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Abstract

Feature matching is a key problem in computer vision
and pattern recognition. One way to encode the essen-
tial interdependence between potential feature matches is
to cast the problem as inference in a graphical model,
though recently alternatives such as spectral methods, or
approaches based on the convex-concave procedure have
achieved the state-of-the-art. Here we revisit the use of
graphical models for feature matching, and propose a be-
lief propagation scheme which exhibits the following advan-
tages: (1) we explicitly enforce one-to-one matching con-
straints; (2) we offer a tighter relaxation of the original cost
function than previous graphical-model-based approaches;
and (3) our sub-problems decompose into max-weight bi-
partite matching, which can be solved efficiently, leading to
orders-of-magnitude reductions in execution time. Experi-
mental results show that the proposed algorithm produces
results superior to those of the current state-of-the-art.

1. Introduction
The feature matching problem aims to find consistent

correspondences between two sets of features or points, and
is a key step in many tasks in computer vision and pattern
recognition including self-calibration, image registration,
and multiple object tracking[8, 23, 24]. While finding one-
to-one correspondences between local feature points can be
done efficiently, the problem becomes NP-hard as soon as
pairwise affinities are introduced, leading to a range of re-
laxation and approximation techniques.

Graphical models are often used to encode pairwise
matching problems as they naturally express the interdepen-
dence among a set of putative matches where each feature
can be matched only once. Bayati, Shah and Sharma[2]
first formulated feature matching as a MAP inference prob-
lem in a graphical model (without pairwise constraints) and
incorporating pairwise constraints was addressed by Duchi
et al. [9], and others[29]. The primary disadvantage of
the approach of Duchi et al. [9] is that convergence can-

not be guaranteed; Torresani, Kolmogorov and Rother[29]
addressed this limitation, devising a method which was con-
sidered the state-of-the-art at the time. Even so, the loose-
ness of the relaxation limited the extent to which the match-
ing quality could be guaranteed. This limitation served as
a primary motivator for recent approaches, and a shift away
from methods based on inference in graphical models.

A range of alternative approaches to the matching prob-
lem have been proposed (see [5] for a review). One ap-
proach has been to relax the one-to-one matching con-
straints, and to recover them later through post-processing;
this is the approach typically adopted by Spectral Matching
(SM) [7, 19], and Local Sparse Models (LSM)[15]. This
produces good results despite the lack of theoretical justifi-
cation for the post-processing step. The Convex-Concave
Relaxation Procedure (CCRP) used in [23, 33], in con-
trast, maintains the constraints, but involves solving a series
of non-convex optimization problems; it thus is not guar-
anteed to find a high-quality solution, and may converge
slowly. Despite these limitations the CCRP-based method
Factorised Graph Matching[33] is considered to be the cur-
rent state-of-the-art as its performance is superior to that of
competing methods in many scenarios.

In this paper, we revisit the problem of using graphical
models for feature matching. We find that graphical model
based feature matching can be both fast and accurate. We
first formulate the matching problem as MAP inference in a
graphical model with one-to-one matching constraints, and
use a tighter linear programming (LP) relaxation than has
previously been identified. We then propose an augmented
belief propagation scheme to solve the dual problem of the
LP relaxation. Unlike other dual methods such as [29], we
decompose the dual problem into sub-problems which ei-
ther can be efficiently solved in terms of max-weight bi-
partite matching (e.g. using the Hungarian algorithm), and
others which have a closed-form solution. Note that the de-
composition into sub-problems which can be cast as max-
weight bipartite matching is possible only because of the
specific form of our novel LP relaxation. The fact that such
a relaxation is available in turn depends on the nature of the
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one-to-one matching constraints, which is perhaps why a
corresponding approach has not been discovered for general
MAP inference problems. In this study, a classic Hungarian
method is adopted for max-weight bipartite matching, but it
should be noted that other methods (including fast approx-
imations) instead of the Hungarian algorithm could also be
used. Promising experimental results show the effective-
ness and efficiency of the proposed Hungarian-BP method.

2. Notation and Problem Formulation

Assume that we have two sets of features: the model
features M = {fMij |(i, j) ∈ [n] × [n]} and the data fea-
tures D = {fDij |(i, j) ∈ [n] × [n]}, where [n] denotes
the set {1, 2, . . . , n}. Each set consists of n unary features
and several pairwise features. Specifically, fMii , i ∈ [n]
and fDjj , j ∈ [n] are unary features, while fMij , f

D
ij where

i, j ∈ [n], i 6= j are pairwise features. In a graph matching
problem, for example, the unary features might represent
nodes, and the pairwise features edges. We assume here
that M and D have the same size, though this can easily
be relaxed (e.g. to handle outliers) by generating additional
‘dummy’ points in either M or D. Feature matching is the
problem of finding the best correspondence between M and
D.

Given a correspondence vector yi = j (i ∈ [n], j ∈ [n]),
meaning that feature i in M corresponds to feature j in
D, finding an optimal one-to-one matching can be formu-
lated as a constrained MAP inference problem in a graphi-
cal model1,

y∗ = argmax
y

[∑
i∈V

θi(yi) +
∑
{i,j}∈E

θij(yi, yj)

]
, (1)

s.t. ∀l ∈ [n],
∑
i∈V

1(yi = l) = 1,

where yi ∈ {1, 2, . . . , n} and V = {1, 2, . . . , n}. The set
E ⊆ {{i, j}|i, j ∈ V} is known as the edge set. 1(S) is
the indicator function, which outputs 1 if S is true and 0 if
S is false. θi(yi) and θij(yi, yj) are real-valued functions,
known as potentials and are given by

θi(yi) = φ(fMii , f
D
yiyi),

θij(yi, yj) = ϕ(f
M
ij , f

D
yiyj ) + ϕ(f

M
ji , f

D
yjyi), (2)

where φ and ϕ are real-valued functions, which measure the
similarity between the features (φ for unary features, and ϕ
for pairwise features). The edge set E is a subset of V×V,
which is defined as follows

E={{i, j}|∃yi, yj ∈ [n], s.t.θij(yi, vj) 6= 0}. (3)

1Details are provided in the supplementary file.

