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Abstract

Trajectory prediction is a safety-critical tool for au-

tonomous vehicles to plan and execute actions. Our work

addresses two key challenges in trajectory prediction, learn-

ing multimodal outputs, and better predictions by imposing

constraints using driving knowledge. Recent methods have

achieved strong performances using Multi-Choice Learning

objectives like winner-takes-all (WTA) or best-of-many. But

the impact of those methods in learning diverse hypotheses is

under-studied as such objectives highly depend on their ini-

tialization for diversity. As our first contribution, we propose

a novel Divide-And-Conquer (DAC) approach that acts as

a better initialization technique to WTA objective, resulting

in diverse outputs without any spurious modes. Our sec-

ond contribution is a novel trajectory prediction framework

called ALAN that uses existing lane centerlines as anchors

to provide trajectories constrained to the input lanes. Our

framework provides multi-agent trajectory outputs in a for-

ward pass by capturing interactions through hypercolumn

descriptors and incorporating scene information in the form

of rasterized images and per-agent lane anchors. Experi-

ments on synthetic and real data show that the proposed

DAC captures the data distribution better compare to other

WTA family of objectives. Further, we show that our ALAN

approach provides on par or better performance with SOTA

methods evaluated on Nuscenes urban driving benchmark.

1. Introduction

Prediction of diverse multimodal behaviors is a critical

need to proactively make safe decisions for autonomous ve-

hicles. A major challenge lies in predicting not only the

most dominant modes but also accounting for the less dom-

inant ones that might arise sporadically. Hence, there is

need for models that can disentangle the plausible output

space and provide diverse futures for any given number of

samples. Further, a vast majority of actors execute socially

acceptable maneuvers that adhere with the underlying scene

structure. Predicting socially non-viable outputs can lead to

Figure 1: Depicts trajectory prediction problem in an inter-

section scenario with possible lane anchors for agents shown

as coloured dashed lines.

unsafe planning decisions with some more dangerous than

the others [7]. For example, a method that provides close

enough predictions that does not follow road semantics is

more dangerous compared to similar performing method that

adheres to the scene structure.

Traditionally, generative models have been widely

adapted to capture the uncertainties related to trajectory pre-

diction problems [25, 22, 37, 21, 39]. However, generative

methods may suffer from mode collapse issues, which re-

duces their applicability for safety critical applications such

as self-driving cars. Recent methods [32, 28] use Multi-

Choice Learning objectives [26] like winner-takes-all (WTA)

but suffer from instability associated with network initializa-

tion [30, 34]. As a first contribution, we propose a Divide

and Conquer (DAC) approach that provides a better initial-

ization to the WTA objective. Our method solves issues

related to spurious modes where some hypotheses are either

untrained in the training process, or reach equilibrium po-

sitions that do not represent any part of the data. We show

that the proposed DAC captures the data distribution better

on both real and synthetic scenes with multi-modal ground

truth, compared to baseline WTA objectives [30, 34].
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Further, trajectory prediction methods incorporate driving

knowledge using scene context either in the form of raster-

ized images [25, 37, 39, 32, 33, 8] or by exploiting HD map

data structure [28, 15] as inputs. Usually, this information

is represented as a feature given as input to the network and

does not guarantee strong semantic coupling. Our second

contribution addresses this by proposing ALAN, a novel

trajectory prediction framework that uses lane centerlines

as anchors to predict trajectories (Figure 1). Our outputs

provide accurate predictions with strong semantic alignment

demonstrated by FDE and OffRoadRate values and validated

using our qualitative visualizations.

Specifically, we use a single representational model [39]

for multi-agent inputs and encode interactions through novel

use of hypercolumn descriptors [2] that extracts information

from features at multiple scales. Moreover, we transform

the prediction problem to normal-tangential (nt) coordinates

with respect to input lanes. This is critical in order to use

lane centerlines as anchors. Further, we regularize anchor

outputs through auxiliary xy predictions to make them less

susceptible to bad anchors and rely on agent dynamics. Fi-

nally, we rank our predictions through an Inverse Optimal

Control based ranking module [25].

