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Figure 1. Texture transfer from sparse images. Given a small number of images and a target mesh, our method synthesizes geometry-
aware texture that looks similar to the input appearances for diverse objects.

Abstract

We present TextureDreamer, a novel image-guided tex-
ture synthesis method to transfer relightable textures from a
small number of input images (3 to 5) to target 3D shapes
across arbitrary categories. Texture creation is a pivotal
challenge in vision and graphics. Industrial companies hire
experienced artists to manually craft textures for 3D assets.
Classical methods require densely sampled views and ac-
curately aligned geometry, while learning-based methods
are confined to category-specific shapes within the dataset.
In contrast, TextureDreamer can transfer highly detailed,
intricate textures from real-world environments to arbi-
trary objects with only a few casually captured images, po-
tentially significantly democratizing texture creation. Our
core idea, personalized geometry-aware score distillation

(PGSD), draws inspiration from recent advancements in
diffuse models, including personalized modeling for texture
information extraction, variational score distillation for de-
tailed appearance synthesis, and explicit geometry guid-
ance with ControlNet. Our integration and several essen-
tial modifications substantially improve the texture quality.
Experiments on real images spanning different categories
show that TextureDreamer can successfully transfer highly
realistic, semantic meaningful texture to arbitrary objects,
surpassing the visual quality of previous state-of-the-art.
Project page: https://texturedreamer.github.
io
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1. Introduction

High-quality 3D content is indispensable for a wide range
of critical applications, including AR/VR, robotics, film,
and gaming. In recent years, remarkable progress has been
made in democratizing 3D content creation pipelines, fa-
cilitated by advancements in 3D reconstruction [40, 42]
and generative models [18, 59]. While substantial atten-
tion has been devoted to exploring the geometry compo-
nent [8, 12, 64] and neural implicit representations [44],
such as NeRF [40], creation of high-quality textures is rel-
atively under-explored. Textures are pivotal in creating re-
alistic, highly detailed appearances and are integral to vari-
ous graphics pipelines, where industry has traditionally re-
lied on professional, experienced artists to craft textures.
This process usually involves manually authoring procedu-
ral graphs [1] and UV maps, making it expensive and in-
efficient. Automatically transferring the diverse visual ap-
pearance of objects around us to the texture of any target
geometry would thus be highly beneficial.

We present TextureDreamer, a novel framework to cre-
ate high-quality relightable textures from sparse images.
Given 3 to 5 randomly sampled views of an object, we
can transfer its texture to an target geometry that may come
from a different category. This is an extremely challenging
problem, as previous texture creation methods usually ei-
ther require densely sampled views with aligned geometry
[3, 32, 68], or can only work for category-specific shapes
[4, 21, 46, 58]. Our framework draws inspiration from
recent advancements in diffusion-based generative models
[23, 59, 60]. Trained on billions of text-image pairs, these
diffusion models enable text-guided image generation with
extraordinary visual quality and diversity [52]. Pioneering
works have applied these pre-trained 2D diffusion models
to text-guided 3D content creation [34, 47, 63]. However,
a common limitation among those methods is that text-only
input may not be sufficiently expressive to describe com-
plex, detailed patterns, as demonstrated in Figure 2. In con-
trast to text-guided methods, we effectively extract texture
information from a small set of input images by fine-tuning
the pre-trained diffusion model with a unique text token
[16, 54]. Our framework, therefore, addresses the challenge
of accurately describing complex textures.

The Score Distillation Sampling (SDS) [47, 62] is one
core element that bridges pre-trained 2D diffusion models
with 3D content creation. It is widely used to generate and
edit 3D contents by minimizing the discrepancy between
the distribution of rendered images and the distribution de-
fined by the pre-trained diffusion models [34, 37]. Despite
its popularity, two well-known limitations impede its abil-
ity to generate high-quality textures. First, it tends to create
over-smoothed and saturated appearances due to the unusu-
ally high classifier-free guidance necessary for the method
to converge. Second, it lacks the knowledge to generate a

Input image

Target 3D shape Text-guided texturing [TEXTure] Image-guided texturing [Ours]
there is a green chair with a leaf print on it
Image Captioning via BLIP

Figure 2. Limitation of text-guided texturing. Compared to text-
guided texturing method which requires a captioning method to
generate a text prompt which might not express all the details of
the image, image-based guided texturing can be more effective and
more expressive. Image captioning is predicted by BLIP [33], text-
guided texturing is generated via TEXTure [53], and image-guided
result is from our method.

