
Building Secure Systems with LIO (Demo)

Deian Stefan and David Maziéres

Stanford University

{deian,⊥}@cs.stanford.edu

Abstract

LIO is an information flow control (IFC) system. In this

demo, we give an overview of the Haskell LIO library and

show how LIO can be used to build secure systems. In

particular, we show how to build secure web applications

with high-level data-security policies and describe how LIO

automatically enforces these policies.

Categories and Subject Descriptors D.2.0 [Software En-

gineering]: Protection Mechanisms

General Terms Security, Languages

Keywords Security, LIO, DCLabels, Hails, IFC, Web

1. Introduction

Building software systems is a challenging, error-prone

task. As the number of recent vulnerabilities in SSL li-

braries and the severity of bugs—where a single line change

can introduce a vulnerability 1—show, building secure sys-

tems is harder still. Unfortunately, as we have learned over

again (e.g., recently by the popular bug in GitHub’s form-

submission code 2) such security-related bugs are inevitable

even if developers are careful and use safe, high-level lan-

guages. Indeed, this is because only a small fraction of pro-

grammers are equipped to write secure code. How then can

we expect the average developer to build secure systems?

One approach to bridging this security gap is to use

information-flow control (IFC) [2]. IFC tracks and controls

the flow of information through a system, according to a

security policy. By ensuring that the policy associated with

a piece data is always enforced, most code in a IFC sys-

1 https://www.imperialviolet.org/2014/02/22/applebug.html
2 https://github.com/blog/1068-public-key-security-

vulnerability-and-mitigation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PLAS ’14, July 29, 2014, Uppsala, Sweden.
Copyright c© 2014 ACM 978-1-4503-2862-3/14/07. . . $15.00.

tem can be considered untrustworthy. Indeed, a typical IFC

application is composed of two parts: a small trustworthy

component, where the security policy is specified, and the

rest of the application logic, which can be untrusted.

Consider, for instance, a conference review system where

reviewers are expected to be anonymous and users in conflict

with a paper are prohibited from reading specific committee

comments. Here, the site administrator is trusted to specify

such policies on data. However, the rest of the application,

which may fetch data from the network, read reviews, etc.,

can be built by untrustworthy developers (even a conflicting

reviewer)—the underlying runtime system ensures that the

confidentiality and integrity of a user’s reviews will be pre-

served. In an IFC system, bugs that appear in this part of the

application are simply that—bugs—not vulnerabilities.

In this demo, we describe one such IFC system, called

LIO [3, 4]. LIO is implemented as a Haskell library, and

leverages Haskell’s monadic approach to encoding side-

effects as a way to control how (and if) information en-

ters/exists the system. Specifically, LIO provides an LIO

monad in which all side-effects are mediated according to

IFC. Hence, an LIO computation can perform arbitrary, com-

plex effects, as long as it does not violate the confidentiality

or integrity policy on data.

2. Overview

Like other IFC systems, LIO tracks and controls the prop-

agation of information by associating a label with every

piece of data. A label encodes a security policy as a pair of

positive boolean formulas over principals specifying who

may read or write data. For example, a review labeled

"alice" \/ "bob" %% "bob" specifies that the review

can be read by user "alice" or "bob", but may only be

modified by "bob". Indeed, such a label may be associ-

ated with "bob"’s review, for a paper that both "bob" and

"alice" are reviewing.

Our library associates labels with various language con-

structs, including references, channels, and files. Moreover,

we provide a type, Labeled, which can be used to explicitly

label individual Haskell terms; since LIO is a library, terms

that are not explicitly Labeled are associated with the label

of the current computation (described below). We use such

Labeled values to protect reviews.

https://www.imperialviolet.org/2014/02/22/applebug.html
https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation
https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation

Labels on objects are partially ordered according to a can

flow to relation ⊑: for any labels LA and LB, if LA ⊑ LB

then the policy encoded by LA is upheld by that of LB . For

example, data labeledLA = "alice" \/ "bob" %% "bob"

can be written to a file labeled LB = "bob" %% "bob"

since LB preserves the secrecy of LA. In fact, LB is more

restrictive, as only "bob"—not both "alice" and "bob"—

can read the file. Conversely, LB 6⊑ LA, and thus data la-

beled LB cannot be written to an object labeled LA.