3. Inference by Iterative Bipartite Matching
Problem (1) is NP-hard in general, thus we search for

efficient and accurate approximations. Belief propagation
(BP) provides an efficient means of producing approximate
solutions[26, 32] for the MAP inference problem, and ex-
act solutions in certain specific cases. However, general
BP methods cannot encode one-to-one matching constraints
(as they introduce an interdependence among all variables),
thus unfortunately they can not be used to solve (1) di-
rectly. To address this problem, we propose an augmented
BP method for solving (1) using an LP relaxation. One
of the reasons to adopt LP relaxations is that they allow
a tighter approximation to the original cost function than
many other relaxations[18].

3.1. LP Relaxation and Its Dual

Previously, an LP relaxation was proposed via compo-
sition of roof-duality-relaxation and the one-to-one match-
ing constraints[29]. Then a dual decomposition method was
proposed to solve the relaxed problem. One drawback of the
relaxation in [29] is that it is relatively loose; thus it often
leads to inferior solutions. To improve the solution quality,
they added so called local sub-problems solved by exhaus-
tive search, which makes the resulting algorithm computa-
tionally expensive.

To overcome the issues of looseness and speed, we pro-
pose a new LP relaxation for (1), which provides a better
approximation than [29], and can be solved much more ef-
ficiently with a speed up of two orders of magnitude. First
we introduce the typical LP relaxation for an unconstrained
MAP inference problem,

max
µ∈L

[∑
i∈V

〈µi, θi〉+
∑
{i,j}∈E

〈µij , θij〉
]
, (4)

where 〈µi, θi〉 =
∑
yi
µi(yi)θi(yi), and 〈µij , θij〉 =∑

yi,yj
µij(yi, yj)θij(yi, yj). The set L, known as the lo-

cal marginal polytope[30], is defined as

L=

µ>0

∣∣∣∣∣∣
∑
yi
µi(yi) = 1,∑

yj
µij(yi, yj) = µi(yi),∑

yi
µij(yi, yj) = µj(yj)

. (5)

In the LP relaxation (4), µi(yi) plays a similar role to a
permutation matrix by capturing a loose notion of a one-to-
one correspondence. Following this we propose the follow-
ing LP relaxation with one-to-one matching constraints:

max
µ∈L

[∑
i∈V

〈µi, θi〉+
∑
{i,j}∈E

〈µij , θij〉
]
, (6)

s.t. ∀l ∈ [n],
∑
i∈V

µi(l) = 1.
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Table 1. Introduced dual variables
Constraints Dual Variables
∀i ∈ V,

∑
yi
µi(yi) = 1 ui

∀l ∈ [n],
∑

i∈V µi(l) = 1 vl
∀{i, j}, yi,

∑
yj
µij(yi, yj) = µi(yi) λj→i(yi)

∀{i, j}, yj ,
∑

yi
µij(yi, yj) = µj(yj) λi→j(yj)

In (6), the additional constraints
∑
i∈V µi(l) = 1 enforce

the matrix mat(µ) with µi(yi) as its entry ith row and yth
i

column to be a permutation matrix. As local marginal poly-
topes provide a more compact feasible set than roof-duality-
relaxations, the proposed LP relaxation constitutes a closer
approximation than the one in [29]. Commercial LP solvers
such as CPLEX can be used to solve problems such as (6)
but have been shown to be very slow in doing so[32] as
they do not exploit the particular structure of the problem.
We have thus tailor-made an efficient solver for this prob-
lem using dual coordinate descent and max-weight bipartite
matching.

The Lagrangian dual of previous LP-relaxation-based
BPs[26] only involves dual variables (i.e. Lagrange multi-
pliers), which are referred to as messages (i.e. λi→j(yj) and
λj→i(yi)). Thus a straightforward way to derive the dual of
(6) is to introduce dual variables for additional one-to-one
matching constraints in (6).

However, since µi(yi) serves a similar role to a permuta-
tion matrix, we find that introducing dual variables ui corre-
sponding to the constraints

∑
yi
µi(yi) = 1, and dual vari-

ables (i.e. vl) for the additional one-to-one matching con-
straints in (6) leads to a more clear connection between
the proposed dual and the max-weight bipartite matching
problem[3]. Introducing the dual variables in Table 1 yields
the dual problem below,

min
u,v,λ

g(λ,u,v) =
∑
i∈V

ui +
∑
l∈[n]

vl

+
∑
i∈V

max
yi

[
θi(yi) +

∑
j∈N(i)

λj→i(yi)− ui − vyi
]

+
∑
{i,j}∈E

max
yi,yj

[
θij(yi, yj)− λj→i(yi)− λi→j(yj)

]
, (7)

where u = [u1, . . . , un], v = [v1. . . . , vn], λ =
[λi→j(yj)]{i,j}∈E and N(i) = {j|{i, j} ∈ E} is the set
of neighbours of node i. The variables λ are referred to as
messages as in previous work[26].

A nice property of this dual problem is that one of its
sub-problems can be smoothly transformed to a max-weight
bipartite matching problem[3] (see Proposition 1), which
can be efficiently solved by the Hungarian algorithm and a
variety of other methods[11]. Without ui, the dual form is
not as convenient.

Since the variables u and v correspond to one-to-one
matching constraints, we name them matching variables

throughout the paper.

3.2. Sub-Problems Solved by Max-Weight Bipartite
Matching

Fixing λ, the problem of updating u and v in (7) be-
comes

min
u,v

∑
i∈V

max
yi

[
θi(yi) +

∑
j∈N(i)

λj→i(yi)− ui − vyi
]

+
∑
i∈V

ui +
∑
l∈[n]

vl. (8)

Instead of solving sub-problem (8) directly, one can solve
the following weighted bipartite matching problem

Primal:X? = argmax
X

∑
i∈[n]

∑
l∈[n]

cilXil (9a)

s.t.
∑
i∈[n]

Xil = 1;
∑
l∈[n]

Xil = 1;Xil > 0,∀i, l,

Dual:[u?,v?] = argmin
u,v

∑
i∈V

ui +
∑
l∈[n]

vl (9b)

s.t. ui + vl > cil,∀i, l,

where X is a permutation matrix and the coefficients cil are
determined via

cil = θi(l) +
∑

j∈N(i)

λj→i(l),∀i, l ∈ [n].