3D-consistent appearance, often resulting in multi-face ar-
tifacts and mismatches between textures and geometry.

We propose two key design choices to tackle these chal-
lenges. Instead of using SDS, we build upon Variational
Score Distillation (VSD) in our optimization approach,
which can generate much more photorealistic and diverse
textures. Initially introduced in ProlificDreamer [63], VSD
treats the whole 3D representation as a random variable and
aligns its distribution with the pre-trained diffusion model.
It does not need a large classifier-free guidance weight to
converge, which is essential to create a realistic and diverse
appearance. However, naively applying VSD update does
not suffice for generating high-quality textures in our ap-
plication. We identify a simple modification that can im-
prove texture quality while slightly reducing the compu-
tational cost. Additionally, VSD loss alone cannot fully
solve the 3D consistency issue. Fine-tuning on sparse inputs
makes converging harder, as observed by previous work
[51]. We, therefore, explicitly condition our texture gen-
eration process on geometry information extracted from the
given mesh by injecting rendered normal maps into the fine-
tuned diffusion model through the ControlNet [67] archi-
tecture. Our framework, designated as personalized geome-
try aware score distillation (PGSD), can effectively transfer
highly detailed textures to diverse geometry in a semanti-
cally meaningful and visually appealing manner. Exten-
sive qualitative and quantitative experiments demonstrate
that our framework substantially outperforms state-of-the-
art texture-transfer methods.

2. Related Works

Texture synthesis and reconstruction Classical texture
creation methods involve sampling from a distribution de-
rived from the neighborhood [13, 28], tiling repetitive pat-
terns [29] or fusing multi-view images onto the object sur-



faces [3, 32, 68]. The former two fall short in creat-
ing semantic meaningful textures while the latter one re-
quires highly accurate geometry reconstruction. Numerous
learning-based methods were proposed to learn texture cre-
ation from large-scale 3D datasets [4, 11, 21, 46, 58] but
are confined to specific categories within the dataset. Re-
cent works also use CLIP model [50] for text-guided tex-
ture generation of arbitrary objects [31, 36, 39, 41], but
their texture qualities are usually low. In contrast, Texture-
Dreamer can create semantically meaningful, high-quality
textures for arbitrary objects using uncorrelated sparse im-
ages. Traditionally, textures are represented as a 2D im-
age and projected to object surfaces through UV mapping.
Leveraging the recent progress in neural implicit represen-
tation, our method, along with recent developments in in-
verse rendering [5, 7, 17, 61] and 3D generation [7, 17],
represents texture as a neural implicit texture field.

Diffusion models Diffusion models [59] have emerged
as the state-of-the-art generative models [23, 60], demon-
strating exceptional visual quality [52]. Its training and
inference involve iteratively adding noise with different
variances and denoise the data. Trained on internet-scale
image-text pair datasets [52], these pre-trained models ex-
hibit unprecedented capability in text-guided image syn-
thesis and have proven successful in various image editing
tasks. Recent works also manage to fine-tune pre-trained
diffusion models on much smaller datasets or even a few im-
ages to facilitate customized/personalized image synthesis
[54] and image generation conditioned on multi-modal data
[67], such as normal and semantic maps. Building upon this
progress, TextureDreamer can effectively extract texture in-
formation from sparse views and transfer it to a novel target
object in a geometry-aware manner.

