Toward Principled Browser Security

Edward Z. Yang, Deian Stefan, John C. Mitchell, David Mazieres,
Petr Marchenko, and Brad Karp

£4]

Web security

Non requirements

Discussions on Hypertext have sometimes tackled the
problem of copyright enforcement and data security.
These are of secondary importance at CERN, where
information exchange is still more important than secrecy.

Tim Berners-Lee, 1989

The Web is the new app platform

-

.
Process 1

-

skype

. .

Process 2

keypassx

~

Filesystem

Y

3

Tab 1 : Tab 2
0
1
weather.it i bank.ch
. N BN
Cookies/HTMLS local storage

3

The Web is the new app platform

Y

|

4 i A 4 N B
Process 1 W . (Process 2 Tab 1 ; Tab 2
Page [
protection 0
skype J V L keypassx weather.it 0 bank.ch
\. [y, \. V2 RN
A Filesystem A Cookies/HTMLS local storage
A [\
Unix Access
permissions control lists

The Web is the new app platform

-

Process 1 W : (Process 2

Page
protection

~

skype V keypassx

S M s
A Filesystem A
A [\

-

I N
Tab 1 1 (Tab 2

I
[27?]
v L bank.ch)

weather.it J
_ [

Cookies/HTMLS local storage

|

Unix Access
permissions control lists

.

Today: Ad-hoc same-origin policy

Goal: Isolate content from distinct origins

> E.g., to protect authentication data for a.com
from being read by b.com

Mozilla Firefox - Vimperal

Today: Ad-hoc same-origin policy

Practice: There are exceptions to strict isolation

> E.g., can load images, stylesheets, fonts, scripts

e 7 s,
(‘..j‘.:v\ = d.COMm y b.Com
. postMessage
¥T X

from any origin

.

Today: Ad-hoc same-origin policy

Allows building complex information-sharing apps

m Part of the reason the Web is so successful!

Problems with SOP

e DOM object properties (inadvertently) leak data

> E.g., image size can be used to leak user login

if (img.width > 40){ ... } if loggedIn(user)

then '25' else

else{...}

x - Vimperator

Problems with SOP

* No protection against malicious libraries

> Script from b.com executes with privilege of a.com

R

var div = document.getElementByld('foo");
oqd div.innerHTML +=

—1 ',
/...

JS| b.com

Problems with SOP

Not strict: Naive app implementations " exploitable!

> E.g., cross-site scripting (XSS), cross-site request
forgery (CSRF), etc. are prevalent

Not flexible: Cannot easily import cross-origin data!

> E.g., cannot build secure third party mashups

Bandaids to SOP

o
app.com

> Jdea: Restrict resource evil.biz

app.com

loading to white list Y
Cross-Origin Resource Sharing (CORS)

Content Security Policy (CSP)

aws.com/trend.html

> ldea: Explicitly allow
resources to be readable
CrOSS'Origin amazon.com evil.biz

Bandaids to SOP

e +C
NA app.com
>

Content Security Policy (CSP)

Coarse grained, trust based, static "™ inflexible!

| aws.com/trend.html

Idea: Explicitly allow j\) ¥

resources to be readable &
CTOSS'Orlgln amazon.com evil.biz

A more principled approach

Information flow control

Observation: these are information flow policies!
> E.g., a.com’s data should only flow to a.com
Idea: Use IFC as browser security primitive

> Allows executing untrusted code on sensitive data

Strawman IFC policy

Origin non-interference

1. Label objects using origin as security principals

> E.g., remote hosts, browsing contexts, inter-
frame messages, user-credentials, etc.

[d.com

b.com }

v

Strawman IFC policy

Origin non-interference

2. Restrict flows to objects with same labels

> E.g., loading resources from remote hosts:

Strawman IFC policy

Origin non-interference

2. Restrict flows to objects with same labels

> E.g., loading resources from remote hosts:

Strawman IFC policy

Origin non-interference

2. Restrict flows to objects with same labels

> E.g., loading resources from remote hosts:

Strawman IFC policy

Origin non-interference

2. Restrict flows to objects with same labels

> E.g., loading resources from remote hosts:

Strawman IFC policy

Origin non-interference

2. Restrict flows to objects with same labels

> E.g., loading resources from remote hosts:

Strawman IFC policy

Origin non-interference

2. Restrict flows to objects with same labels

> E.g., loading resources from remote hosts:

{ a.com

~
d.CoOm

~

- | a.com }{ b.com }

Strawman 1FC p~

Origin non-inte»”

| a.com }{ b.com J .

Must NOT break the existing Web!

Must at least encode SOP, CSP, and CORS

Base browser IFC policy

Emulate same-origin policy

2. Restrict flows to objects with stricter labels

3. Use declassification to allow cross-origin loads

Base browser IFC policy

Emulate same-origin policy

2. Restrict flows to objects with stricter labels

3. Use declassification to allow cross-origin loads

Base browser IFC policy

Emulate same-origin policy

2. Restrict flows to objects with stricter labels

3. Use declassification to allow cross-origin loads

Base browser IFC policy

Emulate same-origin policy

2. Restrict flows to objects with stricter labels

3. Use declassification to allow cross-origin loads

Principled, yet backwards-compatible

e Base policy: origin non-interference (ONI)

> Content from distinct origins cannot communicate
e Exceptions to ONI must use declassification

> All cross-origin leaks are explicit!

e Compatible with existing browser policies

> Browser vendors can encode SOP, CSP, and CORS

Safer, yet more flexible

* Enables new apps

> Third-party mashups, untrusted code execution,
fault isolation, etc.

