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Abstract

Recently neural volumetric representations such as neural reflectance fields have been
widely applied to faithfully reproduce the appearance of real-world objects and scenes
under novel viewpoints and lighting conditions. However, it remains challenging and
time-consuming to render such representations under complex lighting such as environ-
ment maps, which requires individual ray marching towards each single light to calculate
the transmittance at every sampled point. In this paper, we propose a novel method based
on precomputed Neural Transmittance Functions to accelerate the rendering of neural
reflectance fields. Our neural transmittance functions enable us to efficiently query the
transmittance at an arbitrary point in space along an arbitrary ray without tedious ray
marching, which effectively reduces the time-complexity of the rendering. We propose
a novel formulation for the neural transmittance function, and train it jointly with the
neural reflectance fields on images captured under collocated camera and light, while en-
forcing monotonicity. Results on real and synthetic scenes demonstrate almost two order
of magnitude speedup for renderings under environment maps with minimal accuracy
loss.

1 Introduction
Reproducing the appearance of real-world objects and scenes is challenging. Traditional
methods [4, 14, 15, 24] recover the reflectance of the scenes and geometry, represented
with triangle meshes, to synthesize images under novel conditions. These methods often
fail to handle challenging scenes such as those with thin structures and severe occlusions.
Neural rendering methods such as neural radiance fields (NeRF) [13] exploit volumetric
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scene representations and differentiable ray marching to significantly improve the image
quality. The original NeRF is limited to pure view synthesis. Thus, recent works [2, 23]
extend the volumetric rendering framework and recover neural reflectance fields (NRF) to
support rendering under both novel viewpoints and lighting conditions. They consider light
transport and recover the spatial reflectance properties and volume density information.

NRF faithfully reproduces the appearance of objects, but it is time-consuming to render
them under complex lighting conditions e.g. environment lighting. Specifically, assume a
single-scattering model. For each sampled point on the camera ray, we need to evaluate the
transmittance for each light in the scene, which involves another ray marching towards it.
Moreover, each sample on the light ray requires an additional network inference.

In this paper, we significantly reduce the time-complexity of the rendering by jointly
learning a Neural Transmittance function, along with other NRF parameters while training.
Given such a function, we can directly query the transmittance of a point along an arbitrary
direction without ray marching. The Neural transmittance function is modeled by a Mul-
tilayer Perceptron (MLP). In its simplest form, the network could take the position of the
point and the desired direction as input, and output the transmittance. However, such a sim-
ple formulation does not account for physical priors on the transmittance function such as its
monotonicity along rays. Therefore, instead of predicting the transmittance for each sampled
point independently, we directly predict the transmittance function for the desired ray.

Our method is based on NRF [2], which applies an MLP to predict the volume density,
reflectance, and normal of a point. Similarly, we train our model on multi-view images cap-
tured with collocated camera and light. We jointly train the networks for NRF and our neural
transmittance function, where we use the transmittance calculated with the former model to
supervise the training of the latter model. Since the camera/light rays corresponding to pixels
on training images only cover a small portion of the rays that pass the objects, simply train-
ing the neural transmittance networks on the rays corresponding to training pixels results in
poor generalization to unseen rays. Hence, we introduce an effective data augmentation by
randomly sampling rays in space and calculating their transmittance to supervise the train-
ing of our neural transmittance networks. In Section 5, we show that our data augmentation
effectively improves the quality of the results.

In summary, our main contributions are:

• We propose to jointly train a novel neural transmittance network that enables us to
effectively query the transmittance of a point along an arbitrary direction.

• We apply a novel generalized logistic function to model the monotonic transmittance
along the ray and use the network to predict the parameters for the logistic function
with a two-sphere parameterization.

• We introduce a novel data augmentation method to provide additional supervisions for
the training of our neural transmittance networks, which allows our network to better
generalize to unseen rays and achieve renderings of higher quality.

• We demonstrate that our method achieves almost two orders of magnitude speedup for
rendering under complex lighting conditions such as environment lighting.

2 Related Work
Geometry and reflectance acquistion. To reproduce the appearance of real-world objects,
traditional methods [4, 14, 19, 24] apply multi-view stereo to find correspondence across
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input images to reconstruct the geometry of the objects, usually represented with a trian-
gle mesh. They estimate the material properties of the object, commonly represented by
SVBRDFs, by optimization to match the appearance of rendered images to the captured
images. In contrast, we learn a volumetric representation for the objects and propose an
efficient method based on learnt precomputed transmittance for efficient rendering.