Proposition 1. Sub-problem (8) is equivalent to the max-
weight bipartite matching problem in (9).

Proof. Associating ui to constraints
∑
l∈[n] Xil = 1 and vl

to constraints
∑
i∈[n] Xil = 1 results in the dual of (9a) as

follows,

h(u,v) =max
X>0

[ ∑
i∈[n]

∑
l∈[n]

cil Xil−
∑
i∈[n]

ui(
∑
l∈[n]

Xil−1)

−
∑
l∈[n]

vl(
∑
i∈[n]

Xil−1)
]

=max
X>0

∑
i∈[n]

∑
l∈[n]

(cil − ui − vl)Xil +
∑
i∈[n]

ui +
∑
l∈[n]

vl.

Now we have two different approaches to further sim-
plify the dual. One approach is adding the constraints
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∑
l∈[n] Xil = 1,∀i ∈ [n] back, which yields

h(u,v) =max
X>0

∑
i∈[n]

∑
l∈[n]

(cil − ui − vl)Xil

+
∑
i∈[n]

ui +
∑
l∈[n]

vl, s.t.
∑
l∈[n]

Xil = 1, ∀i ∈ [n]

=
∑
i∈[n]

max
l

(cil − ui − vl) +
∑
i∈[n]

ui +
∑
l∈[n]

vl

=
∑
i∈V

max
yi

[
θi(yi) +

∑
j∈N(i)

λj→i(yi)− ui − vyi
]

+
∑
i∈V

ui +
∑
l∈[n]

vl.

The other approach is as follows

h(u,v) =
∑
i∈[n]

max
Xil>0

∑
l∈[n]

(cil − ui − vl)Xil +
∑
i∈[n]

ui +
∑
l∈[n]

vl

=

{ ∑
i∈[n]

ui +
∑

l∈[n]

vl all cil − ui − vl 6 0,

+∞, otherwise.

Thus the two dual formulation (8) and (9b) are equivalent.

Various methods, for example the Hungarian algorithm,
can be used to determine the optimal u?, v?, as well as
the optimal assignment X?. In this study, we use the
classical Hungarian algorithm implemented by Jonker and
Volgenant[16]. However in practice the running time asso-
ciated with the bipartite matching method did not prove to
be a limiting factor.

Next, we show how to update λ. Here, at each step, we
choose some {i, j} ∈ E and update λj→i(yi), λi→j(yj)
with all other dual variables fixed. Thus the sub-problem
becomes

min
λj→i,λi→j

max
yi

[
θi(yi) +

∑
j′∈N(i)

λj′→i(yi)− ui − vyi
]

+ max
yj

[
θj(yj) +

∑
j′∈N(j)

λj′→j(yj)− uj − vyj
]

+ max
yi,yj

[
θij(yi, yj)− λj→i(yi)− λi→j(yj)

]
. (10)

Fortunately, a closed-form solution of (10) exists. Let

bi(yi) = θi(yi) +
∑

j∈N(i)

λj→i(yi)− ui − vyi ,

bij(yi, yj) = θij(yi, yj)− λj→i(yi)− λi→j(yj). (11)

By using a similar derivation as in [12], one MPLP-like

Algorithm 1: The Hungarian-BP procedure

input : Potentials θi(yi), i ∈ V, θij(yi, yj),{i, j} ∈ E;
MaxIter; threshold ε1 and ε2.

output: y?.
1 fmax = −∞, u = 0, v = 0 ;
2 for k ∈ {1, 2, . . . ,MaxIter} do
3 for {i, j} ∈ E do
4 Compute λ?

j→i(yi) and λ?
i→j(yj) as in (12);

5 [λj→i(yi), λi→j(yj)]← [λ?
j→i(yi), λ

?
i→j(yj)];

6 Compute optimal u?, v? and X? of (9) by the Hungarian
algorithm;

7 [u,v]← [u?,v?];
8 Decode ŷ as in (13),

fk =
∑
i∈V

θi(ŷi) +
∑

{i,j}∈E
θij(ŷi, ŷj);

9 If fk > fmax then fmax = fk, y? = ŷ;
10 gk ← current dual objective of (7);
11 if |fmax − gk| < ε1 or |gk − gk−1| < ε2 then
12 break;

closed-form solution of (10) is

λ?j→i(yi)=λj→i(yi)−
1

2
bi(yi)

+
1

2
max
yj

[
bij(yi, yj)+bj(yj)

]
,

λ?i→j(yj)=λi→j(yj)−
1

2
bj(yj)

+
1

2
max
yi

[
bij(yi, yj)+bi(yi)

]
. (12)

The overall procedure is summarized in Algorithm 1. We
call this Hungarian-BP, since the Hungarian algorithm is
used to update matching variables u and v, and BP updates
the messages λ. Since it is a dual method, we use a decod-
ing strategy to obtain a feasible integer (primal) solution.

Decoding In traditional belief propagation methods such
as MPLP[12], the integer solution is decoded via ȳi =
argmaxyi bi(yi). When multiple maiximizers exist, one of
them (ȳi) can be chosen randomly. However, this scheme
may give rise to an infeasible integer solution. On the con-
trary, in our Hungarian-BP framework, as the optimal X? is
also provided, a feasible ŷ can be decoded from X? via

ŷi = argmax
l

Xil . (13)

We would like to point out that ŷi also maximizes bi(yi).

Remarks In other dual decomposition frameworks such
as [17, 31] for MAP inference, constraints are often consid-
ered as higher order potentials (HOPs), and they essentially
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consider the following sub-problem,

min
δ

max
y

[
θ(y)−

∑
i∈V

δi(yi)
]

+
∑
i∈V

max
yi

[
θ̄i(yi) + δi(yi)

]
,

where the high-order potential θ(y) enforces the one-to-one
matching constraints,

θ(y) =

{
0,

∑
i∈V 1(yi = l) = 1,∀l ∈ [n],

−∞, otherwise,

and θ̄i(yi) = θi(yi) +
∑
j∈N(i) λj→i(yi). Here δ are the

messages from the high-order term to node.
In our setting, one can show that one optimal δ∗ can be

obtained from the optimal u∗ and v∗ by δ∗i (yi) = −u∗i −
v∗yi ,∀i ∈ V, yi ∈ [n]. Expressing δ in terms of u and v
yields our sub-problem (9), which can be efficiently solved
as shown.

