
Research Statement

Deian Stefan

My research interests span the areas of systems,
programming languages, and security. I particularly
enjoy building secure systems that can see adoption.
My efforts are generally guided by two goals: (1) to
enable average developers to build secure systems
and applications, and (2) to leverage the benefits of
formal semantics when reasoning about the security
properties of a system. For example, as part of my
thesis research, I built a framework (Hails [6]) that
allows novice developers to build secure web ap-
plications. I then implemented a browser security
architecture (Confinement with Origin Web Labels,
or COWL [19]), currently being standardized at the
W3C [20], for protecting user privacy from untrusted
JavaScript. For both systems, I developed the formal
guarantees of the core security mechanisms, the first
of which was even mechanically checked in Coq.

My motivation for building secure systems is sim-
ple: security problems are everywhere. Hundreds of
millions of users have had their private information
(passwords, health records, credit card numbers, etc.)
compromised in 2014 alone [2]. This is because build-
ing secure software is an error-prone task; existing
programming models make it easy to write insecure
code and notoriously difficult to produce secure code.
Unfortunately, attempts to address this by creating
a culture of good security practices and fixing vul-
nerabilities post-hoc are not working. Even seasoned
Linux kernel developers have committed changes—
sometimes as small as a single line—that have led
to vulnerabilities [21]. How then can we expect the
average programmer to build secure systems?

My research tackles this challenge by exploring
new system design points that change programmer
behavior in favor of producing secure code. The most
effective way to change programmer behavior is to
change programming languages and APIs. From the
release of Java, to Ruby on Rails, to iOS and An-
droid, history has shown that programming languages
and APIs can have a profound impact on programmer
behavior. Hence, by designing languages and APIs
with security in mind, we can make it easier for de-

velopers to write secure code and restrict the damage
that results from inevitable mistakes. For these ab-
stractions and mechanisms to be usable by average
developers, they must adoptable. Equally important,
they should be principled, so as to allow one to apply
formal reasoning to rule out large classes of design
error.

My general approach to building secure systems is
as follows. First, I find it useful to design or model a
system from a clean slate. This helps to identify and
understand the core problem, free from the significant
real-world constraints of usability and backwards-
compatibility. Importantly, it also allows for the de-
sign to be based on fundamental principles, such as
information flow control [13], from the start. Then, I
implement a prototype and develop the formal seman-
tics and guarantees for the security mechanism. These
steps alone are not unique. Indeed, they are common
when one designs research programming languages,
but by virtue of having eschewed compatibility, such
principled designs are hard to apply to real systems.

By contrast, the path to adoption is much clearer
when security solutions are developed as incremen-
tal improvements to existing systems. While high-
impact, such solutions tend not to be principled. I
attempt to get the best of both worlds through an iter-
ative design process that refines a clean-slate design
according to real-world usage and concerns.

To this end, I build real applications on top of my re-
search systems and, when possible, get inexperienced
developers to do so. I have found that less experi-
enced developers can provide invaluable insights into
the obstacles that a system such as Hails faces for
adoption by average developers.

Of equal importance is to understand how devel-
opers structure applications and think about security
for insecure “legacy” systems, and what changes can
be made to such systems in order to incorporate the
abstractions and security mechanisms that have arisen
from clean-slate research. To this end, I often find
it useful to reach out to individual developers and
get involved in developer communities. For example,

1



one of the factors that has made COWL attractive for
standardization is its re-purposing of existing browser
concepts and mechanisms to provide strong security
guarantees. The idea for this came out of trying to
explain information flow control to application and
browser developers while I was working at Mozilla.

My thesis research applies this iterative design ap-
proach to address web application security. Web appli-
cations face security issues on two fronts, server-side
and browser-side, and vulnerabilities on two sides
have a multiplicative effect. Worse still, the evolution
of the Web has prioritized functionality over secu-
rity and led to the development of brittle and ad-hoc
security solutions on both sides. Hails and COWL,
together, provide end-to-end security against the pri-
vacy leaks that plague today’s applications, without
trading off functionality. Indeed, the strong security
opens up the possibility of deploying applications
that, because of security concerns, were not previ-
ously practical. These systems and their underlying
security mechanisms are described below.