Neural representations. Recent works exploit neural representations to reproduce the ap-
pearance of scenes, which involves using neural networks to learn scene geometry and re-
flectance. Some methods directly predict the explicit geometry with representations such as
point clouds [1], occupancy grids [8, 20] and signed distance fields [10, 18]. Volumetric
representations [3, 12, 21] are also applied to acquire the appearance of objects and scenes,
where ray marching is performed to render the desired images. Mildenhall et al. [13] propose
to use an implicit representation for the volume where an MLP is used to predict the volume
density and radiance of an arbitrary point by taking its 3D location and view direction as
input. Bi et al. [2] further proposes to jointly learn volume density and reflectance from flash
images captured by mobile phones, which supports joint view synthesis and relighting.
Precomputation techniques. Precomputing scene components such as radiance transfer [16,
22] global illumination [6, 17] and visibility [2, 7, 11, 23] is used to accelerate the rendering.
Lokovic and Veach [11] precompute a deep shadow map for efficient visibility lookup and
high-quality shadows. Kallweit et al. [7] learn a neural network to fit the in-scattered radiance
for an arbitrary point and view direction. Bi et al. [2] precompute a transmittance volume at
the light by calculating the transmittance of each sampled point on the rays corresponding to
the pixels on the virtual image plane placed at the light.

The work concurrent to ours by Srinivasan et al. [23] predicts the transmittance with
a network by taking the position of the 3D point and the lighting direction, which fails to
conform to physical monotonicity of the transmittance. Compared to Bi et al. [2] and
Srinivasan et al. [23] that predict the transmittance for each sample on the ray, our method
achieves significant speedups while maintaining high-quality renderings.

3 Background
Our method builds on the framework by Bi et al. [2] that estimates NRF [2] for joint view
synthesis and relighting. They use MLPs to predict the reflectance, normal and volume
density of points in the scene. They apply differentiable volume rendering via ray marching
to render the image. At each sample point on the ray, they determine its contribution with a
differentiable reflectance model, which integrates to give the color of that pixel:

xxx = rrr(t) = ooo+ωωωot (1)

LLL(rrr) =
∫

∞

0
τ(ooo,xxx,ωωωo)σ(xxx)hhh(xxx,ωωωo)dt (2)

hhh(xxx,ωωωo) =
∫

Ω

τ(lll,xxx,ωωω i)ρρρ(RRR(xxx),ωωωo,ωωω i,nnn(xxx))dωωω i (3)

τ(lll,xxx,ωωω) = exp(−
∫ ||lll−−−xxx||

0
σ(lll +uωωω)du) (4)

where xxx is a 3D point that lies on the ray rrr at a distance t from camera origin ooo on ray direction
ωωωo. Incident radiance LLL of that ray on the image plane is computed by an integral on the
ray. The integrand is a product of transmittance τ along view direction, volume density σ
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Figure 1: We represent a ray by two-spheres [5] representation i.e. two intersection points
on the unit sphere (left). Distance to ray origin is invariant to the camera location (middle).
Two-spheres representation is used to define the neural transmittance function (right).

and outgoing radiance hhh. Outgoing radiance is an integral over the product of transmittance
along light direction ωωω i, a differentiable reflectance model ρρρ that is a function of reflectance
parameters RRR, incoming and outgoing directions and normal vector nnn on the point xxx. This
integral is over the domain of upper hemisphere Ω to the normal. τ is a function of light
source location lll, ωωω i and xxx. Boldface notations in this paper represent vectors.

Note that in this case evaluating the integral in Equation 2 involves a double integral,
where we integrate over multiple samples along the camera ray and the outgoing radiance
of each sample is determined by an integral over the upper hemisphere at its local surface.
During training, with the assumption of a single point light collocated with the camera and a
single scattering model, the equation above can be simplified significantly, i.e., the integral
in equation 3 is removed, and the transmittance for the light ray and camera ray would
be identical, so only a single evaluation is needed. While this assumption alleviates the
complicated integral at training time, relighting the scene at test time is still computationally
intensive. Specifically, to render the scene under uncollocated camera and light, a naïve
rendering process would still need to evaluate a double integral: for each sample on the
camera ray, we need to perform another raymarching towards the light to evaluate the light
transmittance, where the time-complexity is quadratic in the number of samples.

