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Motivation: IFC Web plattorms

Challenge: can we ensure
apps don’t leak data?

Current approach: DAC

> Restrict what data app
can access

@ Cannot guarantee what
app does with data
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Motivation: IFC Web plattorms

Solution: Information flow

control Web plattorm: Hails |:

Hails IFC enforcement:

> Restrict what data app
can access with clearance

> Restrict who app can
communicate with
depending on data it reads
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Hails Web-plattorm framework

e Hails is built atop the LIO ka“fmﬁ

Www.gitstar.com

> Concurrent, dynamic,

language-level IFC system Hails framework
e Hails apps are LIO programs |t LIOIFCsystem |~

GHC Haskell Runtime

> Access database, filesystem,
network, etc. according to IFC  =— w 4




Challenge: covert channels

e Malicious apps will try to leak data through any
means, including covert channels

> E.g., termination, internal timing, and external
timing channels

e LIO addresses these channels at the language level

Theorem: Termination-sensitive non-interference

> Confidentiality and integrity of data is preserved
regardless of the timing/termination behavior of threads
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Reality check

Cache Rules Everything Around Me

e Not modeling hardware features ™ theorem
only holds for ideal execution machine

e Can usually exploit system by leveraging
features not captured by model

> E.g., finite memory, disk-head location, CPU-
bus, translation look-aside buffer, L1-L.3 caches

Focus: hardware-level caches
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Cache-based attack

e Reintroduction of the internal timing attack

> Threads race to a common resource (output)

> (Can be used to leak secrets internally to app
e Trivial L1-cache attack leaks at 0.75 bits/s

> Applicable to Hails” gitstar.com platform ™ leak
list of collaborators on a private project in < 1 min



Outline

Motivation: Need for Hails IFC Web platforms
Cache-based attack on IFC platforms
Existing countermeasures

New countermeasure: instruction-based scheduling

> Benefits and limitations



Countermeasures

1. Flush the cache on every context switch
5 Every thread quantum starts with fresh cache

@ Flushing the cache is prohibitively expensive
for Hails user-level threads

< Does not address resources such as CPU bus
contention



Countermeasures

2. Use CPU no-fill cache mode

5 Scheduling secret threads bypasses cache,
cannot affect public threads

W Secret threads never use the cache
' Does not scale beyond 2 security levels

2 Does not address resources such as the TLB and
CPU bus contention



Countermeasures

3. Partition the cache

5 Threads at different security level effectively
have a private (part of the) cache

@ Does not scale to platform with hundreds of
users that come and go (current OS limit: 16)

+ Does not address resources such as the TLB and
CPU bus contention



New countermeasure

Instruction-based scheduling

Observation: The scheduling of a public thread
can be affected by the timing behavior of a secret
thread through the hardware cache

Solution: Schedule context switches based on
number of retired instructions!



Cache-based-attack

~N

Y4

(

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
highArray := fillArray ([l
\_ Y,
Thread A Thread B
N e
readArray(lowArray) ! for 1..3 do skip
V), N e e e e e e e
)
output := A OUtpUt

\_




Cache-based-attack

Cache
~ ™
}owArray P = fillArray( )
Run 1 L e i reeee
\- y,
Thread A Thread B
readArray(lowArray) j E¢ for 1..3 do skip
output T
1




Cache-based-attack

Cache
~ ™
}owArray P = fillArray( )
Run 1 L e i reeee
\- y,
Thread A Thread B
readArray(lowArray) j E¢ for 1..3 do skip
output T
1




Cache-based-attack

Cache
~ ™
}owArray P = fillArray( ) )
Run 1 L e i reeee
\- y,
Thread A Thread B
readArray(lowArray) j E¢ for 1..3 do skip
output T
1 ¢ %




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 1 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
output
C )

1: A
[output = Aj 7-




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 1 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
output
C )

1: A
[output = Aj 7-




Cache-based-attack

Cache
~ R
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 1 highArray := fillArray ([l
\ y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
output
C )

1: A
[output = Aj 7-

YR
\/ \/




Cache-based-attack

Cache
~ R
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 1 highArray := fillArray ([l
\ y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
output
C )

1: B A
[output = Aj 7-

output := B

7 N\
U




lowArray := fillArray(] ]

if friend == “Julian Assange”
Run 2 highArray := fillArray ([l

Thread A

[ readArray(lowArray) j

1: B A
[output = AJ 7-

------------------------------------------------

------------------------------------------------




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
output

1: B A
[output = Aj 7-




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
output

[ 1: B A
output := Aj >-
' C )




Cache-based-attack

Cache
4 A
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j for 1..3 do skip
output
1: B A
[output = Aj >- A
' C )

[output = AJ




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j for 1..3 do skip
output
1: B A
[output = Aj >- A
' C )

[output = AJ
C )




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j for 1..3 do skip
output
1: B A
[output = Aj >- A
' C )

[output = AJ

Y
\/ \/




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j for 1..3 do skip
output
1: B A
[output = Aj >- B A
' C )

[output = AJ

ALY,

C
C
[ output := B




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
output
1: B A
[output = Aj >- B A
' C )

c=xnl

ALY,

[ No longer encodes @ /

output := B




Take away

e Secret threads can affect the duration of
instructions in public threads

> Context switching according to amount of
elapsed time " can introduce public races!

e Secret threads cannot affect the number of (or
which) instructions a public thread retires

> Context switching according to number of
instructions retired " no race!



Implementation

Strawman: Instruction =language-level atom
> Simple to prototype, no runtime modification
> Incurs at least 10x slowdown + termination attack

Approach: Measure number of retired instructions

> Use hardware performance units (PMUSs),
readily available on modern Intel and AMD CPUs



Implementation

Replaced GHC’s time-based scheduler

> Signal from PMU is used to context switch
thread (unless the thread is not in a safe point)

> To ensure safe points are reached often,
we added sate-points on every function entry

> Reset counters when thread yields to do IO



Pertormance impact
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Conclusions

Instruction-based scheduling

5 Eliminates hardware-based internal timing attacks
> L1-L3 caches, TLB, CPU bus contention, etc.

5 Scales to arbitrary number of security levels

5 Almost no impact on performance

 Does not directly scale to multiple CPU cores

> Not a big concern in network-balanced web apps



