Basic Concepts in Graph Theory Lectures in Discrete Mathematics, Course 2, Bender/Williamson

Multiple Choice Questions for Review

Some of the following questions assume that you have done the exercises.

1. Indicate which, if any, of the following five graphs $G=(V,E,\phi),\ |V|=5,$ is not isomorphic to any of the other four.

(a)
$$\phi = \begin{pmatrix} A & B & C & D & E & F \\ \{1,3\} & \{2,4\} & \{1,2\} & \{2,3\} & \{3,5\} & \{4,5\} \end{pmatrix}$$

(b)
$$\phi = \begin{pmatrix} f & b & c & d & e & a \\ \{1,2\} & \{1,2\} & \{2,3\} & \{3,4\} & \{3,4\} & \{4,5\} \end{pmatrix}$$

(c)
$$\phi = \begin{pmatrix} b & f & e & d & c & a \\ \{4,5\} & \{1,3\} & \{1,3\} & \{2,3\} & \{2,4\} & \{4,5\} \end{pmatrix}$$

(d)
$$\phi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \{1,2\} & \{2,3\} & \{2,3\} & \{3,4\} & \{4,5\} & \{4,5\} \end{pmatrix}$$

(e)
$$\phi = \begin{pmatrix} b & a & e & d & c & f \\ \{4,5\} & \{1,3\} & \{1,3\} & \{2,3\} & \{2,5\} & \{4,5\} \end{pmatrix}$$

2. Indicate which, if any, of the following five graphs $G=(V,E,\phi),\ |V|=5,$ is not connected.

(a)
$$\phi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \{1,2\} & \{1,2\} & \{2,3\} & \{3,4\} & \{1,5\} & \{1,5\} \end{pmatrix}$$

(b)
$$\phi = \begin{pmatrix} b & a & e & d & c & f \\ \{4,5\} & \{1,3\} & \{1,3\} & \{2,3\} & \{2,5\} & \{4,5\} \end{pmatrix}$$

(c)
$$\phi = \begin{pmatrix} b & f & e & d & c & a \\ \{4,5\} & \{1,3\} & \{1,3\} & \{2,3\} & \{2,4\} & \{4,5\} \end{pmatrix}$$

(d)
$$\phi = \begin{pmatrix} a & b & c & d & e & f \\ \{1,2\} & \{2,3\} & \{1,2\} & \{2,3\} & \{3,4\} & \{1,5\} \end{pmatrix}$$

(e)
$$\phi = \begin{pmatrix} a & b & c & d & e & f \\ \{1,2\} & \{2,3\} & \{1,2\} & \{1,3\} & \{2,3\} & \{4,5\} \end{pmatrix}$$

3. Indicate which, if any, of the following five graphs $G = (V, E, \phi)$, |V| = 5, have an Eulerian circuit.

(a)
$$\phi = \begin{pmatrix} F & B & C & D & E & A \\ \{1,2\} & \{1,2\} & \{2,3\} & \{3,4\} & \{4,5\} & \{4,5\} \end{pmatrix}$$

(b)
$$\phi = \begin{pmatrix} b & f & e & d & c & a \\ \{4,5\} & \{1,3\} & \{1,3\} & \{2,3\} & \{2,4\} & \{4,5\} \end{pmatrix}$$

(c)
$$\phi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \{1,2\} & \{1,2\} & \{2,3\} & \{3,4\} & \{4,5\} & \{4,5\} \end{pmatrix}$$

(d)
$$\phi = \begin{pmatrix} b & a & e & d & c & f \\ \{4,5\} & \{1,3\} & \{1,3\} & \{2,3\} & \{2,5\} & \{4,5\} \end{pmatrix}$$

(e)
$$\phi = \begin{pmatrix} a & b & c & d & e & f \\ \{1,3\} & \{3,4\} & \{1,2\} & \{2,3\} & \{3,5\} & \{4,5\} \end{pmatrix}$$

4. A graph with $V = \{1, 2, 3, 4\}$ is described by $\phi = \begin{pmatrix} a & b & c & d & e & f \\ \{1, 2\} & \{1, 2\} & \{1, 4\} & \{2, 3\} & \{3, 4\} & \{3, 4\} \end{pmatrix}$. How many Hamiltonian cycles does it have?