Hails. Hails [6] is a Haskell web framework de-
signed to make it more difficult to write vulnerable
code. Today, even high-profile web sites are vulner-
able to application-level attacks—e.g., Github had
a vulnerability that allowed a user to set the authen-
tication keys for any project on the site [10], while
Snapchat was vulnerable to an attack that allowed any
user to extract the username and phone number of any
other user [4]. Such vulnerabilities arise so frequently
because web sites specify and enforce security pol-
icy by strewing checks throughout the application
code. Overlooking even a single check can lead to
vulnerabilities.

Yet, for important and sensitive data, developers
typically have a more declarative, high-level security
policy in mind—e.g., “a user’s credit card number
should not be sent to the network,” or “a user’s email
address should only be seen by her friends.” Hails
allows developers to specify such data access policies
alongside data schemas, where developers already
specify the format of data and how it should be stored.

The framework then enforces these policies system-
wide, in a mandatory fashion, using language-level
information flow control. This means that policies
follow data (as it leaves the database) through all soft-
ware components and, even when buggy or malicious,

these components cannot leak data. The Hails under-
lying security mechanism, LIO [15–17], ensures that
all code abides by the policy.

In Hails, application logic code does not need to
be intertwined with security checks. This code solely
needs to implement the site functionality; the frame-
work enforces all the security policies. Indeed, the ap-
plication logic code can even be written by untrusted
third-party developers.

Hails has been used to build several secure web
sites, by developers with a wide-range of expertise,
from a novice high school student to expert web de-
velopers. The experiences from building such ap-
plications have, in turn, been used to fine-tune the
framework API and underlying security mechanism.
For example, I developed a declarative policy specifi-
cation language for Hails to address difficulties with
specifying policies imperatively. More recently, I
ported Hails to JavaScript and co-founded a company
called GitStar that is developing a platform for deploy-
ing both Haskell and JavaScript web sites that wish
to offload security concerns to Hails. My goal here
is to influence the broader web developer community
and learn how the Hails security model can scale to
applications with larger code bases and unforeseen
needs.

LIO. Hails relies on language-level information
flow control (IFC) to enforce application-specific poli-
cies at runtime. A significant challenge lies in design-
ing an IFC system that is both principled and adopt-
able. Many IFC programming languages are princi-
pled but lack features crucial to building real systems
(e.g., exceptions, concurrency, policy inspection, and
recovery from IFC-monitor failures). By contrast,
many IFC operating systems are practical but lack
formal semantics and cannot be easily adopted by
web developers (e.g., they require a new OS and lack
support for fine-grained policies common to web ap-
plications).

In an attempt to get the best from both worlds, I
developed LIO [15–17], a dynamic language-level
IFC system that shares many abstractions with OS-
level IFC systems. By exploring a new design point
in language-level IFC, LIO supports many modern
language features to which developers have grown
accustomed, including exceptions and concurrency.
Most dynamic IFC programming languages lack such

2



features due to the covert channels that can arise as
a result of complex program control flow, but LIO
eliminates these covert channels by construction [7,
16, 17].

I have formalized LIO using small-step semantics
and proved that any program written in LIO can-
not leak data by abusing language-level features; the
proof for the sequential LIO system has been mechan-
ically checked in Coq. The concurrent LIO design is
the first dynamic IFC language to provide this result
without hampering flexibility (e.g., by disallowing
branching on secrets). Furthermore, to reduce the
gap between language semantics and implementation,
which can sometimes allow for real leaks that the
semantic model does not capture, I extended LIO’s se-
mantics (and, in turn, implementation) to account for
subtle implementation details, such as caches [18].

