Eliminating cache-based timing attacks
with instruction-based scheduling

Deian Stefan, Pablo Buiras, Edward Z. Yang, Amit Levy,
David Terei, Alejandro Russo, and David Mazieres

3 )
% STANFORD  CHALMERS



Motivation: IFC Web platforms
github

Platforms allow 3rd-party developers to build
apps that use our personal data

> Extend the websites beyond original intent!



Motivation: IFC Web platforms

\/ Symantec. Connect

n COMMUNITY: Security §J Blogs §J  Security Response

Facebook Applications Accidentally Leaking Access to Third
Parties - Updated

Platforms allow 3rd-party developers to build

apps that use our personal data
"and SomelimeS Leak

> Extend the websites beyond original intent!

Pn Path Uploads Your Entire iPhone Contact List
-4 By Default The GitHub Blog

E
Public Key Security Vulnerability :



Motivation: IFC Web plattorms

Challenge: can we ensure
apps don’t leak data?

Current approach: DAC

> Restrict what data app
can access

@ Cannot guarantee what
app does with data

r

\

address

\_

book

J

-

\_

photo
editor

\

J

Platform

£

v




Motivation: IFC Web platforms

Challenge: can we ensure N N
address photo

apps don’t leak data?

book editor

\_ /U J
I B B B I I = = =N =

Current approach: DAC

Platform 51

> Restrict what data app
can access

@ Cannot guarantee what
app does with data



Motivation: IFC Web plattorms

Challenge: can we ensure
apps don’t leak data?

Current approach: DAC

> Restrict what data app
can access

@ Cannot guarantee what
app does with data

r

\

address

\_

book

J

-

\_

photo
editor

\

J

Platform

£

v




Motivation: IFC Web plattorms

Challenge: can we ensure
apps don’t leak data?

Current approach: DAC

> Restrict what data app
can access

@ Cannot guarantee what
app does with data

r

address
book

N\

/O

:l.

photo
editor

\

J

Platform

£

v




Motivation: IFC Web platforms

Challenge: can we ensure
apps don’t leak data?

Current approach: DAC

> Restrict what data app
can access

@ Cannot guarantee what
app does with data

r

\

address
book

J

-

\_

photo
editor

\

J

:t

Platform

£

v

l

Access the following required information:

4 All your contacts

-~ »| Post on your behalf

N




Motivation: IFC Web platforms

Challenge: can we ensure
apps don’t leak data?

Current approach: DAC

> Restrict what data app
can access

@ Cannot guarantee what
app does with data

r N\ A
photo cee
L e d itO r
J J
===
Platform 5}

ntacts

-~ »| Post on your behalf

Access the following required information:

4 All your co

N




Motivation: IFC Web platforms

" Name: Jullian Assange
=¥ Nick: B

a2 Nick: Big |

\‘” Occupation: make U.S. gov unhappy

Challenge: can we ensure

(" N
apPps don’t leak data? Egict)g? oo
/. J
Current approach: DAC iﬁ" s
Platform g}
> Restrict what data app 1 \

Access the following required information:
Cal aCCesS

4 All your contacts

-~ 5| Post on your behalf
= I 1pp N 1 \

@ Cannot guarantee what
app does with data




Challenge: can we ensure
apps don’t leak data?

Current approach: DAC

> Restrict what data app
can access

@ Cannot guarantee what
app does with data

\\' Name: Jullian Assange »
= ¢ Nick: Big) i
) 4 Occupation: make U.S. gov unhapp/ N
o C, =—c L
Y,
4 N

add photo
. oo o
o =H editor
t l J y
Platform v}
e l N

\

Access the following required information:

4 All your contacts

[n | Post on your behalf
— T Ipp may post you







Motivation: IFC Web plattorms

Solution: Information flow

control Web plattorm: Hails |:

Hails IFC enforcement:

> Restrict what data app
can access with clearance

> Restrict who app can
communicate with
depending on data it reads

y address,; { photo
' book E: editor E

Hails platform




Motivation: IFC Web plattorms

Solution: Information flow
control Web platform: Hails |{  —~ SR -

y address,; § photo

i book Ei editor

Hails IFC enforcement: H ---------

Hails platform ——

> Restrict what data app
can access with clearance

LIFC: Can app read sensitive J

» Restrict who app can data from the database?

communicate with
depending on data it reads




Motivation: IFC Web plattorms

Solution: Information flow

control Web plattform: Hails |
photo |,

editor

Hails IFC enforcement:

> Restrict what data app

can access with clearance

IFC: Can app read sensitive
data from the database?