3D generation with 2D diffusion priors Diffusion-based
3D content creation has very recently gained substantial in-
terest. Several methods directly train 3D diffusion mod-
els to generate 3D content in various representations, in-
cluding point cloud [35], neural radiance filed [26], hyper-
network [14] and texture [66]. Others utilize pre-trained
2D diffusion models by either progressively fusing gener-
ated images from different views [2, 6, 9, 53] or optimiz-
ing the 3D representation through score distillation sam-
pling [34, 37, 47] and its improved variations [27, 63].
While many methods concentrate on text-guided 3D gener-
ation, fewer attempt to leverage diffusion models to gener-
ate 3D content from images. A number of concurrent works
fine-tune 2D diffusion models on large-scale 3D datasets
for sparse view reconstruction [48, 57], primarily focusing
on whole 3D object reconstruction. In contrast, Texture-
Dreamer targets transferring textures from a small number
of images to a target 3D shape with unmatched geometry.
Dreambooth3D [51] and TEXTure [53] extract information
from sparse views into a new text token and fine-tuned dif-

fusion model weights, which can be used to generate per-
sonalized 3D object or texture unseen objects. Texture-
Dreamer employs a similar method to extract information
from sparse images. However, it differs from prior works
on utilizing the extracted information for texture generation,
leading to improvements in consistency and photorealism.

3. Method

We propose TextureDreamer, a framework which synthe-
sizes geometry-aware texture for a given mesh with appear-
ance similar to 3-5 input images of an object. In Section 3.1,
we first introduce preliminaries on Dreambooth [54], Con-
trolNet [67] and score distillation sampling [47, 62, 63]. In
Section 3.2, we propose personalized geometry-aware score
distillation (PGSD), which is our core technical contribu-
tion that enables high-quality image-guided texture transfer
from sparse images to arbitrary geometries.

3.1. Preliminaries

Dreambooth [54] is a simple yet effective method to fine-
tune pre-trained text-to-image diffusion models on a small
number of input images for personalized text-guided im-
age generation. It stores the subject’s appearance into the
diffusion model weights with a specific text-token “/V]”.
Dreambooth is fine-tuned with two loss functions. Recon-
struction loss is standard diffusion denoising supervision on
the input images. Class-specific prior preservation loss is
proposed to avoid language drift and loss of diversity caused
by fine-tuning. It further supervises the pre-trained model
with a large number of its own generated examples. Tex-
tureDreamer uses DreamBooth to distill texture information
from input images. Instead of image synthesis, we apply the
distilled information to a 3D object with different geometry.

ControlNet [67] proposes a novel architecture that adds
spatial conditioning control to pre-trained diffusion models.
The key insight is to reuse the large number of diffusion
model parameters trained on billions of images and insert
small convolution networks into the model with window
size 1 and zero-initialized weights. It enables robust fine-
tuning performance on small datasets with different types of
2D conditions, such as depth, normal, and edge maps. We
utilize ControlNet models to ensure that our created textures
are aligned with the given geometry.

Score Distillation Sampling [47, 62] is the core compo-
nent of numerous methods that use pre-trained 2D diffusion
models for 3D content creation [10, 34, 47]. It optimizes
the 3D representation by pushing its rendered images to a
high-dimensional manifold modeled by the pre-trained dif-
fusion model. Let 6 be the 3D representation and €, be the
pre-trained diffusion model. The gradient back-propagated
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Figure 3. Overview of TextureDreamer, a framework which synthesizes texture for a given mesh with appearance similar to 3-5 input
images of an object. We first obtain personalized diffusion model 1) with Dreambooth [54] finetuning on input images. The spatially-
varying bidirectional reflectance distribution (BRDF) field fo for the 3D mesh M is then optimized through personalized geometric-aware
score distillation (PGSD) (detailed in Section 3.2). After optimization finished, high-resolution texture maps corresponding to albedo,
metallic, and roughness can be extracted from the optimized BRDF field.

to the parameter 6 is
dg(0,¢c)
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where w(t) is the weight coefficient, y is the text input, ¢ is
the time step, c is the camera pose, g(+) is a differentiable
renderer, x; is the noisy image computed by adding noise
to the rendered image x = ¢(#, ¢) with variance dependent
on time t. Despite its wide usage, SDS requires a much
higher weight than normal classifier-free guidance [22] to
converge, oversmoothed and oversaturated appearance. To
overcome this issue, Wang et al. [63] propose an improved
version, called variational score distillation (VSD), which
can converge with standard classifier-free guidance. VSD
treats the whole 3D representation 6 as a random variable
and minimizes the KL divergence between 6 and the dis-
tribution defined by the pre-trained diffusion model. It in-
volves fine-tuning a LoRA [24] network €4 (and a camera
encoder p which embeds camera pose c as an condition in-
put to €4) to denoise the noisy images generated from 3D
representation 6
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The gradient to the 3D representation € is then computed as
dg(0,c
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While VSD significantly improves both visual quality and
diversity of generated 3D contents, it cannot address the 3D
consistency issue due to the inherent lack of 3D knowledge,
leading to multi-face errors and mismatches between geom-
etry and textures. We address this challenge by explicitly in-
jecting geometry information to make our diffusion model
geometry aware.