Bi et al. [2] address this problem by precomputing a transmittance volume inspired by
Lokovic and Veach [11]. They place a virtual image plane at the light and march a ray
through each pixel and calculate the transmittance of each sample point on the ray, which
effectively forms a 3D transmittance volume. During testing, they directly query the trans-
mittance of the desired point by interpolating the precomputed transmittance volume. This
strategy reduces the number of network inferences for light transmittance to be linear in the
number of samples. However, it requires a large memory to construct such a volume, which
can only have a limited resolution. In comparison, we compute a 2D transmittance map
instead of an expensive 3D volume, which reduces the time-complexity to be linear in the
number of pixels and requires a much smaller amount of memory.

4 Method

We accelerate the rendering of neural volumetric representations such as NRF [2]. Since the
dominating factor in running time is the evaluation of light transmittance, we train a network
to predict that. Unlike prior work that predicts the transmittance per point [23], we predict
it per ray. We model it by a logistic function and achieve almost two orders of magnitude
speedup compared to baseline methods while maintaining high-quality renderings.
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Figure 2: Transmittance map for a point light (left) and a directional light (right). For each
point (green dot) we first find the nearest rays on the transmittance map and then evaluate
the neural transmittance function for interpolation (Section 4.2).

Ray parametrization. We use two-spheres [5] parametrization to represent a ray inde-
pendent of the camera and light source positions. Specifically, we assume that the object of
interest resides in the unit sphere centered at the world origin. Therefore, every ray passing
through the object has two intersection points with the unit sphere, denoted ωωω1 and ωωω2. We
use the two points as our ray representation. To sample a point rrr′(t ′) on the ray, we define
the original point ooo′ to be the midpoint between ωωω1 and ωωω2. Then we have,

rrr′′′(t ′) = ooo′+ωωω
′t ′ (5)

where ωωω ′ is the unit vector pointing from ωωω1 to ωωω2. Two-spheres parameterization is visual-
ized in Figure 1. Note that we use notation ′ to distinguish the two-spheres parameterization.

Neural Transmittance. NRF [2] computes the transmittance through ray marching, by
sampling σ along the ray and querying a MLP. This is computationally expensive, especially
for the environment map rendering where we need to compute the incoming radiance from
many directions. We train another MLP to predict transmittance along a ray without ray
marching. Hence, we achieve 100 times speedup compared to prior work.

The key observation is that for opaque objects, the numerically computed transmittance
can be well modeled by a sigmoid function SSS, (demonstrated in the supplementary material).
Therefore, we train a MLP FFF to predict the slope a and center b of a sigmoid function. The
transmittance of a ray {ωωω1,ωωω2} can be written as,

a,b = FFF(((ωωω1,,,ωωω2))) a > 0, b ∈ [−1,1] (6)
τ(rrr′(t ′),ω ′) = SSS(a(t ′−b)) (7)

The predicted transmittance τ can then be substituted in differentiable rendering equation (2)
and (3). Therefore, we can train the MLP of FFF end-to-end, as described in the next section.

4.1 Training
Similar to Bi et al. [2], we train our networks on images captured under previously setup
camera and light. We jointly train the networks for NRF and those for transmittance. Given
a pixel ppp, our loss function is as follows:

L = α1Lnrf +α2Lnt (8)

Lnrf = ∑
ppp
||IIIppp

coarse− IIIppp||22 + ||III
ppp
fine− IIIppp||22 (9)

Lnt = ∑
ppp

∑
xxx∈rrr(ppp)

||τxxx
nrf− τ

xxx
nt||22 +∑

p
||IIIppp

nt− IIIppp||22 (10)
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where α1 and α2 are the weight coefficients. Here the losses in Equation 9 minimize the
difference between the coarse prediction color IIIppp

coarse, fine prediction color IIIppp
fine and ground

truth color IIIppp. The predicted colors are calculated via differentiable ray marching as specified
in Equation 2 and Equation 3. The loss function Lnrf is the same used by Bi et al. [2].