> Restrict who app can
communicate with
depending on data it reads




Motivation: IEFC Web platforms

' Name: Jullian Assange
\f Nick: Big |
N 4 Occupation: make U.S. gov unhappy

Solution: Information flow \

control Web plattorm: Hails |:

Hails IFC enforcement: HT ‘esssss '

> Restrict what data app

can access with clearance

LIFC: Can app read sensitive J

» Restrict who app can data from the database?

communicate with
depending on data it reads




Motivation: IEFC Web platforms

" Name: Jullian Assange
% Nick: Big |
3 Occupation: make U.S. gov unhappy
Solution: Information flow \
control Web platform: Hails | [1:¢7 }
y addrsyl; ¢ photo | . oo
v bl=1]li + editor i
. . F G J
Hails IFC enforcement: H () |
H hils platform  ——
> Restrict what data app —
] IFC: Can app write
Caln acCcess with clearance sensitive data to nsa.gov?}
IFC: Can app read sensitive
» Restrict who app can data from the database?

communicate with
depending on data it reads



Motivation: IEFC Web platforms

" Name: Jullian Assange
% Nick: Big |
3 Occupation: make U.S. gov unhappy
Solution: Information flow \
control Web platform: Hails | 117 }
y addrsyl; ¢ photo | . oo
v bl=1]li + editor i
. . F G J
Hails IFC enforcement: H () |
H hils platform  ——
> Restrict what data app —
] IFC: Can app write
Caln acCcess with clearance sensitive data to nsa.gov?}
IFC: Can app read sensitive
» Restrict who app can data from the database?

communicate with
depending on data it reads



Hails Web-plattorm framework

e Hails is built atop the LIO ka“fmﬁ

Www.gitstar.com

> Concurrent, dynamic,

language-level IFC system Hails framework
e Hails apps are LIO programs |t LIOIFCsystem |~

GHC Haskell Runtime

> Access database, filesystem,
network, etc. according to IFC  =— w 4




Challenge: covert channels

e Malicious apps will try to leak data through any
means, including covert channels

> E.g., termination, internal timing, and external
timing channels

e LIO addresses these channels at the language level

Theorem: Termination-sensitive non-interference

> Confidentiality and integrity of data is preserved
regardless of the timing/termination behavior of threads




Challenge: covert channels

e Malicious apps will try to leak data through any
means, including covert channels

> E.g., termination, internal timing, and external
timing channels

e [.]JO addresses these c

Theorem: Terminatio

nels at the language level

itive non-interference

> Confidentiality and in
reqardless of the timi

f data is preserved
ermination behavior of threads




Reality check

Cache Rules Everything Around Me

e Not modeling hardware features ™ theorem
only holds for ideal execution machine

e Can usually exploit system by leveraging
features not captured by model

> E.g., finite memory, disk-head location, CPU-
bus, translation look-aside buffer, L1-L.3 caches

Focus: hardware-level caches



Cache-based attack

lowArray := fillArray(] ]
if friend == “Julian Assange”
highArray := fillArray ()

Thread A
4 ™
readArray(lowArray)

\_ ),
~ )
output := A
\ y,

Cache

Thread B

------------------------------------------------

------------------------------------------------




Cache-based attack

4 )

Cache

lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 1 highArray := fillArray ()

Thread A Thread B

------------------------------------------------

readArray(lowArray) j E or 1..3 do skip

------------------------------------------------




Cache-based attack

4 )

Cache

lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 1 highArray := fillArray ()