3.2. Personalized Geometry-aware Score Distilla-
tion (PGSD)

Problem setup.  We illustrate our method in Figure 3.
The inputs to our framework include a small set of im-
ages (3 to 5) casually captured from different views {1 }kK:1
and a target 3D mesh M. The outputs of our frame-
work are relightable textures transferred from image set
{I}K_ | to M in a semantically meaningful and visually
pleasing manner. Our relightable textures are parameter-
ized as standard microfacet bidirectional reflectance distri-
bution (BRDF) model [25], which consists of 3 parameters,
diffuse albedo a, roughness r, and metallic m. We delib-
erately do not optimize normal maps as it encourages the
pipeline to fake details that are inconsistent with mesh M.
Following the recent trend of neural implicit representation
[20, 42, 43], during optimization, we represent our texture
as a neural BRDF field fp(v) : v € R® —, a,7,m € R5,
where v is an arbitrary point sampled on the surface of M



and fy consists of a multi-scale hash encoding and a small
MLP. We find such an implicit representation can better reg-
ularize the optimization process, leading to smoother tex-
tures. However, given the UV mapping of M, our rep-
resentation can also be converted to standard 2D texture
maps that are compatible with standard graphics pipelines,
by querying every 3D point corresponding to each texel, as
shown on the right-hand side of Figure 3.

Personalized texture information extraction. We follow
Dreambooth [54] to extract texture information from sparse
images. To be specific, we fine-tune a personalized diffu-
sion model on input images with a text prompt y, “A photo
of [V] object”, where “[V]” is a unique identifier to de-
scribe the input object. Compared to the alternative textual
inversion method [16], we observe that Dreambooth con-
verges faster and can better preserve intricate texture pat-
terns, possibly due to its larger capacity. We first mask out
the background of the target object with a white color. For
the reconstruction loss, we resize the shorter edge of input
images to 512 and randomly crop 512x512 patches for train-
ing. We do not apply class-specific prior preservation loss,
as we hope our Dreambooth finetuning model can gener-
alize to other categories. We also experiment with different
variations, including jointly fine-tuning the text encoder and
replacing the diffusion denoising network with a pre-trained
ControlNet, but do not observe any improvements.

Geometry-aware score distillation Once we finish ex-
tracting texture information with Dreambooth, we trans-
fer the information to mesh M by adopting the fine-tuned
Dreambooth model as the denoising network ¢, for score
distillation sampling. Specifically, we choose VSD instead
of the original SDS because of its superior ability to gen-
erate highly realistic and diverse appearances. To render
images x for VSD gradient computation, we follow Fanta-
sia3D [10] to pre-select a fixed HDR environment map E
as illumination and use Nvdiffrast [30] as our differentiable
renderer. We set the object background to be a constant
white color to match the input images for Dreambooth train-
ing. We observe this can help achieve better color fidelity
compared to random color or neutral background.
However, simply replacing SDS with VSD cannot ad-
dress the limitation of lacking 3D knowledge in 2D diffu-
sion models. We thus propose geometry-aware score dis-
tillation, where we inject geometry information extracted
from mesh M into our personalized diffusion model e,
through a pre-trained ControlNet conditioned on normal
maps k rendered from M. This augmentation significantly
boosts 3D consistency of generated textures (see Figure 10).
With the ControlNet conditioning, the pillow texture from
the input images can be accurately matched to the target
shape, despite the shape mismatch. We experiment with
different ControlNet conditions and show that normal con-
ditions can best prevent texture-geometry mismatch.