LIO has been implemented as a Haskell library
and, more recently, the ideas have been applied to
JavaScript in Node.js [7]. The library approach has
allowed me to evaluate different design points with
rapid feedback. Indeed, LIO has been rewritten sev-
eral times to address challenges and limitations that
arose when building Hails. In addition to Hails, how-
ever, LIO has been used to build several secure appli-
cations and systems. Finally, LIO has been part of the
curricula at Stanford (Functional Systems in Haskell)
and UPenn (Advanced Programming), and has served
as a research platform at Chalmers, Harvard, MIT
Lincoln Labs, and University of Maryland.

COWL. While Hails/LIO provides strong security
on the server side, COWL [19] enforces security in
the browser. Large parts of modern web sites are
typically implemented in JavaScript that runs in the
browser. These browser-side applications routinely
incorporate code from third-parties—e.g., jQuery is
used by over 57% of the top 10,000 sites [3]. Yet,
in the status-quo browser, these libraries run with
the privilege of the page and must be trusted to not
leak the user’s sensitive information. Unfortunately,
even trustworthy libraries put the user’s privacy at
risk—e.g., jQuery’s web servers were recently com-
promised [9] and could have been used to serve a
malicious library.

COWL is a JavaScript confinement system that ex-
tends the browser security model with information
flow control, while retaining backwards compatibil-

ity. Much like Hails/LIO, this allows developers to
associate policy with sensitive data, such as pass-
words. Within the confines of the browser, COWL
then enforces these policies by prohibiting code, even
a malicious jQuery, from arbitrarily leaking data.

As with Hails and LIO, finding abstractions that de-
velopers can use to build applications more easily was
crucial. To this end, COWL adopted the Hails/LIO
abstractions to the browser. Importantly, it did so by
retrofitting existing browser concepts and constructs.

For example, in the existing model, developers al-
ready express policy in terms of origins (the address
of a web server) and compartmentalize applications
using browsing contexts (e.g., iframes). COWL lever-
ages origins to provide a simple policy model [14] that
developers can use to protect sensitive data. It then
enforces policies at context boundaries—e.g., when
an iframe communicates with the network or another
page. This has the added benefit of allowing one
to implement IFC by repurposing existing security
mechanisms, such as content security policy (CSP).

COWL has been implemented in both Firefox and
Chromium. Several secure applications have been
written using COWL, including a password man-
ager, an encrypted document editor, and a third-party
personal finance mash-up (browser-side mint.com).
These efforts revealed multiple design and implemen-
tation bugs in HTML5 and CSP, for which I proposed
new security directives that will appear in the next
version of the W3C CSP specification.

The W3C Web Application Security Working
Group [20] is currently in the process of standard-
izing COWL and I am the editor of the specification.

Future work. There are several directions in which
I wish to continue my work on secure systems:

Least privileged systems: Iterating on the LIO
and COWL designs, I recently started developing a
language-level security architecture for Node.js called
ESpectro. The goal of ESpectro is to allow develop-
ers to build application that are least privileged, i.e.,
applications where code operates using the least set
of privileges necessary to complete its function. To
this end, ESpectro provides developers with a way to
execute untrusted JavaScript in light-weight isolated
compartments, similar to COWL’s browsing contexts.
Within a compartment, code only has access to virtu-
alized libraries exposed by the compartment’s parent.

3



This simple abstraction allows developers to expose
different APIs and security mechanisms, including
LIO-style IFC and fine-grained discretionary access
control, as libraries.

While this is still ongoing work, ESpectro is al-
ready being used by GitStar to provide a Hails-like
framework for server-side JavaScript. I am currently
investigating how this architecture can generalize to
other language runtimes, e.g., PHP and Python.

The Breach browser [1] is integrating ESpectro to
ensure that different JavaScript modules, which im-
plement core parts of the browser (e.g., the address
bar), run with least privilege. I am generally inter-
ested in exploring security mechanisms and policy
languages that can allow such developers to build
secure applications more easily.