3.3. Fast Dual Objective Evaluation

In Hungarian-BP, the dual and primal objectives are eval-
uated iteratively. Dual objective evaluation can be expen-
sive because it requires a lot of maximization operations.
For example evaluating the dual via (7) has a time complex-
ity of O(n2|E |). Thus a fast evaluation of the dual objective
is desirable. For this purpose, we precisely arranged the or-
der of dual variable updates. In Algorithm 1, we update
messages first and then update matching variables. This is
because our framework has convenient properties given by
the following propositions.

Proposition 2. The closed-form solution of (10) in (12) sat-
isfies2

max
yi,yj

[
θij(yi, yj)− λ?j→i(yi)− λ?i→j(yj)

]
= 0.

Proposition 3. The optimal u? and v? of (8) satisfies that
∀i ∈ V

max
yi

[
θi(yi) +

∑
j∈N(i)

λj→i(yi)− u∗i − v∗yi
]

= 0.

By these two properties, after message updating, at each
iteration of Algorithm 1, the dual objective can be evaluated
as

gk =
∑
i∈V

ui +
∑
l∈[n]

vl, (14)

because all other terms in (7) are zero. Using (14), we can
evaluate the dual with a time complexity of O(n) instead of
O(n2|E |).

2Proof of all propositions excepet Proposition 1 are provided in sup-
plementary file.

3.4. Analysis

In this section, we analyse the time complexity, conver-
gence and exactness conditions for Hungarian-BP.

Time complexity Hungarian-BP has a time complexity of
O(n3 + |E |n2) per iteration, which is much better than that
of [29] of O(n6|E |2) per iteration. In the Hungarian-BP
procedure, solving the weighted bipartite matching problem
has complexity O(n3). Finding closed-form solutions of
each small-scale problem like (10) has complexity O(n2).
As there are |E | such problems, the time complexity of each
iteration in total is O(n3 + |E |n2). The work of Torresani,
Kolmogorov and Rother[29] needs to solve a maxflow prob-
lem with n2 nodes and n2|E | edges at each iteration. Thus
the complexity per iteration is at least O(n6|E |2). Though
neither Hungarian matching nor max-flow are nearly as
slow as their worst-case running time might imply, in our
experiments we find that Hungarian-BP can be up to two
orders of magnitude faster than a max-flow-based approach.

In each iteration of our algorithm, other methods besides
the Hungarian algorithm could be used to solve weighted
bipartite matching problems as in (9). As far as we know,
the best complexity for solving (9) is O(n5/2 log(nC))3[11,
14, 25], where C = max cil. However, as in the worst case
|E | can be n2, solving weighted bipartite matching prob-
lems is not the bottleneck of the whole complexity. Thus
switching to a faster algorithm instead of the Hungarian al-
gorithm may only marginally improve the time complexity.

Convergence The dual objective of Hungarian-BP de-
creases at each iteration. By the fact that the dual objective
is bounded from below by the true MAP value, Hungarian-
BP provides a sequence of converged dual objectives.

Exactness Here we provide two sufficient conditions for
Hungarian-BP to provide exact solutions of the constrained
MAP inference problem.

Proposition 4. In each iteration of Algorithm 1,
after updating message and matching variables, if∑
{i,j}∈E bij(ŷi, ŷj) = 0, then ŷ is a solution of (1).

Proposition 5. If in Algorithm 1, for some k the two con-
ditions hold: (1) gk = gk−1; (2) for each bi(yi), there is a
unique maximizer ȳi = argmaxyi bi(yi); then y? is a solu-
tion of (1).

When there is a gap between the dual objective and
decoded integer solutions, various approaches including
cluster pursuit techniques[1, 27] and branch-and-bound

3To simplify the derivation, we assume that all cil are bounded.
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techniques[28] can be used to tighten the initial relax-
ation. In our implementation, we use a similar branch-
and-bound framework as [28], where the split strategies are
most-fractional-first. In each branch step of branch-and-
bound, we run the relaxation solver (with MaxIter=5 and
ε1 = ε2 = 10−6). If there is a gap between the dual ob-
jective and decoded primal, we use most-fractional-first to
select a node. Then we branch the state space of x in two
parts as follows. In one part the selected node must be as-
signed its current label, and in the other part it must not be
assigned to its current label. The branched state space is
organized as a queue and the procedure terminates once the
queue is empty or maximal iterations are reached.

4. Experiments
In this section, we apply Hungarian-BP4 to several

matching tasks. Our Hungarian-BP method is compared
with several existing popular and state-of-the-art matching
algorithms, including:

• the graduated assignment algorithm (denoted as “GA”
for short)[13];

• the spectral matching algorithm (denoted as “SM” for
short)[19];

• the spectral matching algorithm with affine constraints
(denoted as “SMAC” for short)[6];

• the integer projected fixed point matching algorithm
with initialization X0 = 1n×n/n (denoted as “IPFP-
U” for short)[20];

• the integer projected fixed point matching algorithm
with the result of SM as initialization (denoted as
“IPFP-S” for short)[20];

• the reweighted random walks matching algorithm (de-
noted as “RRWM” for short)[4];

• the factorized graph matching algorithm (denoted as
“FGM” for short)[33];

• the local sparse model matching algorithm (denoted as
“LSM” for short)[15];

• the MAP inference based dual decomposition match-
ing algorithm (denoted as “DD” for short)[29].