Letx = g(, ¢) be the rendered image under a fixed envi-
ronment map from camera pose ¢ with the extracted BRDF
maps ag, g9, my. The gradient of proposed Personalized
Geometry-aware Score Distillation (PGSD) to optimize the
MLP parameter 6 of BRDF field is:
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where X; = a;X + o€ is the rendered image x perturbed
by noise € ~ A(0,I) at time ¢, ¢, is the embedding of the
camera extrinsic ¢ encoded by a learnable camera encoder
p, €y and €4 are the fine-tuned personalized diffusion model
and the generic diffusion model pretrained on a large-scale
dataset, respectively. Both models are augmented with Con-
trolNet conditioned on normal map k, as shown in the yel-
low part underneath the diffusion model in Figure 3.

We found that our method does not benefit from
classifier-free guidance (CFG) [22], probably because the
personalized model €, has been fine-tuned on a small num-
ber of images. Since our goal is to faithfully transfer input
appearance to target shape, it is not necessary to have CFG
to increase the diversity. Similar observation can be found
in recent literature [55].

We additionally identify several important design
choices through extensive experiments. First, it is impor-
tant to initialize the €4 in Eq. 1 with original pre-trained
diffusion model weights while the Dreambooth weight will
remove texture details. This is probably because the Dream-
booth fine-tuning process makes the diffusion model over-
fit to a small training set, as pointed out by previous work
[51]. Moreover, we find that removing the LoRA weights
can substantially improve texture fidelity. Similar difficul-
ties in training LoRA were also reported in [56]. We there-
fore implement our personalized geometry-aware score dis-
tillation loss £ pgsp by removing the LoRA structure in €,
and only keeping the camera embedding, achieving the best
quality. We show more comparisons in Figure 10.

4. Experiment

4.1. Experimental setup

Dataset. We conduct our experiments on 4 categories of
objects: sofa, bed, mug/bowl, and plush toy. For each cat-
egory, we select 8 instances of objects and create a small
image set by casually sampling 3 to 5 views surrounding
the object, resulting in 32 image sets in total. For every
image in the 32 image sets, we apply U2-Net [49] to obtain
the foreground mask automatically or use a semi-auto back-
ground removal application' to obtain more accurate masks.
We perform texture transfer for each image set to diverse

Uhttps://www.remove.bg/upload



Ours preferred over

Latent-Paint TEXTure
Image Fidelity 71.82% 69.43%
Texture Photorealism 77.03% 85.52%
Shape-Texture Consistency 78.49% 85.16%

Table 1. User study on image-guided texture transfer.

meshes including but not limited to same category shapes,
different category shapes, or even geometry with different
genus numbers. To test our texture-transferring framework,
we select 3 meshes for each of the 4 categories that are dis-
similar to the captured image sets. We acquire these 3D
meshes from 3D-FUTURE [15] and online repositories.’®.
We run intra-class texture transfer for all 4 categories of ob-
jects and also run inter-class texture transfer between bed
and chair, to test our method’s generalization ability.

Implementation details. We implement our framework
based on PyTorch [45] and Threestudio [19]. We use latent
diffusion and ControlNet v1.1 as our pre-trained diffusion
model and ControlNet respectively. In all our experiments,
we set the classifier-free guidance weight of Lpgsp as 1.0
(equivalent to setting w = 0 in the original CFG formu-
lation). Following DreamFusion [47], we also apply view-
dependent conditioning to the input text prompt. The BRDF
field is parameterized with an MLP using hash-grid posi-
tional encoding [42], following prior works [10, 63]. Our
camera encoder consists of two linear layers that project the
camera extrinsic to a latent vector of 1,280 dimensions to
be fused with time and text embedding in U-Net. We em-
pirically set the learning rate to 0.01 for encoding, 0.001 for
MLP, and 0.0001 for camera encoder for all experiments.

4.2. Baseline methods

Latent-paint [37] and TEXTure [53] are two recent text-
guided texturing methods with 2D diffusion prior. They also
demonstrate the capability of texturing meshes from im-
ages. Latent-paint [37] leverages the Texture Inversion [16]
to extract image information into text embedding and dis-
tills the texture with SDS. TEXTure [53] first finetunes the
pre-trained diffusion model by combining Texture Inversion
and Dreambooth [54] and use this fine-tuned model to syn-
thesize texture with an iterative mesh painting algorithm.
As preferred by the previous method [53], we augment the
input images with a random color background. We closely
follow the original implementation of baseline methods to
run the experiments.