Thread A Thread B

------------------------------------------------

readArray(lowArray) j E or 1..3 do skip

------------------------------------------------




Cache-based attack

Cache
- ™
}owArray i = fillAfraY( )
Run 1| e

S y,
Thread A Thread B
[ readArray(lowArray) j | for 1..3 do skip

output )
1 A

[output = Aj




Cache-based attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 1 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j for 1..3 do skip
output C )
[output = Aj 1: A
2:




Cache-based attack

[

lowArray := fillArray(] ]

Cache

if friend == “Julian Assange”
Run 1 highArray := fillArray ([l
\
Thread A Thread B

[ readArray(lowArray) j for 3 do skip i
OUtpUt C )

[output = Aj 1: A

2.

C )
C )




Cache-based attack

(

lowArray := fillArray(] ]

Cache

Thread B

------------------------------------------------

------------------------------------------------

Run 1 igharray i filiArrey (D
\_
Thread A
[ readArray(lowArray) j
output C
1 B A

[output = Aj

NN

output

= B

U




Cache-based attack

Run 2

Thread A

f

lowArray := fillArray(] ]
if friend == “Julian Assange”
highArray := fillArray ()

[ readArray(lowArray)

------------------------------------------------

[output = AJ

------------------------------------------------




Cache-based attack

Cache
4 A
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
OUtpUt (
[ _ j 1: B A C
output := A .
2: B (
[ output




Cache-based attack

Cache
4 A
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
OUtpUt (
[ _ j 1: B A C
output := A
2: A B (
[ output

| output := A l




Run 2

Cache-based attack

[

lowArray := fillArray(] ]
if friend == “Julian Assange”
highArray := fillArray ()

Thread A

[ readArray(lowArray)

[output = Aj

output := A

Cache

Thread B




Cache-based attack

e Reintroduction of the internal timing attack

> Threads race to a common resource (output)

> (Can be used to leak secrets internally to app
e Trivial L1-cache attack leaks at 0.75 bits/s

> Applicable to Hails” gitstar.com platform ™ leak
list of collaborators on a private project in < 1 min



Outline

Motivation: Need for Hails IFC Web platforms
Cache-based attack on IFC platforms
Existing countermeasures

New countermeasure: instruction-based scheduling

> Benefits and limitations



Countermeasures

1. Flush the cache on every context switch
5 Every thread quantum starts with fresh cache

@ Flushing the cache is prohibitively expensive
for Hails user-level threads

< Does not address resources such as CPU bus
contention



Countermeasures

2. Use CPU no-fill cache mode

5 Scheduling secret threads bypasses cache,
cannot affect public threads

W Secret threads never use the cache
' Does not scale beyond 2 security levels

2 Does not address resources such as the TLB and
CPU bus contention



Countermeasures

3. Partition the cache

5 Threads at different security level effectively
have a private (part of the) cache

@ Does not scale to platform with hundreds of
users that come and go (current OS limit: 16)

+ Does not address resources such as the TLB and
CPU bus contention



New countermeasure

Instruction-based scheduling

Observation: The scheduling of a public thread
can be affected by the timing behavior of a secret
thread through the hardware cache

Solution: Schedule context switches based on
number of retired instructions!



Cache-based-attack

~N

Y4

(

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
highArray := fillArray ([l
\_ Y,
Thread A Thread B
N e
readArray(lowArray) ! for 1..3 do skip
V), N e e e e e e e
)
output := A OUtpUt

\_




Cache-based-attack

Cache
~ ™
}owArray P = fillArray( )
Run 1 L e i reeee
\- y,
Thread A Thread B
readArray(lowArray) j E¢ for 1..3 do skip
output T
1




Cache-based-attack

Cache
~ ™
}owArray P = fillArray( )
Run 1 L e i reeee
\- y,
Thread A Thread B
readArray(lowArray) j E¢ for 1..3 do skip
output T
1




Cache-based-attack

Cache
~ ™
}owArray P = fillArray( ) )
Run 1 L e i reeee
\- y,
Thread A Thread B
readArray(lowArray) j E¢ for 1..3 do skip
output T
1 ¢ %