In summary, our contributions are the following:

• A novel Divide and Conquer approach as a better initial-

ization to WTA objective that captures data distribution

without any spurious modes.

• A new anchor based trajectory prediction framework

called ALAN that uses existing centerlines as anchors

to provide context-aware outputs with strong semantic

coupling.

• Strong empirical performance on the Nuscenes urban

driving benchmark.

2. Related Work

Multi-Choice Learning: Multi-modal predictions have

been realized in different domains through Multi-choice

learning (MCL) [17, 12, 26] objectives in the past. Several

works have shown use cases of MCL to provide diverse hy-

potheses in classification [26, 34], segmentation [26, 34],

captioning [26], pose estimation [34], image synthesis [10]

and trajectory proposals [40]. Convergence issue related to

WTA objectives have been shown in [34, 30]. Following

this work, [34] proposed a relaxed winner-takes-all objective

(RWTA) to solve the convergence problem but this method

itself suffers from the problem of hypotheses incorrectly

capturing the data distribution. [30] proposed an evolving

winner-takes-all (EWTA) loss that captures the distribution

better compared to [34]. Despite the aforementioned im-

provements, these methods still can’t capture the data distri-

bution accurately due to spurious modes at equilibrium or

hypotheses untrained during the training process. Alterna-

tively, we propose a Divide and Conquer approach where

we exponentially increase the effective number of outputs

during training with set of hypotheses capturing some part

of the data at every stage.

Forecasting Methods: The future trajectory prediction

has been investigated broadly in the literature using both

classical [42, 27, 23] and deep learning based methods

[16, 1, 39]. Deterministic models [1, 29, 36] predict most

likely trajectory for each agent in the scene while neglect-

ing the uncertainties inherited in the trajectory prediction

problem. To capture the uncertainties and create diverse

trajectory predictions, stochastic methods have been pro-

posed which encode possible modes of future trajectories

through sampling random variables. Non-parametric deep

generative models such as Conditional Variational Autoen-

coder (CVAE) [25, 3, 22, 20, 39] and Generative Adversarial

Networks (GANs) [24, 16, 35] have been widely used in

this domain. However, these methods fail to capture all un-

derlying modes due to imbalance in the latent distribution

[43]. Recent methods predict a fixed set of diverse trajecto-

ries [32, 28] for the same input context. Our method uses a

similar approach to predict a set of M hypothesis.

Representation: HD map rasterization have been widely

used in the literature to encode and process map informa-

tion by neural networks [3, 46, 13, 6, 39]. Some methods

[38, 31] construct top view map using semantics and depth

information from perspective images. Some [44, 6] use a

combination rasterzied HD maps and sensor information.

Several recent works [28, 15] utilize map information di-

rectly by representing the vectorized map data as a graph

data structure. Our work uses a hybrid map input combining

both rasterized map and vectorized lane data provided as

input for every agent at its location on the spatial grid [39].

Trajectory Prediction: Traditionally, several works

[39, 28, 15, 32] formulate trajectory prediction problem as a

regression over cartesian coordinates. [38] poses it as a clas-

sification of future locations over a spatial grid. Chang et. al

[9] use a normal-tangential coordinate similar to ours but is

only limited to classical nearest neighbor and vanilla LSTM

[19] approaches. Related to our work, some methods tackle

the multi-modality problem by quantizing the output space

into several predefined diverse anchors and then reformulat-

ing the original trajectory problem into sequential anchor

classification (selection) and offset regression sub-problems

[45, 33, 8, 44]. However, Anchors usually are pre-clustered

into a fixed set as a priori or are calculated in real-time based

on kinematic heuristics [45]. Hence, the process of creating

anchors may add computational complexity in the inference

time, also it could be highly scenario dependent and hard

to generalize. In contrast, our method uses HD map center-

line information as anchors which is consistent for diverse

scenarios and also readily available at inference.
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(a) Init (b) WTA (c) RWTA (d) EWTA

