can quickly separate an image into its
constituent interreflection bounces. It follows from (18), noting
that S%1 ¼ I%A, that the kth indirect bounce is

lðkþ1Þ
out % lðkÞout ¼ ld % S%1lðkÞout: ð27Þ

Thus, each successive run of our iterative inversion algorithm
yields a bounce of light transport. Fig. 2 demonstrates this on a
didactic example. The scene consists of a white dihedral with green
light projected on the left half. Note that successive bounces of
indirect illumination in the bottom row alternate between the two
walls, as expected. Fig. 9 demonstrates the same with a non-
Lambertian occluder present in the scene. We observe that the
specular highlight is limited to the direct component and absent
from the indirect bounces, which is also expected.

This application is the same as [2], but our algorithms are far
more efficient. For instance, our iterative method recovers the direct
component as well as each bounce of indirect illumination in
0.09 sec for the 4K ! 4K transport matrix in Fig. 9, while
straightforward matrix inversion requires 4.6 sec. More impor-
tantly, our methods can efficiently operate on much higher
resolution scenes that direct inversion cannot handle—for instance,
Fig. 10 demonstrates bounce separation in a 131K ! 131K transport
matrix. While an uncompressed matrix of that size cannot even be
loaded in RAM, extrapolating from Fig. 7, a brute force inversion
will require nearly 150 hours. In contrast, we require only 33 msec
per iteration in our (unoptimized) Matlab implementation, for a
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Fig. 9. Approximate bounce separation with occlusions and specularities. Top row:
Input image and separated direct and net global components. Bottom row:
Recovered indirect bounces. Note that successive bounces illuminate alternating
walls and the specular highlight is present only in the direct component.

Fig. 10. Approximate bounce separation on a complex, high-resolution scene
using our iterative light transport inversion. Each bounce is obtained in just 3 sec.
for a 131K ! 131K light transport.

4. Our Matlab implementation is not optimized for the sampling process,
making a direct timing comparison to finite elements difficult. Hence, we
simply report on the number of samples per pixel.



total of about 3 sec to separate each bounce. Note that the faster
method in [24] yields only the top row of Fig. 2 for a particular
lighting configuration, while we can separate all of the bounces for
any lighting, albeit at the expense of a more laborious acquisition.

Approximations in single projector-camera setup. While our
theory is valid for all opaque BRDFs when considering the full
light field, the use of a single projector and camera in our
applications makes the bounce separation only approximately
correct. A single projector-camera setup necessitates additional
operators to project the output light field to the image (P) and raise
the projector input to the full light field (Q). The light transport
now becomes

T ¼ PSFQ ¼ PðIþAþA2 þ ' ' 'ÞFQ ð28Þ

¼ PFQþPAFQþPA2FQþ ' ' ' : ð29Þ

The direct lighting component in the observed image is PFQ.
Higher bounces for the full light field are generated by a simple
operator action A. However, that is not true here unless P and A
commute multiplicatively (for which it is unlikely that any
physical meaning exists). Thus, our physical interpretations in
terms of bounces of light in Section 4.2 are only valid for the full
light field. Also, this makes the theory inexact for the bounce
separation application with a single projector-camera in non-
Lambertian scenes.

But note that the bounce separation is exact for Lambertian
scenes even in the single projector-camera case. Since the camera
direction is immaterial for Lambertian scenes, one need not
consider P for a radiometric analysis (or even Q, if one ignores
visibility and shadowing issues, as in [2]). In practice, specular
effects rapidly decay with bounces of interreflection (that is, higher
bounces are increasingly diffuse), so our bounce separation
experiments in Figs. 9 and 10 are still robust to moderate amount
of gloss.

9 CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is a formulation of inverse
light transport in computer vision, as a dual to the theory of
forward rendering in computer graphics. This lends new insights
for canceling interreflections in complex scenes, as well as fast
computational methods for doing so. Our efficient algorithms,
analogous to finite element radiosity and Monte Carlo path tracing
in forward rendering, can handle transport resolutions far higher
than previous methods.

From a theoretical perspective, we have just scratched the
surface of analogies between forward and inverse methods. It is
our hope that the framework of this paper forms the basis for
discovering further insights into the structure of light transport
and developing methods that couple fast acquisition and iterative
inversion to handle dynamic scenes.
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[27] S. Gortler, P. Schröder, M. Cohen, and P. Hanrahan, “Wavelet Radiosity,”
Proc. ACM SIGGRAPH, pp. 221-230, 1993.

[28] R. Ng, R. Ramamoorthi, and P. Hanrahan, “All-Frequency Shadows Using
Non-Linear Wavelet Lighting Approximation,” ACM Trans. Graphics,
vol. 22, no. 3, pp. 376-381, 2003.

[29] P. Hanrahan, D. Salzman, and L. Aupperle, “A Rapid Hierarchical
Radiosity Algorithm,” Proc. ACM SIGGRAPH, pp. 197-206, 1991.

[30] P.H. Christensen, E.J. Stollnitz, D.H. Salesin, and T.D. DeRose,
“Global Illumination of Glossy Environments Using Wavelets and
Importance,” ACM Trans. Graphics, vol. 15, pp. 37-71, 1996.

[31] P. Sen, B. Chen, G. Garg, S. Marschner, M. Horowitz, M. Levoy, and H.
Lensch, “Dual Photography,” ACM Trans. Graphics, vol. 24, no. 3, pp. 745-
755, 2005.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. X, XXXXXXX 2011 7


