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Hails Web-platform framework

• Hails is built atop the LIO
➤ Concurrent, dynamic, 

language-level IFC system

• Hails apps are LIO programs
➤ Access database, filesystem, 

network, etc. according to IFC
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LIO IFC system

Hails framework
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• Malicious apps will try to leak data through any 
means, including covert channels
➤ E.g., termination, internal timing, and external 

timing channels

• LIO addresses these channels at the language level

Challenge: covert channels

Theorem: Termination-sensitive non-interference
➤ Confidentiality and integrity of data is preserved 

regardless of the timing/termination behavior of threads
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Reality check

• Not modeling hardware features ➠ theorem 
only holds for ideal execution machine

• Can usually exploit system by leveraging 
features not captured by model
➤ E.g., finite memory, disk-head location, CPU-

bus, translation look-aside buffer, L1-L3 caches

Cache Rules Everything Around Me

Focus: hardware-level caches
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Cache-based attack

• Reintroduction of the internal timing attack
➤ Threads race to a common resource (output)

➤ Can be used to leak secrets internally to app

• Trivial L1-cache attack leaks at 0.75 bits/s
➤ Applicable to Hails’ gitstar.com platform ➠ leak 

list of collaborators on a private project in < 1 min



Outline

• Motivation: Need for Hails IFC Web platforms

• Cache-based attack on IFC platforms

• Existing countermeasures

• New countermeasure: instruction-based scheduling
➤ Benefits and limitations
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➤ Does not address resources such as CPU bus 
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Countermeasures

3. Partition the cache
➤ Threads at different security level effectively 

have a private (part of the) cache
➤ Does not scale to platform with hundreds of 

users that come and go (current OS limit: 16)
➤ Does not address resources such as the TLB and 

CPU bus contention



New countermeasure

Observation: The scheduling of a public thread 
can be affected by the timing behavior of a secret 
thread through the hardware cache

Solution: Schedule context switches based on 
number of retired instructions! 

Instruction-based scheduling



lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B
for 1..3 do skip

output

1:
2:

output := A

output := B

CacheCache-based attack



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

1:
2:

Run 1

for 1..3 do skip



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

1:
2:

Run 1

for 1..3 do skip



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

1:
2:

Run 1

for 1..3 do skip



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

A1:
2:

Run 1

for 1..3 do skip



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

A1:
2:

Run 1

for 1..3 do skip



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

A1:
2:

Run 1

for 1..3 do skip



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

AB1:
2:

Run 1

for 1..3 do skip

output := B



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

AB1:
2:

Run 2

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

AB1:
2:

Run 2

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

AB1:
2:

Run 2

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

AB

A

1:
2:

Run 2

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

AB

A

1:
2:

Run 2

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

AB

A

1:
2:

Run 2

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

AB

AB

1:
2:

Run 2

for 1..3 do skip

output := B

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

AB

AB

1:
2:

Run 2

for 1..3 do skip

output := BNo longer encodes         /      . 

output := A



Take away

• Secret threads can affect the duration of 
instructions in public threads
➤ Context switching according to amount of 

elapsed time ➠ can introduce public races!

• Secret threads cannot affect the number of (or 
which) instructions a public thread retires
➤ Context switching according to number of 

instructions retired ➠ no race!



Implementation

Strawman: Instruction≣language-level atom
➤ Simple to prototype, no runtime modification
➤ Incurs at least 10x slowdown + termination attack

Approach: Measure number of retired instructions

➤ Use hardware performance units (PMUs), 
readily available on modern Intel and AMD CPUs



Implementation

Replaced GHC’s time-based scheduler
➤ Signal from PMU is used to context switch 

thread (unless the thread is not in a safe point)
➤ To ensure safe points are reached often,

we added safe-points on every function entry
➤ Reset counters when thread yields to do IO



Performance impact

Disclaimer: Need code that is used in the find an instruction 
budget that leads to context switches at roughly 10ms intervals
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< 1% slowdown



Conclusions

➤ Eliminates hardware-based internal timing attacks
➤ L1-L3 caches, TLB, CPU bus contention, etc.

➤ Scales to arbitrary number of security levels
➤ Almost no impact on performance
➤ Does not directly scale to multiple CPU cores

➤ Not a big concern in network-balanced web apps

Instruction-based scheduling


