Addressing Covert Termination and
Timing Channels in Concurrent
Information Flow Systems

Deian Stefan, Alejandro Russo, Pablo Buiras,
Amit Levy, John Mitchell, and David Mazieres

W STANFORD
% IIIIIIIIII CHALMERS

Motivation

Web framework for integrating 34 party apps

+»>QQ
x

Messenger — User data

Current Approach

* Platforms restrict what data apps can see

Y = would like permission to:

~

Access the following required information:

4 Your messages

* No guarantee what app can do with your data

sendMessage user message = do
messages <- getUserMessages user
putUserMessages user (message:messages)

= &

&l | -

Current Approach

* Platforms restrict what data apps can see

Y = would like permission to:

~

Access the following required information:

4 Your messages

* No guarantee what app can do with your data

sendMessage user message = do
messages <- getUserMessages user
putUserMessages user (message:messages)

e N

&l |

Current Approach

* Platforms restrict what data apps can see

Y = would like permission to:

~

Access the following required information:

4 Your messages

* No guarantee what app can do with your data

sendMessage user message = do
messages <- getUserMessages user
putUserMessages user (message:messages)

Current Approach

* Platforms restrict what data apps can see

Y = would like permission to:

~

Access the following required information:

4 Your messages

* No guarantee what app can do with your data

sendMessage user message = do
messages <- getUserMessages user
putUserMessages user (message:messages)

&l |

Current Approach

* Platforms restrict what data apps can see

Y = would like permission to:

~

Access the following required information:

4 Your messages

* No guarantee what app can do with your data

sendMessage user message = do
messages <- getUserMessages user
putUserMessages user (message:messages)

Current Approach

* Platforms restrict what data apps can see

Y = would like permission to:

~

Access the following required information:

4 Your messages

* No guarantee what app can do with your data

sendMessage user message = do
messages <- getUserMessages user
putUserMessages user (message:messages)

E = ~

Current Approach

* Platforms restrict what data apps can see

Y = would like permission to:

~

Access the following required information:

4 Your messages

* No guarantee what app can do with your data

sendMessage user message = do
messages <- getUserMessages user
when (messages "hasRecipient “Julian Assange”)
alertTSA
putUserMessages user (message:messages)

Current Approach

* Platforms restrict what data apps can see

Y = would like permission to:

Access the following required information:

4 Your messages

* No guarantee what app can do with your data

Current Approach

* Platforms restrict what data apps can see

Y = would like permission to:

Access the following required information:

4 Your messages

* No guarantee what app can do with your data

o

Current Approach

* Platforms restrict what data apps can see

Y = would like permission to:

Access the following required information:

4 Your messages

* No guarantee what app can do with your data

Current Approach

* Platforms restrict what data apps can see

Y = would like permission to:

Access the following required information:

4 Your messages

* No guarantee what app can do with your data

- ‘ﬁj

Current Approach

* Platforms restrict what data apps can see

Y = would like permission to:

Access the following required information:

4 Your messages

* No guarantee what app can do with your data

Current Approach

* Platforms restrict what data apps can see

Y = would like permission to:

Access the following required information:

4 Your messages

* No guarantee what app can do with your data

Current Approach

* Platforms restrict what data apps can see

Y = would like permission to:

Access the following required information:

4 Your messages

* No guarantee what app can do with your data

Fundamental Problem

e Problem:
» Read sensitive data with getUserMessages
» Wrote to remote host with alertTsa

* Solution:
> Restrict who the app can communicate with
depending on what data it has read

Alternative Approach

Information Flow Control with LIO

* Label every object with a security level/policy
> Label protects data by specifying who can read/write

* Example security label lattice:
A Pollcy comblnatlon of
‘ Bob and Agent’s data
Agent

s
LPollcy observable by Bob > <Pohcy observable by

[Policy: public data >

[LLIO Monad

* Execute computations in LIO monad
» Opaque monad records context “current” label
> l.e., tracks taint of computation
> Restricts side-effects an app can pertform

* Example (sending Bob a message):

_ & o

[LLIO Monad

* Execute computations in LIO monad
» Opaque monad records context “current” label
> l.e., tracks taint of computation
> Restricts side-effects an app can pertform

* Example (sending Bob a message):

~ Send app message
’V“

[LLIO Monad

* Execute computations in LIO monad
» Opaque monad records context “current” label
> l.e., tracks taint of computation
> Restricts side-effects an app can pertform

* Example (sending Bob a message):

~ Send app message

[LLIO Monad

* Execute computations in LIO monad
» Opaque monad records context “current” label
> l.e., tracks taint of computation
> Restricts side-effects an app can pertform