(e) DAC - Depth 1 (f) DAC - Depth 2 (g) DAC - Depth 3 (h) DAC - Depth 4

Figure 2: Toy example comparing different versions of winner-takes-all and enclosed voronoi regions of their predicted hypotheses. The

toy data is shown in red and the hypotheses are shown in white. With Depth=1 for DAC, it contains a single set with M hypotheses,

thus all hypotheses are penalized to match the data and reach the equilibrium. As the depth increases the number of sets in the list grows

exponentially as every set is broken down into halves (e −→ f −→ g −→ h). Since we show the same ground truths to all the hypotheses in a

set, they reach the same equilibrium position forming centroidal voronoi tessellation with number of outputs effectively equal to the number

of sets in the list (e −→ 1, f −→ 2, g −→ 4, h −→ 8). In the final stage (h), every set contains one hypothesis resembling a WTA objective. In

comparison to DAC, other WTA objectives model the data distribution incorrectly since some Voronoi regions do not capture any part of the

data, resulting in spurious modes.

3. Divide and Conquer

In this section, we provide detailed description of our

method in training Multi-Hypothesis prediction networks

where our approach acts as an initialization technique for

winner-takes-all [26] objective. Let X denote the vector

space of inputs and Y denotes the vector space of output

variables. Let D = {(xi, yi), ..., (xN , yN )} be a set of N

training tuples and p(x, y) = p(y|x)p(x) be the joint proba-

bility density. Our goal is to learn a function fθ : X −→ YM

that maps every input in X to a set of M hypotheses. Mathe-

matically, we define:

fθ(x) = (f1

θ (x), ..., f
M
θ (x)). (1)

As shown by Rupprecht et al. [34], winner-takes-all ob-

jective minimizes the loss with the closest of M hypotheses:

∫
X

M∑
j=1

∫
Yj(x)

L(f j
θ (x), y)p(x, y)dydx, (2)

where Yj is the Voronoi tessellation of label space with

Y = ∪Mj=1
Yj . This objective leads to Centroidal Voronoi

tessellation [14] of outputs where each hypothesis minimizes

to the probabilistic mass centroid of the Voronoi label space

Yj enclosed by it. In practice, to obtain diverse hypotheses

WTA objective can be written as a meta loss [30, 34, 26, 17],

LWTA =

K∑
k=1

δk(k == argmin
i

L(f i
θ))L(f

k
θ (x), y), (3)

where δ(·) is the Kronecker delta function with value 1 when

condition is True and 0 otherwise.

Initialization difficulties for WTA As mentioned by

Makansi et al. [30] Equation 3 can be compared to EM al-

gorithm and K-means clustering where they depend mainly

on initialization for optimal convergence. As shown in 2b

this makes training process very brittle as the Voronoi re-

gion of only few hypotheses encloses the data distribution,

leaving most of the hypotheses untrained due to winner-

takes-all objective. The alternative solution proposed by

Ruppercht et al. [34] to solve the convergence problem by

assigning ǫ weight to the non-winners does not work as every

ground truth associates with atmost one hypothesis making

other non-winners to reach the equilibrium as shown in 2c.

Makansi et. al, [30] then proposed evolving winner-takes-all

(EWTA) objective where they update top k winners. The k

varies starting from k = M to k = 1 leading to winner takes

all objective in training process. This method captures the

data distribution better compared to RWTA and WTA but

still produces hypothesis with incorrect modes as shown in

the Figure 2d.
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DAC for diverse non-spurious modes We propose an

novel initialization technique called Divide and Conquer

that alleviates the problem of spurious modes, leaving the

Voronoi region of every output hypothesis to capture some

part of the data, as shown in Figure 2h. We divide M hy-

potheses into k sets and update the set with argmin outputs

to match the ground truth. The value of k starts with 1 and

increases exponentially as every set is broken down into two

halves as we progress through the training. This creates a bi-

nary tree with the depth of the tree dependent on the number

of output hypotheses M . Algorithm 1 shows pseudo-code of

the proposed Divide and Conquer technique. Here depth

specifies the maximum depth that can be reached in the

current training stage and we define list as variable con-

taining set of hypotheses at any stage in the training. Further,

we define newly formed sets from kth set as setk1 and setk2.

Set from the list that produces argmin output is denoted

as mSet. Finally we take mean loss of all hypotheses in

mSet to get LDAC .