We conducted experiments on a server with two 12-core
Xeon X5650 CPUs and 96 GB memory. The seven algo-
rithms, GA, SM, SMAC, IPFP, RRWM, FGM5 and DD6

4The code is available at http://zzhang.org/software/.
5The code of “GA, SM, SMAC, IPFP, RRWM and FGM” is available

at http://humansensing.cs.cmu.edu/down_fgm.html
6http://pub.ist.ac.at/˜vnk/software/

GraphMatching-v1.01.src.zip

Figure 1. The four hand-written Chinese characters used in the
experiment, and typical matching results. In the matching results,
the red lines show the structure representations of characters given
by Liu et al. [23].

were based on public implementations, and the LSM al-
gorithm was implemented by us. Our algorithm is imple-
mented in Matlab with mex files. In the experiments we
set MaxIter = 5, and ε1 = ε2 = 10−6 for Algorithm 1.
Then if there is a gap between the dual objective and de-
coded primal, we run at most 600 branch-and-bound itera-
tions to tighten the bound. For LSM, we run at most 10000
iterations, or stop when the objective difference is less than
10−6, whichever comes first. For DD, we add the linear
subproblems, maxflow subproblems and local subproblems
with size 2 (for details on parameter settings we refer to
[29]). For all other algorithms, we use the same parameter
setting as [33].

4.1. Chinese Character Matching

As our first experiment we report feature matching re-
sults on four hand-written Chinese characters shown in Fig-
ure 1, where each character has 10 different samples[22].
In this experiment, we use the manually labelled feature
points (each character has 28, 23, 28 and 23 feature points)
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Table 2. Matching results on Chinese characters. The objective is normalized to [0, 1], and the best objective and accuracy are in bold. For
each character, we report the average performance on 45 matching problems.

GA SM IPFP-U IPFP-S SMAC RRWM FGM LSM DD Ours
Character1(Acc) 0.7429 0.4127 0.6690 0.4587 0.5849 0.8651 0.8246 0.1389 0.9119 0.9159
Character1(Obj) 0.8672 0.5964 0.9113 0.8416 0.7043 0.9256 0.9787 0.2104 1.0000 1.0000
Character1(Time) 0.0443 0.0290 0.0434 0.0686 0.0291 0.3819 4.7767 0.1978 2.2333 0.0948
Character2(Acc) 0.8937 0.6860 0.8116 0.8512 0.7643 0.9014 0.8280 0.3285 0.9140 0.9188
Character2(Obj) 0.9720 0.7690 0.9634 0.9609 0.8486 0.9942 0.9789 0.3977 1.0000 1.0000
Character2(Time) 0.0723 0.0194 0.0288 0.0397 0.0169 0.1894 4.2974 0.0335 0.9873 0.0914
Character3(Acc) 0.5762 0.7198 0.7087 0.8484 0.5278 0.7730 0.7698 0.1444 0.8778 0.8778
Character3(Obj) 0.6090 0.7532 0.9371 0.9483 0.6176 0.8902 0.9779 0.2482 0.9990 0.9999
Character3(Time) 0.0299 0.0207 0.0435 0.0600 0.0285 0.3883 4.6312 0.0346 5.1402 0.4438
Character4(Acc) 0.9314 0.8609 0.8754 0.9546 0.7681 0.9411 0.9353 0.3130 0.9961 0.9961
Character4(Obj) 0.9545 0.8290 0.9525 0.9838 0.8409 0.9740 0.9872 0.3792 1.0000 1.0000
Character4(Time) 0.0470 0.0214 0.0309 0.0449 0.0165 0.1840 3.7027 0.0247 0.8655 0.0625

and structure representations provided by Liu et al. [23]7.
The similarity between unary features is set to zero (i.e. φ
in (2)), and the similarity between pairwise features (i.e. ϕ
in (2)) is computed as follows

ϕij(k, l) = exp(−1

2
|dMij − dDkl| −

1

2
|θMij − θDkl|)A

M
ij AD

kl,

where dMij is the Euclidean distance between feature points
i, j, θMij is the angle of edge ij in M, and similarly for dDkl
and θDkl in D. AD and AM are adjacency matrices of fea-
ture points in D and M provided by Liu et al. [23]. As in
[23], we test the algorithms on all possible sample pairs,
i.e. 45 pairs for each character pair. The experimental re-
sults are shown in Table 2, and typical matching results
by Hungarian-BP are shown in Figure 1. The proposed
Hungarian-BP uniformly obtains the best results in terms
of both accuracy and normalised objective. DD can pro-
duce results competitive with ours, however its speed is at
least 10 times slower than Hungarian-BP.

4.2. Wide Baseline Image Matching

In this section, we perform feature matching on the CMU
house sequence[4, 33]. The CMU house sequence con-
sists of 111 images of a toy house captured from different
view points. In each image there are 30 manually marked
landmark points with known correspondences. We have
matched all images spaced by 10, 20, . . . 90 frames and
compute the average performance per separation gap. In the
experiments, as in [33], the similarity between unary fea-
tures is set to zero (i.e. φ in (2)), and the similarity between
pairwise features (i.e. ϕ in (2)) is computed as follows,

ϕij(k, l) = exp(−(dMij − dDkl)2/2500)AM
ij AD

kl,

where dMij and dDkl are Euclidean distances between two
landmarks points. AM and AD are adjacency matrices

7http://www.escience.cn/system/file?fileId=
62549

of landmark points created through Delaunay triangulation.
Results are shown in Figure 2, and we note that as the sep-
aration between frames increases, the accuracy of several
algorithms drops precipitously. The four methods: IPFP-S,
RRWM, FGM, and our Hungarian-BP exactly identify the
correct match in all scenarios. Furthermore, in our match-
ing BP, an upper bound of the matching problem is also
provided. Thus we can conclude that the objective provided
by our Hungarian-BP is within 0.5% of the global optimum.

4.3. Real-World Image Matching

In this section, we evaluate our method on the dataset
from [21], which consists of 30 pairs of images of cars
and 20 pairs of images of motorbikes from the Pascal 2007
dataset[10]. Each pair contains 30-60 ground-truth corre-
spondences and several outliers. The similarity measure
function φ and ϕ are the same as that of [33]. The results of
experiments without outliers are shown in Table 3. For fur-
ther investigation, we randomly added 1-20 outliers from
the background to the matching problems, with the result
shown in Figure 3.

