
Teaching Statement

Deian Stefan

I find teaching and mentoring to be highly rewarding, educational, and closely tied to my research
approach. I am interested in making systems and applications more secure by changing how developers write
code. A crucial part of this is to teach the next generation of students (and developers) how to build secure
systems through more principled approaches. Given my work on applying programming languages to secure
systems, I am well-positioned to teach a variety of classes in both programming languages and systems. One
natural class for me to teach is introductory programming languages, which I have already co-taught twice at
Stanford, but I am also excited to teach courses on security, operating systems, and introductory computer
science, as well as more specific graduate courses focusing on my research interests.

Teaching experience. I have spent the last two years co-teaching (with Edward Z. Yang) the Programming
Languages course at Stanford. The goal of this class is not to teach students how to write code in a select few
languages. Rather, it is to get students to think about concepts in programming languages and the design
and implementation trade-offs of different language features. The class covered various topics, including
foundations (lambda calculus and a brief introduction to operational semantics), high-order functions, objects,
type inference, polymorphism, continuations, and concurrency.

My teaching approach shares some similarities with my research style in being a multi-step process
motivated by foundations and practical concerns. In lecture, I try to find ways to explain a concept in its
simplest and most fundamental form and then relate it to other concepts and practical uses. Students are far
more likely to internalize and retain things they have figured out for themselves. Hence, I motivate problems
by laying out clear examples and use cases, but strive to get students to arrive at the core problem statement
themselves. Once they have an understanding of the problem, I then guide them through different solutions
and real-world language implementations, evaluating their trade-offs along the way. For instance, one of the
concepts in the lecture on objects was dynamic lookup/dispatch. Rather than simply explain what dynamic
lookup is, I used several code snippets to motivate what problem dynamic lookup was solving: calling a
method on an object cannot always be determined statically. The solution was obvious. We then discussed
the different trade-off of implementing dynamic lookup as done by Smalltalk, Java, and C++.

In addition to discussing concepts in the context of real programming languages, I like to encourage
students to further explore their understanding through hands-on prototyping. To this end, I changed the
course to include labs in addition to the more theoretical problem sets. Some of the labs we created included
a lambda calculus evaluator, type inference, reference counting and tracing garbage collectors, and C++-
style dynamic lookup. By providing students with boilerplate code, they focused their efforts towards
understanding the core concepts, rather than mundane coding. Indeed, many students have confirmed that the
labs were a fun and helpful way to solidify their understanding of the concepts covered in lecture.

Finally, when teaching, I try to convey my passion and enthusiasm for the topic and make the class
enjoyable. One example of this was bringing in external speakers to talk about real-world language design
and implementation; we hosted talks from core members of the Go, Rust, and Mozilla JavaScript teams
that the students found very interesting. Another was to give a lecture on research topics in the field. It was
particularly rewarding to see some students get excited about programming languages and approach me to
work on research.

Graduate seminars. I am excited to teach graduate seminars on my research interests, including a seminar
on language-based security, and one on the intersection of programming languages and operating systems.
Language-based security is a well-established area of research, with over a decade of interesting work, and

1



this seminar would cover key and recent topics on the use of programming language methods to enforce and
reason about security. Language-based security grew out of the need for applications to address security
concerns that operating systems do not and cannot enforce. But security is not the only case where operating
system abstractions have come short; the second seminar will explore such cases (e.g., performance) and how
better integration with programming languages address these shortcomings.

Browser design & implementation. There are a number of fundamental concepts in computer science
that, traditionally, a course on operating systems conveys, including resource management, concurrency,
scheduling, security, and interface design. I am interested in developing a course on browser engines that
can complement such courses by providing a platform for exploring these concepts in a novel setting, with
application-specific concerns and demands.

This course will cover the major subsystems of the browser, including the network stack, security
architecture, JavaScript engine, the DOM, and the renderer. More importantly, it will explore the interaction
between these subsystems and how fundamental concepts arise in such a large real-world system. To give
students the opportunity to put their understanding into practice, I am interested in designing labs atop the
Breach modular browser and select (understandable) parts of Firefox. For example, one lab may entail
implementing a simple database system that is then exposed to web sites; the goal of this is to get students to
think about interface design, resource management, and security.

By experiencing core concepts in multiple contexts (e.g., an OS and browser) students are more likely to
get a deeper understanding for fundamentals. This course can serve that role. Moreover, it can help to lower
the barrier to entry for exploring research ideas, such as COWL, in the context of the browser.

Mentoring experience. Over the last three years I have also been advising several students who worked
with me on my research projects, including Masters and junior Ph.D. students, early undergraduate students,
and a high-school student. Of the more senior students, I mentored Kyle Brogle (now at Apple Security) on
finding a cryptographic encoding for DCLabels, the logic used to specify policies in Hails and COWL, and
Stefan Heule on developing the formal semantics for a generalized model of COWL. I am currently working
closely with Annie Liu (a junior Ph.D. student at Princeton) on ESpectro and Devon Rifkin on addressing
user privacy in the presence of malicious and vulnerable browser extensions.

As a mentor, I hope to foster a friendly and collaborative environment. To this end, I plan to collaborate
with students and encourage them to work together. My goal is to guide students towards fruitful and
high-quality research. In their early years, this may involve low-level feedback. But, beyond this, I wish to
create an atmosphere where students pursue projects they find most interesting. I believe that the key role of
advisor is to guide students towards problems that match their interests and strengths—working with students
that are independent and passionate has been both intellectually stimulating and immensely rewarding.

2