From Figure 2e, with k = 1 and list containing a

single set, all M hypotheses reach towards the equilibrium.

As the number of sets in the list increases from 2e to 2f

the hypotheses divide the distribution space based on the

Voronoi region to capture different parts of the data. The

effective number of outputs grows at every stage, with the

data captured by the kth set in the previous stage split across

two newly formed sets in the next stage. Finally, as we reach

the leaf nodes, every set contains one hypothesis leading to

a winner-takes-all objective similar to Equation 3.

DAC starts with all hypotheses fitting the whole data and

at every stage DAC ensures some data to be enclosed in

the Voronoi space. During split, hypotheses divide the data

enclosed within their Voronoi space to reach new equilib-

rium. Although, DAC does not guarantee equal number of

hypotheses capturing different modes of the data it ensures

convergence. Further we would like to note that DAC does

not have any significant computational complexity as only di-

viding into sets and min calculations are involved. In Section

5, we show benefits of DAC in capturing multimodal distri-

butions better, producing diverse set of hypotheses compared

to other WTA objectives.

4. Trajectory Prediction with Lane Anchors

In this section, we introduce a single representation model

called ALAN that produces lane aware trajectories for multi-

ple agents in a forward pass. We formulate the problem as

one shot regression of diverse hypotheses across time steps.

We now describe our method in detail.

4.1. Problem Statement

Our method takes scene context input in two forms: a)

rasterized birds-eye-view (BEV) representation of the scene

denoted as I of size H × W × 3 and b) per-agent lane

Algorithm 1 Divide and Conquer technique

1: procedure DAC(loss, depth)

2: set1 = {loss} ⊲ All M hypotheses

3: list = [set1]

4: for i← 2 to depth do

5: for setk ∈ list do

6: � Divide setk into halves

7: list + = [{setk1}, {setk2}]

8: mSet = {setk : min(setk) < min(setj); ∀j ∈
{1..len(list)}, j 6= k}

9: LDAC = mean(mSet)
10: return LDAC

centerline information as anchors. We define lane anchors

L = {L1, ...Lp} as a sequence of p points with coordinates

Lp = (x, y) in the BEV frame of reference. We denote

Xi = {X
1

i , ...X
T
i } as trajectory coordinates containing past

and future observations of the agent i in Cartesian form,

where Xt
i = (xt

i, y
t
i). For every agent i, we identify a

set of candidate lanes that the vehicle may take based on

trajectory information like closest distance, yaw alignment

and other parameters (see supplementary). We denote this as

a set of plausible lane centerlines A = {L1, ...,Lk}, where

k represents total number of lane centerlines along which

the vehicle may possibly travel. We then define vehicle

trajectories Xi along these centerlines in a 2d curvilinear

normal-tangential (nt) coordinate frame. We denote Ni,k =
{N1

i,k, ..., N
T
i,k} as the nt coordinates for the agent i along

the centerline Lk, where N t
i,k = (nt

i,k, l
t
i,k) denotes normal

and longitudinal distance to the closest point along the lane.

Use of nt coordinates is crucial to capture complex road

topologies and associated dynamics to provide predictions

that are semantically aligned and has been studied in our

experiments (Section 5).

We then define trajectory prediction problem as the task

of predicting ntYi,k = {N tobs
i,k , ..., NT

i,k} for the given lane

anchor Lk provided as input to the network. We follow an

input representation similar to [39], where we encode agent

specific information at their respective Xtobs
i locations on

the spatial grid. Finally, to get trajectories in BEV frame

of reference we convert our output predictions to cartesian

coordinates based on the anchor Li,k given as input to the

network.

4.2. ALAN Framework for Trajectory Prediction

An overview of our framework is shown in Figure 3. Our

method consists of five major components: a) a centerline

encoder b) a past trajectory encoder c) a multi-agent convo-

lutional interaction encoder d) hypercolumn [2] trajectory

decoder and e) an Inverse Optimal Control (IOC) based

ranking module [25].
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Figure 3: Overview of our proposed ALAN approach. The method takes in past trajectory along with lane anchor and BEV

map as input to provide multi-hypothesis predictions for all agents at once.