Without outliers, our method always achieves the high-
est accuracy. It also achieves the best objective in the “Mo-
torbikes” dataset, and the second best in the “Car” dataset.
The speed of the Hungarian-BP is also quite competitive.
In the Motorbike dataset, DD achieves the second best ac-
curacy, but its speed is hundreds of times slower than that of
our method. In the Car dataset, FGM achieves the second
best accuracy, but its speed is 10 times slower than that of
Hungarian-BP. When outliers exist, the running time of our
algorithm increases with the number of outliers. However it
is sill faster than the FGM method. From Figure 3, we can
see that Hungarian-BP achieves the best accuracy in most
cases, and its normalized objectives are also quite close to
being the best.
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Figure 2. Matching results across image sequences with wide baseline.
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Figure 3. Matching results on real-world images. Typical matching result are shown on the left. Yellow lines indicate correct matches, blue
lines indicates incorrect matches, and green lines indicate matches between outliers. The results of DD are not shown due to the prohibitive
execution time.

Table 3. Matching results on real-world image matching, without outliers. The objective value is normalized to [0, 1]. The best accuracy
and objective are in bold, and the second best are in italic.

GA SM IPFP-U IPFP-S SMAC RRWM FGM LSM DD Ours
Car (Acc.) 0.6246 0.7381 0.7976 0.8281 0.7913 0.8841 0.9077 0.5706 0.8883 0.9218
Car (Obj.) 0.7283 0.8666 0.9398 0.9662 0.8787 0.9865 0.9991 0.7854 0.9533 0.9952
Car (Time) 0.0523 0.0936 0.0564 0.0639 0.0692 1.1546 11.2468 0.0519 278.9577 1.1974
Motor (Acc.) 0.7531 0.7764 0.8298 0.8565 0.8565 0.9258 0.9405 0.6465 0.9610 0.9713
Motor (Obj.) 0.8573 0.8928 0.9492 0.9617 0.9377 0.9962 0.9983 0.8103 0.9993 1.0000
Motor (Time) 0.0613 0.1237 0.0442 0.0542 0.0880 0.9423 9.4517 0.0572 206.1469 0.2986

5. Conclusions

We have shown that it is possible to formulate matching
problems as a constrained graphical model MAP inference
problem suitable for the application of a novel LP relax-
ation. The advantage of this relaxation is that, as we have
shown, it is possible using dual coordinate descent to de-
vise an efficient solver, which we have named Hungarian-
BP. Under certain conditions, the proposed LP relaxation is
tight, in which case the Hungarian-BP method is guaran-
teed to achieve the global optimum. Experiments show that
our algorithm often provides the best accuracy in real world
matching problems at a greatly reduced computational cost.
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Supplementary file

A. Reformulation of The Quadratic Assignment Problem

The one-to-one feature matching problems are also often modelled as the following quadratic assignment problems

max
X

vec(X)>Kvec(X), (15)

s.t. ∀i ∈ [n],

n∑
l=1

Xil = 1,

∀l ∈ [n],

n∑
i=1

Xil = 1,

where X is a permutation matrix8, Xij is the entry in the i-th row and j-th column of X, and vec(X) =

(X11 . . .X1n, . . . ,Xn1 . . .Xnn)> is the vectorised form of X. The matrix K is in Rn2×n2

and Kij,kl measures similar-
ity between the feature fMij and fMkl .

It is obvious, any problem like (1) can be reformulated as (15) if we let

Kii,ll = φ(fMii , f
D
ll ), (16a)

Kij,kl = ϕ(f
M
ij , f

D
kl ), i 6= j, k 6= l. (16b)

On the other hand, any problem like (15) can be reformulated as (1) if we let

θi(yi) = Kii,yiyi , (17a)
θij(yi, yj) = Kij,yiyj +Kji,yjyi . (17b)

B. Derivation of dual

To derive the dual, several redundant constraints will be added to the local marginal polytope L, as these constraints does
corresponding to any dual variables. For simplifying the derivation, we define

L =

{
µ

∣∣∣∣ µi(yi) > 0;
∑
yi
µi(yi) = 1;∀i ∈ V, yi ∈ [n]

µij(yi, yj) > 0;
∑
yi,yj

µij(yi, yj) = 1;∀{i, j} ∈ E, yi, yj ∈ [n]

}
. (18)

Then with the dual variables in Table 1, the dual of (6) is

g(λ,u,v) = max
µ∈L

{∑
i∈V

〈µi, θi〉+
∑
{i,j}∈E

〈µij , θij〉 −
∑
{i,j}∈E

λj→i(yi)
[∑
yj

µij(yi, yj)− µi(yi)
]

−
∑
{i,j}∈E

λi→j(yj)
[∑
yi

µij(yi, yj)− µj(yj)
]

−
∑
i∈V

ui
[∑
yi

µi(yi)− 1
]
−
∑
l∈[n]

vl
[∑
i∈V

µi(l)− 1
]}
. (19)

8X can also be a non-square partial permutation matrix. However, by adding zero-valued elements in matrix K, such a problem can be reformulated as
(15).
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Obviously, the maximisation in the above equation is decomposable, which means that

g(λ,u,v) =
∑
i∈V

max
µ∈L

∑
yi

µi(yi)

[
θi(yi) +

∑
j∈N(i)

λj→i(yi)− ui − vyi
]

+
∑
{i,j}∈E

max
µ∈L

∑
yi,yj

µij(yi, yj)

[
θij(yi, yj)− λi→j(yj)− λj→i(yi)

]
+
∑
i∈V

ui +
∑
l∈[n]

vl

=
∑
i∈V

max
µi(yi) is distribution.

∑
yi

µi(yi)

[
θi(yi) +

∑
j∈N(i)

λj→i(yi)− ui − vyi
]

+
∑
{i,j}∈E

max
µij(yi,yj) is distribution.

∑
yi,yj

µij(yi, yj)

[
θij(yi, yj)− λi→j(yj)− λj→i(yi)

]
+
∑
i∈V

ui +
∑
l∈[n]

vl

=
∑
i∈V

max
yi

[
θi(yi) +

∑
j∈N(i)

λj→i(yi)− ui − vyi
]

+
∑
{i,j}∈E

max
yi,yj

[
θij(yi, yj)− λi→j(yj)− λj→i(yi)

]
+
∑
i∈V

ui +
∑
l∈[n]

vl, (20)

which finish the derivation of dual.

