Top-N Recommendation with Missing Implicit Feedback

Daryl Lim University of California, San Diego

Julian McAuley University of California, San Diego Gert Lanckriet University of California, San Diego

Introduction

Proposed method

Experiments

Main Contribution

We discuss a missing data model for implicit feedback and propose a novel evaluation measure which is unbiased with respect to the missing data. We also present an efficient algorithm to optimize our measure.

Data Model

Average Discounted Gain (ADG)

We propose the **Average Discounted Gain** measure which has the UBM property.

Let $f_{\theta}(u, i)$ be the prediction function for a (user, item) pair, and \mathcal{I} be the set of all items.

Let rank $(i) = \sum_{i' \in \mathcal{I} \setminus i} \mathbf{I}(f_{\theta}(u, i') - f_{\theta}(u, i))$

Dataset Statistics

Dataset	Users	Items	Interactions	Sparsity
last.FM	10000	10000	97727	0.097%
MovieLens	9888	5000	711084	1.44%
Amazon Games	17437	17915	201154	0.064%

Performance of various measures

For each user, assume that observed relevant items are a simple random sample from some unknown ground truth prior relevant set:

 $\square \mathcal{P}_u^+$, prior relevant set

 \mathcal{P}_u^- , prior irrelevant set

- \mathcal{O}_u^- , observed irrelevant set

To evaluate a given predicted ranking, we would like to have an evaluation measure that, when Average Discounted Gain (ADG):

Optimization

In order to maximize ADG performance, we opt to minimize 1-ADG on the training set.

$$1 - \text{ADG} = 1 - \frac{1}{|\mathcal{O}_u^+|} \sum_{i^+ \in \mathcal{O}_u^+} \frac{1}{\log_2(\text{rank}(i^+) + 2)}$$
$$= \frac{1}{|\mathcal{O}_u^+|} \sum_{i^+ \in \mathcal{O}_u^+} \mathcal{C}(\text{rank}(i^+))$$
where
$$\mathcal{C}(k) = 1 - \frac{1}{\log_2(k+2)}$$

Algorithm 1 The OPT-ADG algorithm

	Amazon Games			
	MF-AUC	MF-ADG		
ATOP	$0.7584 \ (0.0014)$	$0.7546\ (0.0049)$		
MAP	$0.0104 \ (0.0003)$	$0.0124 \ (0.0003)$		
NDCG	$0.1460 \ (0.0006)$	$0.1501 \ (0.0004)$		
rec@10	$0.0170 \ (0.0004)$	$0.0211 \ (0.0007)$		
ADG	$0.1080 \ (0.0005)$	$0.1110 \ (0.0003)$		

	last.FM			
	MF-AUC	MF-ADG		
ATOP	$0.7490 \ (0.0064)$	$0.7449 \ (0.0028)$		
MAP	$0.0242 \ (0.0006)$	$0.0281 \ (0.0006)$		
NDCG	$0.1701 \ (0.0007)$	$0.1750 \ (0.0008)$		
rec@10	0.0473 (0.0010)	$0.0539 \ (0.0019)$		
ADG	$0.1\overline{294}\ (0.0005)$	$0.1332 \ (0.0006)$		

	MovieLens			
	MF-AUC	MF-ADG		
ATOP	$0.8854 \ (0.0018)$	$0.7449 \ (0.0028)$		
MAP	$0.0242 \ (0.0006)$	$0.0281 \ (0.0006)$		
NDCG	$0.1701 \ (0.0007)$	$0.1750 \ (0.0008)$		
rec@10	$0.0473 \ (0.0010)$	$0.0539 \ (0.0019)$		
ADG	$0.1294 \ (0.0005)$	$0.1332 \ (0.0006)$		

evaluated on the observed relevant/irrelevant set, returns the same value **in expectation** over all possible patterns of observations.as when evaluated on the prior relevant/irrelevant (ground truth) set, which we call unbiased-tomissing-data (UBM).

In previous work, Steck et. al. have proposed the ATOP and Recall@N measures which meet this criteria. However, ATOP is very similar to AUC while Recall@N is hard to optimize directly.

We want a measure which is UBM, focuses on the top of the ranking and can be optimized in an efficient manner. **Require:** user set \mathcal{U} , item set \mathcal{I} , relevance sets $\{\mathcal{O}_u^+ : u \in \mathcal{U}\}$ 1: repeat Sample u uniformly from \mathcal{U}, i^+ uniformly from \mathcal{O}_u^+ N = 03: violatorFound = Falserepeat 5:Sample i^- uniformly from $\mathcal{I} \setminus i^+$ 6: if $f_{\theta}(u, i^+) - f_{\theta}(u, i^-) < 1$ then 7: violatorFound = True; $v = i^{-}$ 8: break 9: end if 10: N = N + 111:until $N >= \frac{|\mathcal{I}|-1}{\gamma}$ 12:if violatorFound then 13: Take gradient step on 14: $\mathcal{C}\left(\left|\frac{|\mathcal{I}|-1}{N}\right|\right)\left(f_{\theta}(u,v) - f_{\theta}(u,i^{+}) + 1\right)$ end if 15:16: **until** max iterations exceeded

Test vs validation performance

	MF-AUC			MF-ADG		
Measure	Test	Valid	Diff%	Test	Valid	Diff%
ATOP	0.8855	0.8849	-0.06	0.8821	0.8817	-0.05
ADG	0.1714	0.1709	-0.29	0.1768	0.1768	-0.00
REC@10	0.0945	0.0945	0.00	0.1025	0.1030	0.49
MAP	0.0775	0.0586	-24.38	0.0858	0.0657	-23.43
NDCG	0.3718	0.2957	-20.47	0.3820	0.3046	-20.42