Centerline Encoder: We encode our input lane informa-

tion Li,k for every agent through a series of 1D convolutions

to produce an embedded vector Ci,k = Cenc(Li,k) for every

agent in the scene.

Past Trajectory Encoder: Apart from nt coordinates

Ni,k for the lane anchor, we provide additional Xi as in-

put to the past encoder. We first embed the temporal inputs

through a MLP and then pass it through a LSTM[19] net-

work to provide a past state vector htobs
i . Formally,

sti = MLP (Xt
i , N

t
i,k) (4)

h
tobs
i = LSTM(s1..tobsi ) (5)

Multi-Agent Convolutional Encoder: We realize multi-

agent prediction of trajectories in a forward pass through a

convolutional encoder module [39]. First, we encode agent

specific information Ci,k,h
tobs
i at their respective locations

Xtobs
i in the BEV spatial grid. This produces a scene state

map S of size H×W ×128 containing information of every

agent in the scene. We then pass this through a convolutional

encoder along with the rasterized BEV map I to produce acti-

vations at various feature scales. In order to calculate feature

vectors of each individual agent, we adapt a technique from

Bansal et al. [2] to extract hypercolumn descriptors Di from

their locations. The hypercolumn descriptor contains fea-

tures extracted at various scales by bi-linearly interpolating

Xtobs
i for different feature dimensions. Thus,

Di = [c1(X
t
i ), ..., ck(X

t
i )], (6)

where ck is the feature extracted at kth layer by bilinearly

interpolating the input location to the given dimension. The

intuition is to capture interactions at different scales when

higher convolutional layers capturing the global context and

low-level features retaining the nearby interactions. In Sec-

tion 5, we show using hypercolumn descriptors in trajectory

prediction task can be beneficial compared to just using

global context vectors.

Hypercolumn Trajectory Decoder: The hypercolumn

descriptor Di of every agent is then fed through a decoder

containing a series of 1x1 convolutions to output M hy-

potheses at once. Here we investigate two variants of ALAN

prediction. ALAN-nt where we predict nt trajectories ntŶi

in the direction of the lane and ALAN-ntxy which also pro-

vides an auxiliary xy predictions xyŶi. Linear values in nt

can correspond to trajectories of higher degrees based on

the input anchor. Moreover, two trajectories having same

nt values can have completely different dynamics. Thus we

make use of the auxiliary predictions to regularize anchor

based outputs to make the network aware of agent dynam-

ics and less susceptible to bad anchors. The M hypotheses

predicted from our network is given as:

ntŶi,
xy Ŷi = CNN1∗1(Di), (7)

ntŶi = {
ntŶi,1,

nt Ŷi,2...,
nt Ŷi,M}, (8)

xyŶi = {
xyŶi,1,

xy Ŷi,2...,
xy Ŷi,M}. (9)

Ranking Module: We use the technique from Lee et

al. [25] to generate scores sYi = {sYi,1,
s Yi,2, ...,

s Yi,M}
for the M output hypotheses. It measures the goodness
sYi,k of predicted hypotheses by assigning rewards that

maximizes towards their goal[41]. The module uses pre-

dictions ntŶi to obtain the target distribution q, where
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(a) GT (b) WTA (c) RWTA (d) EWTA (e) DAC

Figure 4: The figure illustrates predicted hypotheses and

learned mixture distribution of goals using different WTA

objectives on the CPI test set. The purple and black box rep-

resent car and pedestrian at their current location. Predicted

hypotheses are shown in their respective colours. (e) cap-

tures the data distribution better with hypothesis spread out

across the crosswalk resembling the ground truth distribution

of points.

q = softmax(−d(ntYi,
nt Ŷi)) and d being the L2 distance

between the ground truth and predicted outputs. Thus, the

score loss is given as Lscore = Cross-Entropy(sYi,q).