- **5.** A graph with $V=\{1,2,3,4\}$ is described by $\phi=\begin{pmatrix} a & b & c & d & e & f \\ \{1,2\} & \{1,2\} & \{1,4\} & \{2,3\} & \{3,4\} & \{3,4\} \end{pmatrix}$. It has weights on its edges given by $\lambda=\begin{pmatrix} a & b & c & d & e & f \\ 3 & 2 & 1 & 2 & 4 & 2 \end{pmatrix}$. How many minimum spanning trees does it have?
 - (a) 2 (b) 3 (c) 4 (d) 5 (e) 6
- **6.** Define an RP-tree by the parent-child adjacency lists as follows:
 - (i) Root B: J, H, K; (ii) H: P, Q, R; (iii) Q: S, T; (iv) K: L, M, N.

The postorder vertex sequence of this tree is

- (a) J, P, S, T, Q, R, H, L, M, N, K, B.
- (b) P, S, T, J, Q, R, H, L, M, N, K, B.
- (c) P, S, T, Q, R, H, L, M, N, K, J, B.
- (d) P, S, T, Q, R, J, H, L, M, N, K, B.
- (e) S, T, Q, J, P, R, H, L, M, N, K, B.
- 7. Define an RP-tree by the parent-child adjacency lists as follows:
 - (i) Root B: J, H, K; (ii) J: P, Q, R; (iii) Q: S, T; (iv) K: L, M, N.

The preorder vertex sequence of this tree is

- (a) B, J, H, K, P, Q, R, L, M, N, S, T.
- (b) B, J, P, Q, S, T, R, H, K, L, M, N.
- (c) B, J, P, Q, S, T, R, H, L, M, N, K.
- (d) B, J, Q, P, S, T, R, H, L, M, N, K.
- (e) B, J, Q, S, T, P, R, H, K, L, M, N.
- 8. For which of the following does there exist a graph $G = (V, E, \phi)$ satisfying the specified conditions?
 - (a) A tree with 9 vertices and the sum of the degrees of all the vertices is 18.
 - (b) A graph with 5 components 12 vertices and 7 edges.
 - (c) A graph with 5 components 30 vertices and 24 edges.
 - (d) A graph with 9 vertices, 9 edges, and no cycles.
 - (e) A connected graph with 12 edges 5 vertices and fewer than 8 cycles.
- **9.** For which of the following does there exist a simple graph G = (V, E) satisfying the specified conditions?
 - (a) It has 3 components 20 vertices and 16 edges.
 - (b) It has 6 vertices, 11 edges, and more than one component.

Basic Concepts in Graph Theory

10.

11.

12.

13.

14.

15.

16.

(d) It has 7 vertices, 10 edges, and more than two components.			
(e) It has 8 vertices, 8 edges, and no cycles.			
For which of the following does there exist a tree satisfying the specified constraints?			
(a) A binary tree with 65 leaves and height 6.			
(b) A binary tree with 33 leaves and height 5.			
(c) A full binary tree with height 5 and 64 total vertices.			
(d) A full binary tree with 23 leaves and height 23.			
(e) A rooted tree of height 3, every vertex has at most 3 children. There are 40 total vertices.			
For which of the following does there exist a tree satisfying the specified constraints?			
(a) A full binary tree with 31 leaves, each leaf of height 5.			
(b) A rooted tree of height 3 where every vertex has at most 3 children and there are 41 total vertices.			
(c) A full binary tree with 11 vertices and height 6.			
(d) A binary tree with 2 leaves and height 100.			
(e) A full binary tree with 20 vertices.			
The number of simple digraphs with $ V = 3$ is			
(a) 2^9 (b) 2^8 (c) 2^7 (d) 2^6 (e) 2^5			
The number of simple digraphs with $ V = 3$ and exactly 3 edges is			
(a) 92 (b) 88 (c) 80 (d) 84 (e) 76			
The number of oriented simple graphs with $ V = 3$ is			
(a) 27 (b) 24 (c) 21 (d) 18 (e) 15			
The number of oriented simple graphs with $ V =4$ and 2 edges is			
(a) 40 (b) 50 (c) 60 (d) 70 (e) 80			
In each case the depth-first sequence of an ordered rooted spanning tree for a graph G is given. Also given are the non-tree edges of G . Which of these spanning trees is a depth-first spanning tree?			
(a) 123242151 and $\{3,4\}$, $\{1,4\}$			
(b) 123242151 and $\{4,5\}$, $\{1,3\}$			
(c) 123245421 and $\{2,5\}$, $\{1,4\}$			

(c) It is connected and has 10 edges 5 vertices and fewer than 6 cycles.