It is precisely this relation that LIO uses to restrict the ef-

fects of computations executing in the LIO monad. The LIO

monad encapsulates a computation that executes in Haskell’s

“default” IO monad, associating with it a label—the current

label—that tracks the sensitivity of all the data that the com-

putation has observed. To illustrate the role of the current

label, consider the code below that reads "bob"’s private re-

view and tries to leak it into "alice"’s reference.

-- Current label: public == True %% True

bobReview <- readFile "/reviews/bob/5.txt"

-- Current label: "bob" %% True

writeLIORef aliceRef bobReview

-- Fail: "bob" %% True 6⊑ "alice" %% "alice"

Here, the current label is first raised by readFile, reflexing

that "bob"’s sensitive information was incorporated into

the context. Importantly, however, this label is also used to

subsequently restrict writes; in this case, the writeLIORef

action throws an exception, since the write is unsafe.

In general, IFC enforcement in LIO follows this approach

of exposing functions (e.g., writeLIORef), which inspect

the current label and the label of the object they are about

to read/write as to uphold the can flow to relation. We solely

rely on Haskell’s monad support as a way to define a sub-

language for which we can enforce IFC. And, by ensuring

that untrusted code is written in this sublanguage, i.e., it can-

not execute arbitrary IO actions, we can incorporate arbitrary

untrusted code to compute on sensitive data. For example, as

we will show, our conference review system can incorporate

code provided by users of the system without fear of leaking

reviews or reviewer identities, all while allowing the code to

interact with the external world (e.g., using the HTTP client).

3. Automatic data labeling

LIO guarantees that code executing in the LIO monad cannot

violate the confidentiality and integrity restrictions imposed

by labels. Thus the untrusted parts of an application can be

implement almost carelessly—LIO ensures that bugs do not

escalate to vulnerabilities. Unfortunately, the trusted part of

an application, that of assigning appropriate labels to data,

is still a challenge. And, while using a simple label model

such as DCLabels can address certain pitfalls, a non-expert

approach to setting labels is desirable.

In the context of web applications, we present a declara-

tive policy language, similar to that used in Hails [1], which

makes this task more tractable. Specifically, since data mod-

els for web applications are typically specified in a declara-

tive form, and, in many applications, the authoritative source

for who should access the data resides in the data itself, our

policy language leverages and extends these ideas directly.

In our system, labels are specified as read and write clauses

alongside the data model, and in terms of it.

Consider the definition of the Review data type used in

our conference review system:

data Review = Review { _id :: ID

, paper :: ID

, owner :: User, ... }

To associate a label with a review we can leverage the in-

formation present in the record type. Specifically, we can

specify that the only user allowed to modify such a review is

the owner of the review, and that the only users allowed to

read such a review are the owner and other reviewers of the

same paper. The latter declaration requires that we perform

a lookup, using the paper id of the current review, to find the

other reviewers. Below is the policy code specifying this.

policy :: HailsDB m => Review -> m DCLabel

policy rev = do

let me = owner rev

reviewers <- findReviewersOf $ paper rev

makePolicy $ do readers ==> me \/ reviewers

writers ==> me

This function is self-explanatory; we only remark that the

function takes a Review and returns a DCLabel in a monad

m that allows code to perform database actions (in this case

the findReviewersOf action), a change from the original

pure policies of Hails.

While some care must be taken to ensure that the speci-

fied policy is correct, the extend of understanding a security

policy in such LIO/Hails applications is limited to such func-

tions. It is these policy functions that our database system

uses to label reviews when a fetch, insert, or update is per-

formed. Indeed, as we will see in the demo, the core of the

conference review system does not manipulate labels; high-

level APIs leveraging this automatic labeling approach make

most of the IFC details transparent.

References
[1] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières,

J. Mitchell, and A. Russo. Hails: Protecting data privacy in

untrusted web applications. In Proc. of the 10th OSDI, pages

47–60. USENIX, 2012.

[2] A. Sabelfeld and A. C. Myers. Language-based information-

flow security. IEEE JSAC, 21(1):5–19, 2003.

[3] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexi-

ble dynamic information flow control in Haskell. In Haskell

Symposium, pages 95–106. ACM SIGPLAN, 2011.

[4] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and

D. Mazières. Addressing covert termination and timing chan-

nels in concurrent information flow systems. In Proc. of the

17th ICFP, pages 201–214. ACM SIGPLAN, 2012.

	Introduction
	Overview
	Automatic data labeling