4.3. Learning

We supervise the network outputs {ntŶi,
xy Ŷi} as the

L2 distance with their respective ground truth labels ntY

for the input lane anchor Lk and xyY. We use the proposed

Divide and Conquer technique to train our Multi-Hypothesis

prediction network. Hence, the reconstruction loss for both

primary and auxiliary predictions is given by:

ntLDAC = DAC(ntŶi), (10)

xyLDAC = DAC(xyŶi). (11)

Additionally, we penalize our anchor based predictions

based on xyŶi by transforming the predictions to nt coor-

dinates xyŶnt
i along the input lane. We also add the reg-

ularization other way to penalize xyŶi predictions based

on the anchor outputs ntŶi by converting them to xy co-

ordinates ntŶ
xy
i . We add the regularization as L2 distance

between the converted primary and auxiliary predictions for

all hypotheses:

ntLxy = L2(ntŶi,
xy Ŷnt

i ), (12)

xyLnt = L2(xyŶi,
nt Ŷ

xy
i ). (13)

The total learning objective for the network to minimize

can be given by,

L =ntLDAC +xy LDAC

+ λnt
1
Lxy + λ

xy
2
Lnt + Lscore.

(14)

5. Experiments

We first evaluate our proposed Divide and Conquer tech-

nique on the synthetic Car Pedestrian dataset[30]. Further,

we show evaluations of DAC and the proposed anchor based

prediction technique on Nuscenes[5] prediction dataset.

Table 1: Comparion of Methods on CPI dataset based on

FDE and EMD metrics, where p - pedestrian and c - car

Method pFDE cFDE Avg FDE pEMD cEMD Avg EMD

DAC 5.56 5.61 5.58 1.14 1.48 1.31

EWTA[30] 5.8 5.63 5.76 1.09 1.59 1.34

RWTA[34] 4.90 9.56 7.23 1.02 1.64 1.33

WTA[26] 5.32 6.32 5.82 1.17 2.41 1.79

CVAE 15.9 19.2 17.6 1.72 2.74 2.23

5.1. Car Pedestrian Dataset

Unlike real world settings where only a single outcome

is observed, CPI dataset consists of interacting agents with

multi-modal ground truths. We aim to evaluate how well our

multi-hypothesis predictions capture the true distribution of

samples in the test set. We use a similar training strategy

from [30] using a ResNet-18 [18] encoder backbone where

we train a two-stage mixture density network [4]. The first

stage takes past observations of the car and pedestrian as the

inputs and predicts k output hypotheses containing future

goals of both actors after ∆t timestep. We train the first stage

using different variants of the winner-takes-all loss function.

The second stage then fits a mixture distribution with M

modes over the hypothesis by predicting soft-assignments

for the outputs. We refer readers to Equations 7, 8 and 9

from [30] for more details about calculating the parameters

for the mixture distribution. We use evaluation metrics such

oracle error (FDE) and Earth Mover’s Distance (EMD) used

in [30].

Oracle error (FDE) measures the diversity of our out-

puts predictions by choosing the closest hypothesis with the

ground truth.

EMD distance quantifies the amount of probability mass

that has to be moved from the predicted distribution to match

the true distribution.

From Table 1 it can be inferred that the proposed DAC

method outperforms the other variants of WTA objective

showing that DAC captures the data distribution better com-

pared to EWTA, RWTA and WTA. This can also been seen

in Figure 4 where network trained with DAC objective cap-

tures the ground truth distribution of actors better compared

to other variants. The average EMD of the proposed DAC

is significantly better than WTA and comparable to EWTA

and RWTA objective. DAC better captures goals for the cars

that spread across compared to pedestrian goals. Moreover,

as shown by Table 1, the average oracle error (FDE) for

the DAC method is significantly lower compared to other

variants confirming that DAC WTA produces diverse hy-

potheses.

5.2. Nuscenes Dataset

Nuscenes[5] contains a large collection of complex road

scenarios from cities of Boston and Singapore. Approx-
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(a) (b) (c) (d)

Figure 5: Shows example predictions from ALAN. The past trajectory is shown in brown and the GT is shown in black. The

endpoint of GT is shown as a green dot. The input lane anchor is shown in cyan, with predicted trajectories in green and their

endpoints as triangles. (a) and (b) shows predictions that follow a complex lane structure. Anchor based predictions can be

beneficial especially for a longer prediction horizon as the complexity of the trajectory increases anchors can be helpful in

following the semantics. (c) predicts a U-turn with appropriate dynamics when the lane of interest is in opposite direction and

(d) shows a multi-agent prediction scenario.