* Addresses extension confidentiality disaster
> Extensions see all tabs” content!

> In general: not restricted to SOP!

Safer, yet more flexible

Q: Can we allow arbitrary cross-origin requests?

> Yes! If performing the request does not leak data

Safer, yet more flexible

Q: Can we allow arbitrary cross-origin requests?

> Yes! If performing the request does not leak data

Safer, yet more flexible

Q: Can we allow arbitrary cross-origin requests?

> Yes! If performing the request does not leak data

acom I bcom 1

b com !
‘! ﬂ { } b.com
a.com .; a.com

Safer, yet more flexible

Q: Can we allow arbitrary cross-origin requests?

> Yes! If performing the request does not leak data

acom I bcom 1

i B

d.com

Safer, yet more flexible

Q: Can we allow arbitrary cross-origin requests?

> Yes! If performing the request does not leak data

(‘a.com I b.com |
‘Om "i b{CO}m

d.com

Q: How can we avoid over tainting?

> Request doesn’t taint: only inspection taints

Third party safe mashup

Goal: ensure bank statement and orders remain secret

(dmazon.com }

{ nofraud.biz J V o
[nofraud.biz | : =\ -]
e\ . H-c) (3] (&) [0 (5] ~

- dmazZon.com

nofraud.biz

nofraud.biz

k\/‘t -
bank.ch

Third party safe mashup

Goal: ensure bank statement and orders remain secret

{ nofraud.biz J

nofraud.biz

<@

Firefox - Vimperator

[nofraud.biz

()
3oy dMazon.com
A

AV
{orders: ... }

(dmazon.com)
NV

amazon.com

nofraud.biz

S
bank.

Third party safe mashup

Goal: ensure bank statement and orders remain secret

(dmazon.com)

{ nofraud.biz J V
[nofraud.biz | - \ N
— e -« 14 amazon.com .|
/7 V 4
{orders: ... } dMmazon.com
nofraud.biz g
bank.ch
V
{ statement: ... }

nofraud.biz

<@

S
bank.

Third party safe mashup

Goal: ensure bank statement and orders remain secret

(dmazon.com)

{ nofraud.biz J V
[nofraud.biz [- \ N
—/ “1 5 |& <24 amazon.com |
/7 V 4
= - {orders: ...} dmazon.com
nofraud.biz g
bank.ch
V
{ statement: ... }

nofraud.biz

<@

S
bank.

Third party safe mashup

Goal: ensure bank statement and orders remain secret

(dmazon.com)
NV

{ nofraud.biz J

[nofraud.biz [- \ N
—/ “1 5 |& <24 amazon.com |
/7 V 4
= - {orders: ...} dmazon.com
nofraud.biz g
bank.ch
V
{ statement: ... }

nofraud.biz

<@

S
bank.

Third party safe mashup

Goal: ensure bank statement and orders remain secret

(dmazon.com)
NV

{ nofraud.biz J

[nofraud.biz [- \ N
—/ ‘1 [b |ed amazon.com __
<[> L v)
- {orders: ...} dmazon.com
nofraud.biz g
bank.ch

V

{ statement: ... }

nofraud.biz

<@

S
bank.

Third party safe mashup

Goal: ensure bank statement and orders remain secret

{ nofraud.biz J

nofraud.biz

<@

[nofraud.biz

—

| ¥

(dmazon.com)

\/

dMmazon.com

v—A amazon.com

{orders: ... }

nofraud.biz

bank.ch

V
{ statement: ... }

S
bank.

Third party safe mashup

Goal: ensure bank statement and orders remain secret

{ nofraud.biz J

nofraud.biz

<@

[nofraud.biz

| ¥

nofraud.biz

(dmazon.com)

\/

dMmazon.com

AV
{orders: ... }

A amazon.com

bank.ch

Vv

{ statement: ... }

S
bank.

Extensible photo editor

Goal: allow net access, but ensure photo is not leaked!

{ extl.app.com }

[extN.app.com J

[editor.app.com}
\/

0 ext1.app.com f

editor.app.comr ~— ISkhoc
\

#no-net

/

summary

* IFC: Principled framework for browser security
* Subsumes existing browser security policies

> Makes cross-origin leaks explicit "™ forces
developers to “explain” violations of ONI

* Flexible approach to building safer Web apps
> Allows safe cross-origin communication

> Protects sensitive data from untrusted code

Who sets the policy?

* Browser-vendors specity base policies
> Same as SOP, but with stricter options

e Every origin has absolute control over its data
> Origin a.com can decide to declassity responses

> Origin a.com can decide to override base
policies and be more strict: no declassification

> QOrigin a.com cannot declassify b.com’s data!

Related work

e FlowFox

> IFC for JavaScript only

> Forces ONI on all pages: breaks pages

> No support for declassification (e.g., no 3rd party mashups)
* BFlow

> IFC for JavaScript only

> Requires server-side to specity protection zones

> Untrusted frame cannot contain tags from different origins (again, no

3rd party mashups)

Can this be real?

Layout engines are being modified on daily

> Gecko, Servo, WebKit, Blink, etc.
Servo is written in Rust, a high level language

> Potential platform for enforcing IFC

Ongoing work on Mozilla’s Gecko

> Implementing IFC for JS, addressing DOM, chrome
extensions, etc.

Ongoing work on Google’s Chrome

> Enforcing confidentiality despite malicious extensions