4.3. Image-guided texture transfer
Qualitative evaluation Our method can perform texture
transfer to diverse object geometry, including geometry in

Zhttps://www.cgtrader.com/
3https://sketchfab.com/

CLIP similarity 1
Latent-Paint [37] 0.7969
TEXTure [53] 0.7988
Ours 0.8296

Table 2. Quantitative evaluation on image-guided texturing.

the same category or across different categories. Figure 4
demonstrates our texture transferring results on 4 categories
of objects. Our method can synthesize geometry-aware and
seamless textures that has similar patterns and styles as the
input. We also demonstrate that our method can transfer
textures across different categories. In Figure 1, we show
texture transfer results from images of sofa to bed shapes,
and vice versa. Our method is also capable of performing
texture transfers across a broader range of different cate-
gories. As shown in Figure 5, high-quality and realistic tex-
tures can be synthesized across chair, mug, and plush toy
categories. Since our synthesized texture contains albedo,
metallic, and roughness maps, the target objects with the
synthesized appearance can be relit, as shown in Figure 6.
By using different random seeds, our framework can gener-
ate diverse textures, as shown in Figure 8.

In Figure 7, we qualitatively compare our method with
baseline methods. Two views are shown in each example.
Latent-Paint tends to generate textures with colors and pat-
terns that are different from input images. TEXTure can
preserve the color and texture better than Latent-Paint, but
the texture contains visible seams (possibly due to the itera-
tive painting). Our results method can reason the semantics
of the geometry (e.g. the positions of eyes) and demonstrate
higher quality, seamless, and geometry-aware texturing re-
sults with higher fidelity from the input images.

Quantitative evaluation It is non-trivial to perform quanti-
tative comparisons for texture transfer due to the shape dif-
ference between geometry and photos. We perform a user
study to evaluate transfer fidelity, texture photorealism, and
texture-geometry compatibility across baselines by asking
users the following questions: 1) Which one has the texture
that looks more similar to input images? 2) Which one has
a texture which looks more like a real object? 3) Which one
has the texture which is more compatible with the meshes?
(Which texture painted more fitted to the geometry?) We
conduct a user study with Amazon Turk with three sepa-
rate tasks. For each task, we ask each user 24 questions.
Each question is a forced single-choice selection with two
options among our and one baseline result with the rendered
images from the same 4 sampled views and is evaluated by
20 different users. We only show input photos for the first
similarity question, and hide the input photos for the other
two questions to make the user focus on texture quality. We
summarize the results in Table 1. Our results show signifi-
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Figure 4. Image-guided transfer results from four categories (beds, sofas, plush toys, and mugs) of image sets to diverse objects. Our
method can be applied to a wide range of object types and transfer the textures to diverse object shapes.

We also propose to evaluate the similarity via image-

cant preference by the users in terms of image fidelity, tex-
based CLIP feature [41] between reference and the rendered

ture photorealism, and shape-texture consistency.



Figure 5. Example of cross-category texture transfer results. In the first row, we transfer appearances from plush toys to cups and chairs.
In the second row, special patterns from mugs are transferred to bears and chairs. In the thrid row, textures from input sofa are transferred
to cups and bears.

HDR Lighting Relighting Results
Figure 6. Example of relighting results. The textures are relit
by the original HDR environment maps (first row) and the novel
maps (second and third rows).

images of synthesized textures. The CLIP similarity has
been applied to material matching [65] and stylization [38].
A good transfer should transfer only the texture from im-
ages and should take into account the target shape geome-
try and transfer the texture semantically. For example, the
transfer should be painted with respect to each part of the
shape. We use our evaluation set to compute the compari-
son. For each image set and target 3D mesh pair, we com-
pute the average of the metric among each reference image
and each of rendered image from 4 sampled views (i.e. left
front, right front, left back, and right back). We average the
CLIP similarity across all (image set, mesh) pairs. Table 2

shows our method has the highest CLIP similarity.

