
Eliminating cache-based timing attacks 
with instruction-based scheduling

Deian Stefan, Pablo Buiras, Edward Z. Yang, Amit Levy,
 David Terei, Alejandro Russo, and David Mazières



Platforms allow 3rd-party developers to build 
apps that use our personal data
➤ Extend the websites beyond original intent!

Motivation: IFC Web platforms



Platforms allow 3rd-party developers to build 
apps that use our personal data
➤ Extend the websites beyond original intent!

Motivation: IFC Web platforms

^and sometimes leak



Motivation: IFC Web platforms

Challenge: can we ensure 
apps don’t leak data?

Current approach: DAC
➤ Restrict what data app 

can access

 Cannot guarantee what 
app does with data

address
book

Platform

photo
editor
...



Motivation: IFC Web platforms

Challenge: can we ensure 
apps don’t leak data?

Current approach: DAC
➤ Restrict what data app 

can access

 Cannot guarantee what 
app does with data

address
book

Platform

photo
editor
...

✗



Motivation: IFC Web platforms

Challenge: can we ensure 
apps don’t leak data?

Current approach: DAC
➤ Restrict what data app 

can access

 Cannot guarantee what 
app does with data

address
book

Platform

photo
editor
...



Motivation: IFC Web platforms

Challenge: can we ensure 
apps don’t leak data?

Current approach: DAC
➤ Restrict what data app 

can access

 Cannot guarantee what 
app does with data

address
book

Platform

photo
editor
...



Motivation: IFC Web platforms

Challenge: can we ensure 
apps don’t leak data?

Current approach: DAC
➤ Restrict what data app 

can access

 Cannot guarantee what 
app does with data

address
book

Platform

photo
editor
...

✦ All your contacts



Motivation: IFC Web platforms

Challenge: can we ensure 
apps don’t leak data?

Current approach: DAC
➤ Restrict what data app 

can access

 Cannot guarantee what 
app does with data

address
book

Platform

photo
editor
...

         Name: Joe Smith
         Nick: Small J
         Occupation:  N/A

✦ All your contacts



Motivation: IFC Web platforms

Challenge: can we ensure 
apps don’t leak data?

Current approach: DAC
➤ Restrict what data app 

can access

 Cannot guarantee what 
app does with data

address
book

Platform

photo
editor
...

         Name: Joe Smith
         Nick: Small J
         Occupation:  N/A

Name: Jullian Assange
Nick: Big J
Occupation: make U.S. gov unhappy

✦ All your contacts



Motivation: IFC Web platforms

Challenge: can we ensure 
apps don’t leak data?

Current approach: DAC
➤ Restrict what data app 

can access

 Cannot guarantee what 
app does with data

address
book

Platform

photo
editor
...

         Name: Joe Smith
         Nick: Small J
         Occupation:  N/A

Name: Jullian Assange
Nick: Big J
Occupation: make U.S. gov unhappy

✦ All your contacts





Hails platform

Motivation: IFC Web platforms

Solution: Information flow 
control Web platform: Hails

Hails IFC enforcement:
➤ Restrict what data app 

can access with clearance
➤ Restrict who app can 

communicate with 
depending on data it reads

address
book

photo
editor
...



Hails platform

Motivation: IFC Web platforms

Solution: Information flow 
control Web platform: Hails

Hails IFC enforcement:
➤ Restrict what data app 

can access with clearance
➤ Restrict who app can 

communicate with 
depending on data it reads

address
book

photo
editor
...

IFC: Can app read sensitive 
data from the database?



Hails platform

Motivation: IFC Web platforms

Solution: Information flow 
control Web platform: Hails

Hails IFC enforcement:
➤ Restrict what data app 

can access with clearance
➤ Restrict who app can 

communicate with 
depending on data it reads

address
book

photo
editor
...

         Name: Joe Smith
         Nick: Small J
         Occupation:  N/A

IFC: Can app read sensitive 
data from the database?



Hails platform

Motivation: IFC Web platforms

Solution: Information flow 
control Web platform: Hails

Hails IFC enforcement:
➤ Restrict what data app 

can access with clearance
➤ Restrict who app can 

communicate with 
depending on data it reads

address
book

photo
editor
...

         Name: Joe Smith
         Nick: Small J
         Occupation:  N/A

Name: Jullian Assange
Nick: Big J
Occupation: make U.S. gov unhappy

IFC: Can app read sensitive 
data from the database?