Table 2: Nuscenes Trajectory Prediction Benchmark

Model mADE 1 mADE 5 mADE 10 Miss 2 5 Miss 2 10 mFDE 1 mFDE 5 mFDE 10 OffRoadRate

cxx - 1.63 1.29 69 60 8.86 - - 0.08

pq - 2.23 1.68 69 56 9.56 - - 0.12

CoverNet[33] - 2.62 1.92 76 64 11.36 - - 0.13

MTP [11] 4.42 2.22 1.74 74 67 10.36 4.83 3.54 0.25

MultiPath [8] 4.43 1.78 1.55 78 76 10.16 3.62 2.93 0.36

Trajectron++[37] - 1.88 1.51 70 57 9.52 - - 0.25

MHA JAM [32] 3.69 1.81 1.24 59 45 8.57 3.72 2.21 0.07

ALAN (top-M) 4.62 1.87 1.22 60 49 9.98 3.54 1.87 0.01

ALAN (Oracle) 4.61 1.78 1.16 59 48 9.95 3.29 1.70 0.01

ALAN (BofA) 4.67 1.77 1.10 57 45 10.0 3.32 1.66 0.01

imately 40k instances were extracted for the prediction

dataset. It contains challenging sequences such as ones with

U-turns and complex road layouts.

5.2.1 Baselines

We show comparisons of our ALAN predictions with several

baseline methods evaluated on Nuscenes benchmark. MTP

[11] uses rasterized image as input to predict trajectories.

CoverNet [33] uses fixed set of trajectories to solve the pre-

diction as a classification over the trajectory set. Multipath

[8] is the closest baseline that uses time parameterized an-

chor trajectories obtained from the train set and formulates

the problem as regression of offset values with respect to

their anchor heads. MHA JAM [32] is recent method that

uses joint agent-map representation to produce outputs with

multi-head attentions. Trajectron++ [37] is graph recurrent

model that predicts trajectories incorporating agent dynam-

ics and semantics. We utilize the numbers for [11] and [8]

from [32].

5.2.2 Metrics

We use standard evaluation metrics such as Average Dis-

placement Error (mADEM ) and Final Displacement Error

(mFDEM ). Further, we compute miss rate (Missd,M ) of top

M likely trajectories with the GT. A set of predictions is

considered to be a miss if there’s no hypothesis across pre-

dictions having maximum displacement point less than the

threshold d. OffRoadRate computes percentage of output

trajectories that fall outside the drivable region. We use the

example API provided by Nuscenes to compute our metrics.

5.2.3 Quantitative Results

We first show that ALAN can achieve on par or better per-

formance compared to our baseline approaches. Here we

evaluate ALAN with different anchor sampling strategies,

top-M, oracle and best-of-all (BofA). In ALAN (top-M) we

pick top M trajectory outputs from different anchors based

on predicted IOC scores for each trajectory. ALAN (ora-

cle) uses oracle anchor with highest centerline score (see
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Table 3: Ablation Study on Nuscenes dataset