Finally, I am interested in exploring a clean slate
approach to building secure low-level systems and
applications. Building secure systems applications,
such as the exemplary privilege-separated secure shell
(SSH) [12] and OKWS web server [8], is notoriously
difficult. A preliminary thought is to design a lan-
guage that allows programmers to describe system
components (HTTP parser, logger, etc.), typed inter-
faces between the components, and high-level secu-
rity policies. Given such a description, a compiler
can then generate the different isolated components,
interfaces, and mechanisms. (Such a compiler can po-
tentially leverage existing program partitioning work,
such as [11, 23], to ensure that the partitioning is effi-
cient and secure.) The programmer would in turn only
need to “fill in” the component functionality (e.g.,
algorithm for parsing HTTP). I am interested in devel-
oping this in the context of the type- and memory-safe
systems language Rust, especially because the Rust
team’s interest in building secure systems could serve
as a way to iterate on design.

Policy synthesis. Incorrect policies can break func-
tionality or, worse, lead to leaks. I am interested in
developing tools and design patterns that can help
developers specify correct policies more easily. One
promising approach is to use program synthesis as
a way to generate policies from user-supplied exam-
ples of failed and successful access patterns. This
can serve the dual role of ensuring that an already
specified policy leads to expected behavior.

Browser security. I am generally interested in build-
ing secure browser engines. In the current monolithic

browser design, new features and APIs are added as
trusted code into the core browser engine. In addition
to increasing the attack surface, reasoning about secu-
rity when adding new features is very difficult—e.g.,
should iframes access geolocation data? In [22], I
argued for the adoption of a unified underlying secu-
rity mechanism—namely, IFC—that would address
many of these concerns. In addition to exploring this
idea further, I am currently investigating new browser-
extension architectures, using the Breach browser as a
prototype vehicle, to address user privacy in the pres-
ence of vulnerable and malicious extensions. More
generally, I am interested in exploring new browser
designs: are there a few core abstractions that we can
use to implement most modern browser features as
untrusted modules?

Security foundations. Finally, building on [5], I
am currently developing encodings that show equiv-
alences between coarse-grained OS-like IFC, LIO-
style IFC, and fine-grained IFC programming lan-
guages. In this research area, I am more broadly inter-
ested in exploring the relationship between different
security mechanisms (e.g., IFC, capabilities, discre-
tionary access control, and role based access control),
finding semantic definitions and models for least priv-
ileged systems, and formally reasoning about end-to-
end security in the presence of declassification, i.e.,
explicit and safe “leaks.”

The rise of new application domains, platforms,
and community building tools, such Stack Exchange,
has accelerated the speed and willingness of devel-
opers to adopt new languages and features. By capi-
talizing on these trends, language-based security can
have real impact on systems. Indeed, there are many
longstanding open problems in systems security that
can be addressed using programming language meth-
ods. I want to continue to tackle these problems in
an academic research setting by building practical
systems that can leverage ideas from programming
languages in novel ways.

References
[1] Breach - a new modular browser. http://breach.cc/,

Dec. 2014.
[2] Have i been pwned? check if your email has been com-

promised in a data breach. https://haveibeenpwned.

com/, Dec. 2014.
[3] jQuery Usage Statistics: Websites using jQuery. http:

4

http://breach.cc/
https://haveibeenpwned.com/
https://haveibeenpwned.com/
http://trends.builtwith.com/javascript/jQuery


//trends.builtwith.com/javascript/jQuery, Sept.
2014.

[4] Troy hunt: Searching the snapchat data breach with “have i
been pwned?”. http://www.troyhunt.com/2014/01/

searching-snapchat-data-breach-with.html, Jan.
2014.

[5] P. Buiras, D. Stefan, and A. Russo. On dynamic flow-
sensitive floating-label systems. In Computer Security
Foundations Symposium (CSF). IEEE, July 2014.

[6] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières,
J. Mitchell, and A. Russo. Hails: Protecting data privacy in
untrusted web applications. In Symposium on Operating
Systems Design and Implementation (OSDI). USENIX, Oct.
2012.