Hails platform

Motivation: IFC Web platforms

Solution: Information flow 
control Web platform: Hails

Hails IFC enforcement:
➤ Restrict what data app 

can access with clearance
➤ Restrict who app can 

communicate with 
depending on data it reads

address
book

photo
editor
...

         Name: Joe Smith
         Nick: Small J
         Occupation:  N/A

Name: Jullian Assange
Nick: Big J
Occupation: make U.S. gov unhappy

IFC: Can app read sensitive 
data from the database?

IFC: Can app write 
sensitive data to nsa.gov?



Hails platform

Motivation: IFC Web platforms

Solution: Information flow 
control Web platform: Hails

Hails IFC enforcement:
➤ Restrict what data app 

can access with clearance
➤ Restrict who app can 

communicate with 
depending on data it reads

address
book

photo
editor
...

         Name: Joe Smith
         Nick: Small J
         Occupation:  N/A

Name: Jullian Assange
Nick: Big J
Occupation: make U.S. gov unhappy

IFC: Can app read sensitive 
data from the database?

IFC: Can app write 
sensitive data to nsa.gov?

✗



GHC Haskell Runtime

LIO IFC system

Hails framework

wiki.gitstar.com

≀≀≀≀

Hails Web-platform framework

• Hails is built atop the LIO
➤ Concurrent, dynamic, 

language-level IFC system

• Hails apps are LIO programs
➤ Access database, filesystem, 

network, etc. according to IFC

GHC Haskell Runtime

LIO IFC system

Hails framework

learnbyhacking.org

≀≀≀≀

GHC Haskell Runtime

LIO IFC system

Hails framework

www.gitstar.com

≀≀≀≀



• Malicious apps will try to leak data through any 
means, including covert channels
➤ E.g., termination, internal timing, and external 

timing channels

• LIO addresses these channels at the language level

Challenge: covert channels

Theorem: Termination-sensitive non-interference
➤ Confidentiality and integrity of data is preserved 

regardless of the timing/termination behavior of threads



• Malicious apps will try to leak data through any 
means, including covert channels
➤ E.g., termination, internal timing, and external 

timing channels

• LIO addresses these channels at the language level

Challenge: covert channels

Theorem: Termination-sensitive non-interference
➤ Confidentiality and integrity of data is preserved 

regardless of the timing/termination behavior of threads✗



Reality check

• Not modeling hardware features ➠ theorem 
only holds for ideal execution machine

• Can usually exploit system by leveraging 
features not captured by model
➤ E.g., finite memory, disk-head location, CPU-

bus, translation look-aside buffer, L1-L3 caches

Cache Rules Everything Around Me

Focus: hardware-level caches



lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B
for 1..3 do skip

output

1:
2:

output := A

output := B

CacheCache-based attack



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

1:
2:

Run 1

for 1..3 do skip



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

1:
2:

Run 1

for 1..3 do skip



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

A1:
2:

Run 1

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

A1:
2:

Run 1

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

A1:
2:

Run 1

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

AB1:
2:

Run 1

for 1..3 do skip

output := B

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

AB1:
2:

Run 2

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

AB

B

1:
2:

Run 2

for 1..3 do skip

output := B

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

AB

A B

1:
2:

Run 2

for 1..3 do skip

output := B

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

AB

A B

1:
2:

Run 2

for 1..3 do skip

output := B

output := A

Directly encodes         /      . 



Cache-based attack

• Reintroduction of the internal timing attack
➤ Threads race to a common resource (output)

➤ Can be used to leak secrets internally to app

• Trivial L1-cache attack leaks at 0.75 bits/s
➤ Applicable to Hails’ gitstar.com platform ➠ leak 

list of collaborators on a private project in < 1 min



Outline

• Motivation: Need for Hails IFC Web platforms

• Cache-based attack on IFC platforms

• Existing countermeasures

• New countermeasure: instruction-based scheduling
➤ Benefits and limitations



Countermeasures

1. Flush the cache on every context switch
➤ Every thread quantum starts with fresh cache
➤ Flushing the cache is prohibitively expensive 

for Hails user-level threads
➤ Does not address resources such as CPU bus 

contention



Countermeasures

2. Use CPU no-fill cache mode
➤ Scheduling secret threads bypasses cache, 

cannot affect public threads
➤ Secret threads never use the cache
➤ Does not scale beyond 2 security levels
➤ Does not address resources such as the TLB and 

CPU bus contention



Countermeasures

3. Partition the cache
➤ Threads at different security level effectively 

have a private (part of the) cache
➤ Does not scale to platform with hundreds of 

users that come and go (current OS limit: 16)
➤ Does not address resources such as the TLB and 

CPU bus contention



New countermeasure

Observation: The scheduling of a public thread 
can be affected by the timing behavior of a secret 
thread through the hardware cache

Solution: Schedule context switches based on 
number of retired instructions! 