Model mADE 1 mADE 5 mADE 10 Miss 2 5 Miss 2 10 mFDE 1 mFDE 5 mFDE 10 OffRoadRate

CVAE 5.51 2.12 1.55 76 62 12.03 4.45 2.85 0.03

MCL + Global 8.45 2.85 1.88 87 75 17.52 5.34 3.05 0.16

MCL + Hyper 5.55 1.99 1.33 72 58 12.11 3.81 2.26 0.12

MCL + Poly 6.50 2.03 1.27 77 57 13.6 3.88 2.01 0.05

MCL + LA - nt 4.69 2.62 1.45 78 59 9.86 4.83 2.26 0.05

MCL + LA - ntxy 6.65 2.14 1.41 75 53 13.86 3.97 2.18 0.01

MCL + LA - ntxy + Reg. + WTA 7.45 3.91 1.72 82 71 13.5 6.49 2.37 0.01

MCL + LA - ntxy + Reg. + RWTA 4.41 2.55 1.21 64 45 9.22 5.03 1.77 0.01

MCL + LA - ntxy + Reg. + EWTA 4.38 2.06 1.20 64 52 9.16 3.83 1.76 0.01

MCL + LA - ntxy + Reg. + DAC 4.31 2.10 1.17 63 50 9.06 3.98 1.73 0.01

supplementary) and ALAN (BofA) picks best from top-k

hypothesized lane anchors. Results represented by Table 2

demonstrate that all our ALAN evaluations either show on

par performance or significantly outperform other baselines

on several metrics with at least 11% improvements in terms

of mADE10 and 25% boost in terms mFDE10 from our BofA

method. Moreover, all our ALAN predictions provide an

OffRoadRate of 0.01 showing only 1% of the predicted tra-

jectories fall outside the road. This is significantly lower

compared to other baselines where they have 7% or higher

OffRoadRate’s. This strong coupling of output predictions

with the semantics can be attributed to the anchor lanes that

help in providing output predictions in the lane direction.

Other approaches like [8, 33] use trajectories extracted from

the train set, either as anchors or to perform classification,

this can lead to poor generalization of outputs to unseen

scenarios and trajectories with complex lane structure. More-

over, we would like to note that our ALAN performance is

understated due issues such as unconnected lanes and places

without lane centerlines in the data leading to bad anchors.

We talk about such situations in supplementary but have not

removed these here for benchmark purposes.

Ablation Study: Further, we perform ablation studies of

our ALAN along with the proposed DAC and other variants

in Table 3. We first introduce hypercolumn descriptors [2]

to extract multi-scale features and compare it with using a

global context vector fed as input to the decoder. Then we in-

vestigate several variants of our ALAN predictions. First, we

add reference centerline as input and predict trajectories in

xy coordinate space (MCL + Poly). This improved the per-

formance significantly. Using lane centerlines as anchors and

predicting trajectories in nt space (MCL+LA-nt) performed

a little worse but we attribute this to networks difficulty in

figuring out agent dynamics from anchor based inputs. For

example, two trajectories with the same nt coordinates can

have different dynamics based on the lane that they’re travel-

ling. So we further add xy coordinates as input and predict

auxiliary trajectories in cartesian space (MCL+LA-ntxy).

As it is shown in Table 3, making such auxiliary predictions

improved the primary anchor based outputs. Further, we

regularize our anchor outputs using auxiliary predictions and

vice-versa. The intuition is that anchor outputs can benefit

from auxiliary predictions when there’s a bad input anchor

since auxiliary predictions are not constrained to provide

trajectories along the lane direction. Adding a regularizer

to match our primary and auxiliary trajectories significantly

improved our anchor output performance as seen in Table 3

from MCL+LA-ntxy+Reg values.

Comparing variations of ALAN in Table 3, it can be in-

ferred that network trained with DAC beats the EWTA and

RWTA objectives confirming the ability of the proposed

DAC method to produce diverse hypotheses and capture

the data distribution better. Please note that although we

perform evaluations for DAC in trajectory prediction set-

ting, MCL[26] techniques are applicable in a wide range of

problems where our DAC method can be used as a better

initialization strategy for WTA objectives.

5.2.4 Qualitative Results

Figure 5 shows qualitative results from ALAN. In general,

using lane as anchors and transforming the prediction prob-

lem to nt space can be helpful to guide the prediction and

follow semantics. As we predict trajectories for a longer

time horizon the executed trajectories become complex with

more than just one straight or turn maneuvers where using

lane as anchors can simplify the problem.

6. Conclusion

In this paper we addressed issues related to learning

multi-modal outputs using WTA objectives and using driving

knowledge to impose constraints on output predictions. First,

we introduced a novel DAC approach that learns diverse hy-

potheses to capture the data distribution without any spurious

modes. Further, we introduced ALAN that provides diverse

and context aware trajectories using anchor lanes. Our ex-

periments on both synthetic and real data demonstrated the

superiority of our proposed DAC method in learning multi-

modal outputs. In addition, we demonstrated that using lane

anchors can be helpful in providing accurate predictions with

strong semantic coupling.
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