Transmittance network loss Lnt consists of two terms, namely the transmittance and the
color loss. In terms of transmittance loss, for each fine sample xxx on the ray rrr(ppp) corre-
sponding to a pixel ppp, we predict its transmittance τx

nt using our transmittance network, and
minimize its difference from the transmittance τx

nrf calculated from the volume density pre-
dicted by the fine NRF network (Equation 2). For the color loss, we calculate the pixel colors
using our predicted transmittance and minimize their difference from the ground truth colors.

Training augmentation. Training the transmittance networks on the training images
fails to generalize to unseen rays, since they cover a small portion of rays that pass the unit
sphere. Thus, we increase the number of training rays particularly for those that are not
included in the existing camera rays. Instead of capturing more input images and increasing
acquisition complexity, we randomly sample rays in space and use the NRF network to
predict their color and the transmittance for points on them as additional supervision to our
transmittance network. To this end we randomly sample pairs of points ωωω1 and ωωω2 on the
sphere at each iteration, which uniquely determine a set of rays. These sampled rays are used
to train the transmittance network only, and we use the same loss function as in Equation 10
to train the transmittance network except that the predicted color by the NRF network is
used for the ground truth. In Figure 4 and the supplementary material we visually compare
relighting with and without augmentation

4.2 Efficient rendering with precomputed transmittance map
At test time, computing the transmittance of a point is computationally expensive. Naïvely
rendering a scene with an environment map requires l ·m · n2 queries of the transmittance
network where m, l and n are respectively the number of pixels, light sources and samples
for ray marching. State of the art methods reduce this time-complexity to m · l ·n [2, 23].

We propose a novel method to accelerate the rendering in three steps. First, we sample m
rays rrri, i ∈ {0,1...,m} and precompute the transmittance parameters for each. These param-
eters are denoted as ai and bi and require m · l neural network queries. Second, for each point
of interest, we find points that lie on four closest rrri. Third, we interpolate the transmittance
for the point of interest. Algorithms are provided in the supplementary material.

Transmittance map is computed in two steps. We compute the rays rrri depending on
the type of light source and then we compute the parameters for each ray. For a point light,
we place a virtual image plane there with m pixels. rrri is the outgoing ray from pixel i of
the virtual image plane. For a directional light, we sample a set of parallel rays toward the
direction of the light that pass from the unit sphere. To this end, we uniformly sample m
points on a circle perpendicular to the light direction passing the world origin. rrri in this case
originates on the sample point on the circle and points toward the light source direction.

After computing rays rrri, we find the two-spheres parameters by intersecting them with
the unit sphere (Section 4). We use our transmittance network to precompute ai and bi.
Transmittance map is depicted in Figure 2 on a 2D example.

Nearest Points. During rendering, given a point of interest xxx and light direction ωωω i,
we approximate the transmittance as follows. We first find a set of four rays close to xxx
denoted as QQQ = {rrr0,rrr1,rrr2,rrr3}. We can then find a set of four close points to xxx, namely X =
{xxx0,xxx1,xxx2,xxx3}, that reside on these rays. Using Equation 7 we can compute the transmittance
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Scene
Transmittance Overall

Ours NRF Speed up Ours NRF Speed up
Point light 0.25 96.73 384.10 65.49 162.88 2.48

Environment map 122.38 47 806.81 390.62 522.45 48 151.80 92.16
Table 1: Runtime of our method compared to NRF in seconds. Our method is 2 times faster
than NRF for relighting with a point light and 92 times faster for relighting with a 50× 10
environment map.

values for points in X . Then we approximate the transmittance on xxx by interpolation. These
steps are explained below and depicted in Figure 2.

For the case of a point light, we project xxx on the virtual image plane and locate its four
nearest neighbor pixels and their corresponding rays QQQ. Four closest points in X are merely
the intersection of the perpendicular plane to ωωω i that passes through xxx and the nearest rays
QQQ. For rendering with a directional light, we find closest rays QQQ by projecting the point xxx
on a plane orthogonal to ωωω i that passes the origin. We then find X by intersecting the plane
orthogonal to the light direction which passes through xxx with four rays in QQQ.

After finding the set X of four closest points, we can compute their transmittance by
Equation 7 and find the transmittance on xxx using bilinear interpolation. As shown in Figure 4
and Table 1, our method achieves almost two orders of magnitude speedup compared to
baseline methods without sacrificing the image quality.