Instruction-based scheduling



lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B
for 1..3 do skip

output

1:
2:

output := A

output := B

CacheCache-based attack



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

1:
2:

Run 1

for 1..3 do skip



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

1:
2:

Run 1

for 1..3 do skip



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

1:
2:

Run 1

for 1..3 do skip



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

A1:
2:

Run 1

for 1..3 do skip



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

A1:
2:

Run 1

for 1..3 do skip



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

A1:
2:

Run 1

for 1..3 do skip



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

AB1:
2:

Run 1

for 1..3 do skip

output := B



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

AB1:
2:

Run 2

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

AB1:
2:

Run 2

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

Thread A Thread B

Cache

output

AB1:
2:

Run 2

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

AB

A

1:
2:

Run 2

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

AB

A

1:
2:

Run 2

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

AB

A

1:
2:

Run 2

for 1..3 do skip

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

AB

AB

1:
2:

Run 2

for 1..3 do skip

output := B

output := A



Cache-based attack
lowArray := fillArray(  ) 
if friend == “Julian Assange”
  highArray := fillArray(  )

readArray(lowArray)

output := A

Thread A Thread B

Cache

output

AB

AB

1:
2:

Run 2

for 1..3 do skip

output := BNo longer encodes         /      . 

output := A



Take away

• Secret threads can affect the duration of 
instructions in public threads
➤ Context switching according to amount of 

elapsed time ➠ can introduce public races!

• Secret threads cannot affect the number of (or 
which) instructions a public thread retires
➤ Context switching according to number of 

instructions retired ➠ no race!



Implementation

Strawman: Instruction≣language-level atom
➤ Simple to prototype, no runtime modification
➤ Incurs at least 10x slowdown + termination attack

Approach: Measure number of retired instructions

➤ Use hardware performance units (PMUs), 
readily available on modern Intel and AMD CPUs



Implementation

Replaced GHC’s time-based scheduler
➤ Signal from PMU is used to context switch 

thread (unless the thread is not in a safe point)
➤ To ensure safe points are reached often,

we added safe-points on every function entry
➤ Reset counters when thread yields to do IO



Performance impact

Disclaimer: Need code that is used in the find an instruction 
budget that leads to context switches at roughly 10ms intervals

scs
hidden

cacheprof
fulsom

compress2
compress

anna
hpg
infer

maillist
gamteb
parser

fem
rsa

bspt
gg

reptile
fluid

symalg
Normal scheduler
Instruction−based scheduler

Run time in seconds

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

scs
hidden

cacheprof
fulsom

compress2
compress

anna
hpg
infer

maillist
gamteb
parser

fem
rsa

bspt
gg

reptile
fluid

symalg
Normal scheduler
Instruction−based scheduler

Run time in seconds
0.

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6



Performance impact

Disclaimer: Need code that is used in the find an instruction 
budget that leads to context switches at roughly 10ms intervals

scs
hidden

cacheprof
fulsom

compress2
compress

anna
hpg
infer

maillist
gamteb
parser

fem
rsa

bspt
gg

reptile
fluid

symalg
Normal scheduler
Instruction−based scheduler

Run time in seconds

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

scs
hidden

cacheprof
fulsom

compress2
compress

anna
hpg
infer

maillist
gamteb
parser

fem
rsa

bspt
gg

reptile
fluid

symalg
Normal scheduler
Instruction−based scheduler

Run time in seconds
0.

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

< 1% slowdown



Conclusions

➤ Eliminates hardware-based internal timing attacks
➤ L1-L3 caches, TLB, CPU bus contention, etc.

➤ Scales to arbitrary number of security levels
➤ Almost no impact on performance
➤ Does not directly scale to multiple CPU cores

➤ Not a big concern in network-balanced web apps

Instruction-based scheduling