C. Proof of proposition 2

Proposition 2. The closed-form solution of (10) in (12) satisfies

max
yi,yj

[
θij(yi, yj)− λ?j→i(yi)− λ?i→j(yj)

]
= 0.

Proof. Combining (12) and (11) yields

θij(yi, yj)− λ?j→i(yi)− λ?i→j(yj)

=θij(yi, yj)− λj→i(yi) +
1

2
bi(yi)−

1

2
max
yj

[
bij(yi, yj) + bj(yj)

]
− λi→j(yj) +

1

2
bj(yj)−

1

2
max
yi

[
bij(yi, yj) + bi(yi)

]
=θij(yi, yj)− λj→i(yi)− λi→j(yj) + bi(yi) + bj(yj)

− 1

2
max
yj

[
bij(yi, yj)+bj(yj) + bj(yi)

]
− 1

2
max
yi

[
bij(yi, yj)+bi(yi) + bj(yj)

]
=bij(yi, yj) + bi(yi) + bj(yj) (21a)

− 1

2
max
yj

[
bij(yi, yj)+bj(yj) + bj(yi)

]
(21b)

− 1

2
max
yi

[
bij(yi, yj)+bi(yi) + bj(yj)

]
. (21c)
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By (21) and the amplyfying trick, we have that

max
yi,yj

[
θij(yi, yj)− λ?j→i(yi)− λ?i→j(yj)

]
= max
yi,yj

{
1

2

[
bij(yi, yj) + bi(yi) + bj(yj)−

1

2
max
yi

[
bij(yi, yj)+bj(yj) + bj(yi)

]]
+

1

2

[
bij(yi, yj) + bi(yi) + bj(yj)−

1

2
max
yj

[
bij(yi, yj)+bj(yj) + bj(yi)

]]}
6

1

2
max
yi,yj

[
bij(yi, yj) + bi(yi) + bj(yj)−max

yi

[
bij(yi, yj)+bj(yj) + bj(yi)

]]
+

1

2
max
yi,yj

[
bij(yi, yj) + bi(yi) + bj(yj)−max

yj

[
bij(yi, yj)+bj(yj) + bj(yi)

]]
. (22)

Obviously bij(yi, yj) + bi(yi) + bj(yj) 6 maxyi
[
bij(yi, yj)+ bj(yj) + bj(yi)

]
holds, and the equality holds for entry

[ŷi, ŷj ] = argmaxyi,yj
[
bij(yi, yj)+bj(yj) + bj(yi)

]
. As a result, we have that

max
yi,yj

[
bij(yi, yj) + bi(yi) + bj(yj)−max

yi

[
bij(yi, yj)+bj(yj) + bj(yi)

]]
= 0.

Similarly, we have that

max
yi,yj

[
bij(yi, yj) + bi(yi) + bj(yj)−max

yj

[
bij(yi, yj)+bj(yj) + bj(yi)

]]
= 0.

Thus we have that
θij(yi, yj)− λ?j→i(yi)− λ?i→j(yj) 6 0,

On the other hand, it is obvious that

max
yi

[
bij(yi, yj)+bj(yj) + bj(yi)

]
6 max

yi,yj

[
bij(yi, yj)+bj(yj) + bj(yi)

]
,

max
yj

[
bij(yi, yj)+bj(yj) + bj(yi)

]
6 max

yi,yj

[
bij(yi, yj)+bj(yj) + bj(yi)

]
, (23)

and thus we have

max
yi,yj

[
θij(yi, yj)− λ?j→i(yi)− λ?i→j(yj)

]
>max
yi,yj

{
bij(yi, yj) + bi(yi) + bj(yj)

− 1

2
max
yi,yj

[
bij(yi, yj)+bj(yj) + bj(yi)

]
− 1

2
max
yi,yj

[
bij(yi, yj)+bi(yi) + bj(yj)

]}
= max
yi,yj

{
bij(yi, yj) + bi(yi) + bj(yj)−max

yi,yj

[
bij(yi, yj)+bj(yj) + bj(yi)

]}
= max
yi,yj

[
bij(yi, yj) + bi(yi) + bj(yj)

]
−max

yi,yj

[
bij(yi, yj)+bj(yj) + bj(yi)

]
= 0, (24)

which completes the proof.

D. Proof of Proposition 3
Proposition 3. The optimal u? and v? of (8) satisfies that ∀i ∈ V

max
yi

[
θi(yi) +

∑
j∈N(i)

λj→i(yi)− u∗i − v∗yi
]

= 0.
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Proof. Considering the equivalence between (8) and (9), by complementary slackness, we have that

X?
ij(cij − u?i − v?i ) = 0,

then by the constraints ui + vl > cil we have that

∀cil − u?i − v?l 6 0,X?
il = 0,

∀cil − u?i − v?l = 0,X?
il = 1.

By the fact that X is a permutation matrix, there must be one l′ for each i, s.t. X?
il′ = 1, which means that

max
yi

[
θi(yi) +

∑
j∈N(i)

λj→i(yi)− u∗i − v∗yi
]

= max
l

[
cil − u∗i − v∗l

]
= cil′ − u?i − v?l′ = 0, (25)

which completes the proof.

E. Proof of Proposition 4
Proposition 4. In each iteration of Algorithm 1, after updating message and matching variables, if

∑
{i,j}∈E bij(ŷi, ŷj) = 0,

then ŷ is a solution of (1).