Implementation. We follow the training protocols of NRF. The input of our algorithm
is a set of images taken from an object with a mobile phone with flashlight in a darkroom.
We capture around 400 per object. The camera poses and intrinsic parameters are estimated
with COLMAP [19]. We translate and scale the scene to fit the reconstructed geometry into
a unit sphere at the origin. We jointly train the neural networks for NRF and the transmit-
tance network with a batch size of 4. For each batch, we randomly select a training image
and sample 16× 16 pixels for training. In addition, we also randomly sample 128 rays as
described in Section 4.1 to generate augmented training data for the transmittance networks.
We optimize the networks using Adam optimizer [9] with a learning rate of 2e−5. The net-
works are trained on 4 Nvidia RTX 2080 GPUs, and the full training takes around 2 days.

5 Results
We evaluate our method in three aspects. First, we demonstrate that our method is more
than 92 times faster than Bi et al.[2]. Second, we show that our augmentation method is
necessary for neural transmittance to avoid overfitting. Third, we show that, even though
our method includes approximation steps, our results are still qualitatively and quantitatively
comparable to prior work. We run our experiments on 3 synthetic scenes, namely, Happy
Buddha, Sitting Buddha and Globe and 2 real scenes, namely, Girl and Pony. All of the syn-
thetic scenes, Girl and Pony are rendered with 600×600, 592×478 and 763×544 resolution
images respectively. We use 500 images to train the synthetic scenes and respectively 384
and 380 images for training the Girl and Pony. We show our results on view synthesis and
relighting with point light on an image sequence in the supplementary material.

Runtime. We compare our method with that of Bi et al. [2]. We gain more (92 times)
speed up for rendering a scene under environment maps with higher resolution than those
with low resolution (2 times). We plot the runtime of our method and Bi et al. [2] in Figure 3.
To this end, we run both methods on 500 different environment maps. Each of these maps
have a unique resolution, namely, i ∈ {1,2,3, ...,500} pixels. We compute the runtime for
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Figure 3: Overall runtime for relighting of the Happy Buddha scene (left). We relight the
scene with many environment maps each with a unique resolution. The speed up is the
division of NRF runtime by our method with Transmittance Map (TM), shown on the right.

these experiments and the results are shown in Figure 3. Figure 3 shows the runtime of both
methods and the speed up of our method compared to Bi et al. [2]. We show that our method
allows rendering with high resolution environment map in Figure 5. NRF [2] takes more
than 251 hours to render in this resolution.

The speed up curve in Figure 3 shows that our method is faster for larger environment
maps compared to smaller ones. In more detail, the bottle neck for the runtime of neural
rendering is neural network queries. These queries are required to retrieve reflectance and
transmittance values. Our method, similar to NRF, requires n ·m queries for reflectance.
Additionally, our method requires l ·m queries for transmittance while NRF requires l ·m ·n.
As a result, the ratio of overall queries for NRF compared to ours is ψ = vNRF

vours
= l·m·n+n·m

l·m+n·m
where vNRF ,vours and ψ are respectively the time complexity of NRF [2], that of our method
and the hypothetical speed up of our method. For one light source this is a constant 2n

n+1
and for large number of light sources it approaches to n that is the sample count along a
ray. Sample count is normally chosen to be 192 which suggests that our method should be
almost 192 times faster than Bi et al.[2] for large environment maps. Our speed up plot in
Figure 3 however, converges to a constant value around 92. This value is lower than the
hypothetical speed up (192) since our algorithm requires additional steps including nearest
neighbor lookup and interpolation. It is also clear from Table 1 which shows that our method
is 2 × faster for relighting with uncollocated point light. Table 1 moreover shows that our
method is more than 380× faster for in the precomputation stage compared to NRF. In the
supplementary material we compare the time for creating transmittance map compared to
transmittance volume of Bi et al [2] for different resolutions.

Parametrization and Augmentation. The two-spheres parametrization enables us to
use a monotonic function for the definition of neural transmittance. Naively fitting such a
function only over the view directions of input images would lead to overfitting and our aug-
mentation method leads to higher accuracy. To demonstrate this, we compute the accuracy
of our method with and without augmentation in Table 2 for both cases of relighting the syn-
thetic scenes with point light and environment map. For most of the cases the augmentation
method leads to higher accuracy by either or both metrics. We visually show the necessity
of augmentation in Figure 4 and in the supplementary material. In Figure 4 we compare our
method with Neural Transmittance (NT) only and to that with augmentation and transmit-
tance map. This figure shows that the overfitting artifacts are removed by our augmentation
method. We show an ablation study in the supplementary material.