(d) 123245421 and $\{3,4\}, \{1,4\}$

(e) 123245421 and $\{3,5\}$, $\{1,4\}$

17. $\sum_{i=1}^{n} i^{-1/2}$ is

- (a) $\Theta((\ln(n))^{1/2})$ (b) $\Theta(\ln(n))$ (c) $\Theta(n^{1/2})$ (d) $\Theta(n^{3/2})$

- (e) $\Theta(n^2)$
- 18. Compute the total number of bicomponents in all of the following three simple graphs, G = (V, E) with |V| = 5. For each graph the edge sets are as follows:

$$E = \{\{1,2\}, \{2,3\}, \{3,4\}, \{4,5\}, \{1,3\}, \{1,5\}, \{3,5\}\}\}$$

$$E = \{\{1,2\}, \{2,3\}, \{3,4\}, \{4,5\}, \{1,3\}\}\}$$

$$E = \{\{1,2\}, \{2,3\}, \{4,5\}, \{1,3\}\}$$

- (a) 4
- (b) 5 (c) 6 (d) 7 (e) 8

- **19.** Let b > 1. Then $\log_b((n^2)!)$ is
 - (a) $\Theta(\log_b(n!))$
 - (b) $\Theta(\log_b(2 n!))$
 - (c) $\Theta(n \log_b(n))$
 - (d) $\Theta(n^2 \log_b(n))$
 - (e) $\Theta(n \log_b(n^2))$
- **20.** What is the total number of additions and multiplications in the following code?

$$\begin{array}{l} s := 0 \\ \text{for } i := 1 \text{ to n} \\ s := s + i \\ \text{for } j := 1 \text{ to i} \\ s := s + j^* i \\ \text{next } j \\ \text{next } i \\ s := s + 10 \end{array}$$

- (a) n (b) n^2 (c) $n^2 + 2n$ (d) n(n+1) (e) $(n+1)^2$

Answers: 1 (a), 2 (e), 3 (e), 4 (c), 5 (b), 6 (a), 7 (b), 8 (b), 9 (d), 10 (e), 11 (d), **12** (a), **13** (d), **14** (a), **15** (c), **16** (c), **17** (c), **18** (c), **19** (d), **20** (e).

Notation Index

```
s \sim t (equivalence relation) GT-5 BFE(T) (breadth first vertex sequence) GT-29 BFV(T) (breadth first vertex sequence) GT-29 DFV(T) (depth first vertex sequence) GT-29 x|y (x divides y) GT-24 DFE(T) (depth first edge sequence) GT-29 (V, E) (simple graph) GT-2 (V, E, \phi) (graph) GT-3 O() (Big oh notation) GT-38 O() (little oh notation) GT-40 O() (rate of growth) GT-38
```