[7] S. Heule, D. Stefan, E. Z. Yang, J. C. Mitchell, and A. Russo.
IFC inside: Retrofitting languages with dynamic informa-
tion flow control, Apr. 2015. Accepted.

[8] M. N. Krohn. Building secure high-performance web ser-
vices with okws. In USENIX Annual Technical Conference
(ATC), General Track, June 2004.

[9] M. Kumar. jquery official website compromised to serve
malware. http://thehackernews.com/2014/09/

jquery-official-website-compromised-to.html,
Sept. 2014.

[10] L. Latif. Github suffers a Ruby on Rails
public key vulnerability, Mar. 2012. http:

//www.theinquirer.net/inquirer/news/2157093/

github-suffers-ruby-rails-public-key-vulnerability.
[11] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and

A. C. Myers. Fabric: A platform for secure distributed
computation and storage. In Symposium on Operating
Systems Principles (SOSP). ACM, Oct. 2009.

[12] N. Provos, M. Friedl, and P. Honeyman. Preventing priv-
ilege escalation. In USENIX Security Symposium, Aug.
2003.

[13] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Commu-
nications (JSAC), 21(1), Jan. 2003.

[14] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. Dis-
junction category labels. In Nordic Conference on Security
IT Systems (NordSec). Springer, Oct. 2011.

[15] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexi-
ble dynamic information flow control in Haskell. In Haskell
Symposium. ACM SIGPLAN, Sept. 2011.

[16] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and
D. Mazières. Addressing covert termination and timing
channels in concurrent information flow systems. In Inter-
national Conference on Functional Programming (ICFP).
ACM SIGPLAN, Sept. 2012.

[17] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. Flex-
ible dynamic information flow control in the presence of
exceptions. Journal of Functional Programming (JFP),
2012. Accepted/under revision.

[18] D. Stefan, P. Buiras, E. Z. Yang, A. Levy, D. Terei, A. Russo,
and D. Mazières. Eliminating cache-based timing attacks
with instruction-based scheduling. In European Symposium
on Research in Computer Security (ESORICS). Springer,
Sept. 2013.

[19] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Herman,
B. Karp, and D. Mazières. Protecting users by confining
JavaScript with COWL. In Symposium on Operating Sys-
tems Design and Implementation (OSDI). USENIX, Oct.
2014.

[20] W3C. Web application security working group char-
ter. https://w3c.github.io/webappsec/admin/

webappsec-charter-2015.html, Dec. 2014.
[21] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F.

Kaashoek. Improving integer security for systems with
kint. In Symposium on Operating Systems Design and
Implementation (OSDI). USENIX, Oct. 2012.

[22] E. Yang, D. Stefan, J. Mitchell, D. Mazières, P. Marchenko,
and B. Karp. Toward principled browser security. In
Workshop on Hot Topics in Operating Systems (HotOS).
USENIX, May 2013.

[23] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Se-
cure program partitioning. ACM Transactions on Computer
Systems (TOCS), 20(3), 2002.

5

http://trends.builtwith.com/javascript/jQuery
http://www.troyhunt.com/2014/01/searching-snapchat-data-breach-with.html
http://www.troyhunt.com/2014/01/searching-snapchat-data-breach-with.html
http://thehackernews.com/2014/09/jquery-official-website-compromised-to.html
http://thehackernews.com/2014/09/jquery-official-website-compromised-to.html
http://www.theinquirer.net/inquirer/news/2157093/github-suffers-ruby-rails-public-key-vulnerability
http://www.theinquirer.net/inquirer/news/2157093/github-suffers-ruby-rails-public-key-vulnerability
http://www.theinquirer.net/inquirer/news/2157093/github-suffers-ruby-rails-public-key-vulnerability
https://w3c.github.io/webappsec/admin/webappsec-charter-2015.html
https://w3c.github.io/webappsec/admin/webappsec-charter-2015.html