Proof. The decoded primal can be computed as

fk =
∑
i∈V

θi(ŷi) +
∑
{i,j}∈E

θij(ŷi, ŷj)

=
∑
i∈V

[
θi(ŷi) +

∑
j∈N(i)

λj→i(ŷi)−
∑

j∈N(i)

λj→i(ŷi) + ui + vŷi − ui − vŷi
]

+
∑
{i,j}∈E

θij(ŷi, ŷj),

where ŷ is the decoded integer solution in current iteration as (13). Then by the fact that there is exactly one yi to be assigned
to a particular label l ∈ [n], fk can be reformulated as

fk =
∑
i∈V

[
θi(ŷi) +

∑
j∈N(i)

λj→i(ŷi)−
∑

j∈N(i)

λj→i(ŷi) + ui + vŷi − ui − vŷi
]

+
∑
{i,j}∈E

θij(ŷi, ŷj)

=
∑
i∈V

[
θi(ŷi) +

∑
j∈N(i)

λj→i(ŷi)− ui − vŷi
]

+
∑
{i,j}∈E

[
θij(ŷi, ŷj)− λj→i(ŷi)− λi→j(ŷj)

]
+
∑
i∈[n]

ui +
∑
l∈[n]

vl.

By the decoding scheme in (13), we have Xiŷi = 1, and then by complementary slackness we must have

θi(ŷi) +
∑

j∈N(i)

λj→i(ŷi)− ui − vŷi = 0.

Then by the fact that the dual objective can be evaluated as gk =
∑
i∈[n] ui +

∑
l∈[n] vl, we have

fk =
∑
{i,j}∈E

[
θij(ŷi, ŷj)− λj→i(ŷi)− λi→j(ŷj)

]
+
∑
i∈[n]

ui +
∑
l∈[n]

vl

=
∑
{i,j}∈E

bij(ŷi, ŷj) +
∑
i∈[n]

ui +
∑
l∈[n]

vl

=
∑
{i,j}∈E

bij(ŷi, ŷj) + gk,

which indicates the gap between fk and gk is −
∑
{i,j}∈E bij(ŷi, ŷj). Thus if

∑
{i,j}∈E bij(ŷi, ŷj) = 0, we must have fk

attains gk, which means that ŷ is the exact solution.
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F. Proof of Proposition 5

Proposition 5. If in Algorithm 1, for some k the two conditions hold: (1) gk = gk−1; (2) for each bi(yi), there is a unique
maximizer ȳi = argmaxyi bi(yi); then y? is a solution of (1).

Proof. By Proposition 2 and 3, we have that after updating λi→j(yj) and λj→i(yi) to λ?i→j(yj) and λ?j→i(yi), the dual
decrease is

max
yi

bi(yi) + max
yj

bj(yj) + max
yi,yj

bij(yi, yj)−max
yi

b?i (yi)−max
yj

b?j (yj)−max
yi,yj

b?ij(yi, yj)

= max
yi

bi(yi) + max
yj

bj(yj) + max
yi,yj

bij(yi, yj)−max
yi,yj

[
bi(yi) + bj(yj) + bij(yi, yj)

]
. (26)

Thus if gk = gk−1, we must have

max
yi

bi(yi) + max
yj

bj(yj) + max
yi,yj

bij(yi, yj)−max
yi

b?i (yi)−max
yj

b?j (yj)−max
yi,yj

b?ij(yi, yj)

= max
yi

bi(yi) + max
yj

bj(yj) + max
yi,yj

bij(yi, yj)−max
yi,yj

[
bi(yi) + bj(yj) + bij(yi, yj)

]
= 0, (27)

which means that bij(yi, yj) and bi(yi), bj(yj) must have common maximiser. By the fact that each bi(yi) has a unique
maximiser ȳi, the maximiser of bij(yi, yj) is ȳi, ȳj . Then by Lemma 2 we must have

bij(ȳi, ȳj) = 0,∀{i, j} ∈ E .

Then by complementary slackness, we also have

X?
iȳi = 1,

and thus by Proposition 4, y∗ must be a solution of (1).

G. Derivation of Message Updating

In this section, we prove that (12) is a closed-form solution of (10). First we introduce the following definitions and
lemma.

Firstly, we introduce the following definitions

b?i (yi) = θi(yi) +
∑

j′∈N(i),j′ 6=j

λj′→i(yi) + λ?j→i(yi)− ui − vyi ,

b?j (yj) = θj(yj) +
∑

j′∈N(j),j′ 6=i

λj′→j(yj) + λ?i→j(yj)− ui − vyj ,

b?ij(yi, yj) = θij(yi, yj)− λ?j→i(yi)− λ?i→j(yj). (28)

Then we introduce the following lemma.

Lemma 1. maxyi b
?
i (yi) = maxyj b

?
j (yj) = 1

2 maxyi,yj
[
bij(yi, yj) + bi(yi) + bj(yj)

]
.
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Proof.

max
yi

b?i (yi) = max
yi

[
θi(yi) +

∑
j′∈N(i),j′ 6=j

λj′→i(yi) + λ?j→i(yi)− ui − vyi
]

= max
yi

[
bi(yi)− λj→i(yi) + λ?j→i(yi)

]
= max

yi

[
bi(yi)− λj→i(yi) + λj→i(yi)−

1

2
bi(yi) +

1

2
max
yj

[
bij(yi, yj) + bj(yj)

]]
= max

yi

[
1

2
max
yj

[
bij(yi, yj) + bi(yi) + bj(yj)

]]
= max

yi

[
1

2
max
yj

[
bij(yi, yj) + bi(yi) + bj(yj)

]]
=

1

2
max
yi,yj

[
bij(yi, yj) + bi(yi) + bj(yj)

]

and with similar derivation, we also have maxyj b
?
j (yj) = 1

2 maxyi,yj

[
bij(yi, yj) + bi(yi) + bj(yj)

]
.

Then by Lemma 1 and Proposition 2, we have that

max
yi

b?i (yi) + max
yj

b?j (yj) + max
yi,yj

b?ij(yi, yj) = max
yi,yj

[
bi(yi) + bj(yj) + bij(yi, yj)

]
6max

yi
bi(yi) + max

yj
bj(yj) + max

yi,yj
bij(yi, yj)

= max
yi

[
θi(yi) +

∑
j′∈N(i)

λj′→i(yi)− ui − vyi
]

+ max
yj

[
θj(yj) +

∑
j′∈N(j)

λj′→j(yj)− uj − vyj
]

+ max
yi,yj

[
θij(yi, yj)− λj→i(yi)− λi→j(yj)

]
,

which indicates that (12) is a closed-form solution of (10).

15