Accuracy. Although our method uses many approximation steps in favor of efficient
rendering, it is still quantitatively and qualitatively comparable to prior work. We show this
in Table 2 which includes the error values of different steps of our algorithm. These errors are
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Figure 4: Relighting results with a point light (left) and with 24×12 pixels environment map
(right). The quality of relighting with our method is comparable to that of NRF and ground
truth. We compare our method with Neural Transmittance (NT) only and with augmentation
(AG) and Transmittance Map (TM). Augmentation removes the overfitting artifacts.

computed on synthetic scenes under point light and environment map lighting. We evaluate
our method quantitatively on 400 and 18 images respectively for point light and environment
lighting. In the first 200, the light source moves around the object on a sphere. In the next
200, the view angle also moves on the same position as light. For environment map cases, we
relight each scene with 18 different environment maps from a fixed view point. We compare
each of these images with the ground truth and take the average error. In most of the rows
in Table 2, our method is quantitatively similar or slightly worse than NRF despite the many
approximation steps. Nevertheless, the resulting error is small.
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Scene NRF Ours TM Ours AG No AG NRF Ours TM Ours AG No AG
Point light

MS-SSIM LPIPS
Happy Buddha 0.963 0.954 0.954 0.948 0.049 0.055 0.055 0.058
Sitting Buddha 0.985 0.973 0.973 0.965 0.066 0.049 0.049 0.042

Globe 0.681 0.666 0.666 0.668 0.219 0.229 0.229 0.228
rMSE SSIM

Happy Buddha 0.051 0.060 0.059 0.058 0.955 0.945 0.945 0.939
Sitting Buddha 0.011 0.022 0.022 0.026 0.976 0.967 0.967 0.959

Globe 0.107 0.126 0.126 0.127 0.739 0.732 0.732 0.732
Environment map

MS-SSIM LPIPS
Happy Buddha 0.958 0.937 0.938 0.940 0.071 0.077 0.077 0.076
Sitting Buddha 0.952 0.903 0.890 0.870 0.095 0.085 0.090 0.075

Globe 0.911 0.859 0.837 0.840 0.086 0.107 0.114 0.117
rMSE SSIM

Happy Buddha 0.148 0.201 0.201 0.190 0.937 0.914 0.914 0.916
Sitting Buddha 0.041 0.081 0.085 0.097 0.939 0.895 0.880 0.864

Globe 0.159 0.240 0.281 0.281 0.899 0.851 0.831 0.835
Table 2: We compare the accuracy of our method to the baseline. Our approximation method
with Transmittance Map (Ours TM), has only a minimal drop of accuracy compared to NRF.
We achieve higher accuracy by Augmentation (Ours AG) than no augmentation (No AG).
(rMSE, (MS-)SSIM and LPIPS respectively stand for Root Mean Squared Error, (Multi-
Scale) Structure Similarity Index Measure and Learned Perceptual Image Patch Similarity.)

a b c d
Figure 5: We render Happy Buddha (a) and Sitting Buddha (b) with 64× 128 environment
maps (b and d). It takes 2.7 hours with our method to render each of these scenes and
potentially more than 251 hours with prior work.

6 Discussion

We introduced Neural Transmittance and Transmittance Map which allow more than 92×
faster rendering with Neural Reflectance Fields under environment maps and almost 2×
under point lights. Despite the necessary approximations, our method is qualitatively and
quantitatively comparable to prior work. We also introduced an augmentation method that
avoids overfitting of transmittance. We expect to see this augmentation method used for
other quantities defined on the light field domain such as radiance, depth, reflectance, etc.

An interesting future direction is to formulate a physically consistent transmittance func-
tion to derive the volume density. Such a formulation would allow training only one network
for both of these quantities and potentially for all of those required for volumetric render-
ing. In our method, these two quantities are decoupled that results in inaccuracies such as
intensity shift. However, this does not lead to significant error as demonstrated in Section 5.
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