${\bf Subject\ Index}$

Adjacent vertices GT-3	Clique problem GT-44			
Algorithm	Coloring a graph GT-42, GT-45			
divide and conquer GT-45	Coloring problem GT-44			
Kruskal's (minimum weight	Comparing algorithms GT-43			
spanning tree) GT-33	Complete simple graph GT-16			
lineal (= depth-first) spanning tree GT-33	Component connected GT-19			
partial GT-45	Connected components GT-19			
polynomial time (tractable) GT-43	Covering relation GT-24			
Prim's (minimum weight	Cycle in a graph GT-18			
spanning tree) GT-32 which is faster? GT-43	Hamiltonian GT-21			
Antisymmetric binary relation GT-24				
Asymptotic GT-40	Decision tree			
Average running time GT-42	see also Rooted tree			
Average running time G1-42	ordered tree is equivalent GT-27 RP-tree is equivalent GT-27			
	traversals GT-28			
Bicomponents GT-22	Degree of a vertex GT-4			
Biconnected components GT-22	Degree sequence of a graph GT-4			
Binary relation GT-5	Depth first vertex (edge)			
antisymmetric GT-24	sequence GT-29			
covering GT-24	Digraph GT-15			
equivalence relation GT-5 order relation GT-24	functional GT-30			
reflexive GT-5	Directed graph GT-15			
symmetric GT-5	Directed loop GT-15			
transitive GT-5	Divide and conquer GT-45			
Binary tree GT-36				
full GT-36				
Bipartite graph GT-23	Edge GT-2			
cycle lengths of GT-34	directed GT-15 incident on vertex GT-3			
Breadth first vertex (edge) sequence GT-29	loop GT-4, GT-11			
sequence G1-29	parallel GT-11			
	Edge sequence			
Child vertex GT-27	breadth first GT-29			
Chromatic number GT-42, GT-45	depth first GT-29			
Circuit in a graph GT-18	Equivalence class GT-5			
Eulerian GT-21	Equivalence relation GT-5			
Clique GT-44				

Index

Eulerian circuit or trail GT-21 Little oh notation GT-40 Loop GT-4, GT-11 directed GT-15 Full binary tree GT-36 Machine independence GT-38 Graph GT-3 Merge sorting GT-46 see also specific topic biconnected GT-22 bipartite GT-23 NP-complete problem GT-44 bipartite and cycle lengths GT-34 NP-easy problem GT-44 complete simple GT-16 NP-hard problem GT-44 connected GT-19, GT-19 directed GT-15 incidence function GT-3 Order relation GT-24 induced subgraph (by edges or Oriented simple graph GT-24 vertices) GT-18 isomorphism GT-7 oriented simple GT-24 random GT-8 Parallel edges GT-11 rooted GT-27 Parent vertex GT-27 simple GT-2 Path in a (directed) graph GT-16 subgraph of GT-17 Polynomial multiplication GT-48 Growth Polynomial time algorithm rate of, see Rate of growth (tractable) GT-43 Prim's algorithm for minimum weight spanning tree GT-32 Hamiltonian cycle GT-21 Hasse diagram GT-24 Height of a tree GT-36 Random graphs GT-8 Rate of growth Big oh notation GT-38 Incidence function of a graph GT-3 comparing GT-43 Induced subgraph (by edges or exponential GT-43 vertices) GT-18 little oh notation GT-40 Internal vertex GT-27 polynomial GT-40, GT-43 Isolated vertex GT-11 Theta notation GT-38 Reflexive relation GT-5 Isomorphic graphs GT-7 Relation see perhaps Binary relation Kruskal's algorithm for minimum Rooted graph GT-27 weight spanning tree GT-33

Leaf vertex GT-27

Index-4

\mathbf{Index}

Rooted tree child GT-27 internal vertex GT-27 leaf GT-27 parent GT-27 siblings GT-27 RP-tree (rooted plane tree) see Decision tree	Tree see also specific topic binary GT-36 decision, see Decision tree height GT-36 ordered tree, see Decision tree rooted, see Rooted tree RP-tree (rooted plane tree), see Decision tree spanning GT-31
Simple graph GT-2 Sorting (merge sort) GT-46 Spanning tree GT-31 lineal (= depth first) GT-34 minimum weight GT-31	spanning, lineal (= depth first) GT-34 spanning, minimum weight GT-31
Subgraph GT-17 cycle GT-18 induced by edges or vertices GT-18 Symmetric relation GT-5	Vertex adjacent pair GT-3 child GT-27 degree of GT-4 internal GT-27 isolated GT-11 leaf GT-27 parent GT-27
Theorem bipartite and cycle lengths GT-34 cycles and multiple paths GT-19 equivalence relations GT-5	Vertex sequence GT-16 breadth first GT-29 depth first GT-29
minimum weight spanning tree GT-32 Prim's algorithm GT-32 properties of Θ and Ο GT-39 walk, trail and path GT-17 Tractable algorithm GT-44 Trail in a (directed) graph GT-16 Transitive relation GT-5 Traveling salesman problem GT-44 Traversal	Walk in a graph GT-16
decision tree GT-28	