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 1 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
output
C )

1: A
[output = Aj 7-




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 1 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
output
C )

1: A
[output = Aj 7-




Cache-based-attack

Cache
~ R
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 1 highArray := fillArray ([l
\ y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
output
C )

1: A
[output = Aj 7-

YR
\/ \/




Cache-based-attack

Cache
~ R
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 1 highArray := fillArray ([l
\ y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
output
C )

1: B A
[output = Aj 7-

output := B

7 N\
U




lowArray := fillArray(] ]

if friend == “Julian Assange”
Run 2 highArray := fillArray ([l

Thread A

[ readArray(lowArray) j

1: B A
[output = AJ 7-

------------------------------------------------

------------------------------------------------




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
output

1: B A
[output = Aj 7-




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
output

[ 1: B A
output := Aj >-
' C )




Cache-based-attack

Cache
4 A
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j for 1..3 do skip
output
1: B A
[output = Aj >- A
' C )

[output = AJ




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j for 1..3 do skip
output
1: B A
[output = Aj >- A
' C )

[output = AJ
C )




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j for 1..3 do skip
output
1: B A
[output = Aj >- A
' C )

[output = AJ

Y
\/ \/




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j for 1..3 do skip
output
1: B A
[output = Aj >- B A
' C )

[output = AJ

ALY,

C
C
[ output := B




Cache-based-attack

Cache
4 N
lowArray := fillArray(] ]
if friend == “Julian Assange”
Run 2 highArray := fillArray ([l
\_ Y,
Thread A Thread B
[ readArray(lowArray) j E for 1..3 do skip
output
1: B A
[output = Aj >- B A
' C )

c=xnl

ALY,

[ No longer encodes @ /

output := B




Take away

e Secret threads can affect the duration of
instructions in public threads

> Context switching according to amount of
elapsed time " can introduce public races!

e Secret threads cannot affect the number of (or
which) instructions a public thread retires

> Context switching according to number of
instructions retired " no race!



Implementation

Strawman: Instruction =language-level atom
> Simple to prototype, no runtime modification
> Incurs at least 10x slowdown + termination attack

Approach: Measure number of retired instructions

> Use hardware performance units (PMUSs),
readily available on modern Intel and AMD CPUs



Implementation

Replaced GHC’s time-based scheduler

> Signal from PMU is used to context switch
thread (unless the thread is not in a safe point)

> To ensure safe points are reached often,
we added sate-points on every function entry

> Reset counters when thread yields to do IO



Pertormance impact

0 Normal scheduler
B Instruction—-based scheduler

symalg
fluid
reptile

g9

bspt

rsa

fem
parser
gamteb
maillist
infer

hpg

anna
compress
compress2
fulsom
cacheprof
hidden
SCS

Hﬂnﬂnnnnnﬂﬂ

Iw“"

|
o Runtime in seconds

o

0.3 —
0.4 —
0.5 —

0.0
0.1
0.2 —

Disclaimer: Need code that is used in the find an instruction
budget that leads to context switches at roughly 10ms intervals



Pertormance impact

0 Normal scheduler
B Instruction—-based scheduler

<[ < 1% slowdown j

symalg
fluid
reptile

g9

bspt

rsa

fem
parser
gamteb
maillist
infer

hpg

anna
compress
compress2
fulsom
cacheprof
hidden
SCS

Hﬂnﬂnnnnnﬂﬂ

|||II

| | |
- < 0 © Runtime in seconds
o o o o

0.0

A A
o o

Disclaimer: Need code that is used in the find an instruction
budget that leads to context switches at roughly 10ms intervals



Conclusions

Instruction-based scheduling

5 Eliminates hardware-based internal timing attacks
> L1-L3 caches, TLB, CPU bus contention, etc.

5 Scales to arbitrary number of security levels

5 Almost no impact on performance

 Does not directly scale to multiple CPU cores

> Not a big concern in network-balanced web apps