4.4. Ablation Studies

We first qualitatively perform an ablation study on the im-
portance of geometry-aware ControlNet. As shown in Fig-
ure 10, the results suffer from geometry-texture misalign-
ment without ControlNet or the depth-based ControlNet.
Only normal-based ControlNet can accurately control the
synthesized texture to be consistent with the input mesh ge-
ometry. Next, we validate the importance of score distil-
lation loss. Only using SDS loss in our framework cannot
achieve enough input fidelity and the result tends to be more
blurry. Without LoRA removed (which is usually optimized
with vanilla VSD loss), the optimization tends to make the
distribution diverge from the Dreambooth-finetuned distri-
bution. This results in the output containing less original
texture but more irrelevant patterns from the input. We hy-
pothesize that this is due to optimizing LoRA weights with
a text condition containing a rare identifier tends to drive the
distribution of rendered images to have a rare appearance.

If we replace generic diffusion model €, with the person-
alized diffusion model ¢, or apply classifier free guidance
weight 7.5, the result tends to introduce random patterns
which does not exist in the input images. If we choose to
freeze the camera encoder weights p, the result becomes
worse or more noisy than our full method.

We also quantitatively evaluate the importance of each
component in our system. We use image-based CLIP fea-
ture to measure the similarity between reference images
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Figure 7. Comparison between baseline methods. Compared with Latent-Paint [37] and TEXTure [53], our method can synthesize
seamless and geometry-aware textures which are compatible with the target mesh geometry.

Input Images Trials with Different Seeds

Figure 8. Diversity of synthesized textures.

Transferred Result

Input Images

Figure 9. Limitations. Our method may bake-in lighting into tex-
ture, have Janus problem when lacking enough input viewpoints,
and ignore special and non-repeated patterns from the input.

and the rendered images. To ensure fair evaluation, the
background of both reference and rendered images are
masked with white color. As shown in Table 3, our full
method achieves the highest similarity score among the ab-

Table 3. Ablation study on image-based texturing w.r.t. CLIP
image-based feature similarity. Although w/o ControlNet and w/
ControlNet (Depth) achieve higher similarity score, the transfer re-
sults tend to ignore target shape and directly paint the texture with-
out reasoning the geometry. Among the remaining ablative meth-
ods, our full method achieves the highest CLIP similarity w.r.t.
reference images.

CLIP similarity 1
w/o ControlNet 0.8394
w/ ControlNet (Depth) 0.8320
SDS, w/o CFG 0.8101
SDS, CFG 100 0.7983
w/o LoRA removed 0.8110
Personalized model as ¢ 0.8218
CFG weight as 7.5 0.8218
w/o camera encoder p updated 0.8267
Ours 0.8296

lative baselines except w/o ControlNet and w/ ControlNet
(Depth). As shown in Figure 10, these two methods tend to
ignore the target shape and directly paint the texture without
adapting to geometry. Thus, they could reach higher score
by painting the original texture regardless of the shape. We
also observe that SDS results tend to be saturated or blurry
and cannot recover the texture from the inputs. Keeping
LoRA in the generic diffusion model €, will introduce ran-
dom patterns to the synthesized texture.



Input Mesh w/ ControlNet
Images Geometry w/o ControlNet (Depth)

Ll
55y

CFG 7.5 camera encoder p ours
updated

SDS w/o LoRA removed Ours

Input Personalized model
Images as ¢

Figure 10. Ablation study. (First row) With ControlNet conditioned on normal maps, the result has the best texture-geometry consistency.
Without ControlNet or with depth-based ControlNet, the results suffer from texture-geometry misalignment. Using SDS loss leads to
blurry textures. Without the LoORA module removed, the results tend to remove the existing texture from the personalized diffusion model.
Our full method can synthesize accurate texture which is similar to input appearances. (Second row) If replacing generic diffusion model
¢ with personalized model or applying classifier guidance scale 7.5, some random patterns might appear in the synthesized texture. If we
freeze the camera encoder p, the result might be worse or more noisy than our full method.

5. Discussions tackling this challenging problem and will make an impact
in the 3D content creation community.
We proposed a framework to transfer texture from input im-
ages to an arbitrary shape. While our method can transfer
high-quality texture in most cases, there are some limita-
tions. Figure 9 shows that our method may not be able
to transfer special and non-repeated texture to the target
shapes. In addition, our method tends to bake in lighting
to texture when there are strong specular highlights in the
input images. Janus problem might appear when the view-
points of input images do not cover the entire object. Nev-
ertheless, we believe that our method can be the first step to
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