* Example (sending Bob a message):

~ Send app message E Get existing messages

[LLIO Monad

* Execute computations in LIO monad
» Opaque monad records context “current” label
> l.e., tracks taint of computation
> Restricts side-effects an app can pertform

* Example (sending Bob a message):

Send app message ,

S — @j y

[LLIO Monad

* Execute computations in LIO monad
» Opaque monad records context “current” label
> l.e., tracks taint of computation
> Restricts side-effects an app can pertform

* Example (sending Bob a message):

Send app message f Write all new messages

27 —

[LLIO Monad

* Execute computations in LIO monad
» Opaque monad records context “current” label
> l.e., tracks taint of computation
> Restricts side-effects an app can pertform

* Example (sending Bob a message):

Send app message ,

S — @j y

[LIO Monad

Preventing unwanted leaks

sendMessage user message = do
messages <- getUserMessages user
when (messages hasRecipient “Julian Assange”)
alertTSA
putUserMessages user (message:messages)

Send app message "

ﬁ[l H

[LIO Monad

Preventing unwanted leaks

sendMessage user message = do
messages <- getUserMessages user
—-)when (messages hasRecipient “Julian Assange”)
alertTSA
putUserMessages user (message:messages)

Send app message "

[LIO Monad

Preventing unwanted leaks

sendMessage user message = do
messages <- getUserMessages user
—-)when (messages hasRecipient “Julian Assange”)
alertTSA
tUserMessages user (message:messages)

C App receives exception:
Trying to leak sensitive data.

Send app message "

[LIO Monad

Overly restrictive

* Messenger app wishes to send broadcast message

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do

forM users $ Auser -> sendMessage user message

N
=

~ Send app message

[LIO Monad

Overly restrictive

* Messenger app wishes to send broadcast message

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do

forM users $ Auser -> sendMessage user message

e NP
EPT— .

[LIO Monad

Overly restrictive

* Messenger app wishes to send broadcast message

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do

forM users $ Auser -> sendMessage user message

N
=

Send app message

SN w’ﬂ\

[LIO Monad

Overly restrictive

* Messenger app wishes to send broadcast message

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do

forM users $ Auser -> sendMessage user message

~ Send app message A

_

[LIO Monad

Overly restrictive

* Messenger app wishes to send broadcast message

sendMessages :: [User] -> Message -> LIO ()
sendMessages users message = do

forM users $ Auser -> sendMessage user message

N
=

& App receives exception:
May be leaking Bob’s data.

Send app message

_

Practical Concerns

e Strawman: use discard to execute sensitive actions
» Do not observe result "™ no leak!

sendMessages :: [User] -> Message -> LIO () };-
sendMessages users message = do Lx
forM wusers $ Auser -> discard $ /n__ﬁ

[sendMessage user message

N
=

ey Y

Practical Concerns

e Strawman: use discard to execute sensitive actions
» Do not observe result "™ no leak!

sendMessages :: [User] -> Message -> LIO () };-
sendMessages users message = do Lx
forM wusers $ Auser -> discard $ /n__ﬁ

[sendMessage user message

N
=

- Yy :égi

ey Y

Practical Concerns

e Strawman: use discard to execute sensitive actions
» Do not observe result "™ no leak!

sendMessages :: [User] -> Message -> LIO () };-
sendMessages users message = do Lx
forM wusers $ Auser -> discard $ /n__ﬁ

[sendMessage user message

N
=

. D ﬁ\ﬁ

Practical Concerns

e Strawman: use discard to execute sensitive actions
» Do not observe result "™ no leak!

sendMessages :: [User] -> Message -> LIO () };-
sendMessages users message = do Lx
forM wusers $ Auser -> discard $ /n__ﬁ

[sendMessage user message

Practical Concerns

e Strawman: use discard to execute sensitive actions
» Do not observe result "™ no leak!

sendMessages :: [User] -> Message -> LIO () };-
sendMessages users message = do Lx
forM wusers $ Auser -> discard $ /n__ﬁ

[sendMessage user message

N
=

o D qﬁﬁ?'

Practical Concerns

e Strawman: use discard to execute sensitive actions
» Do not observe result "™ no leak!

sendMessages :: [User] -> Message -> LIO () };-
sendMessages users message = do Lx
forM wusers $ Auser -> discard $ /n__ﬁ

[sendMessage user message

N
SN L W

Practical Concerns

e Strawman: use discard to execute sensitive actions
» Do not observe result "™ no leak!

sendMessages :: [User] -> Message -> LIO () };-
sendMessages users message = do Lx
forM wusers $ Auser -> discard $ /n__ﬁ

[sendMessage user message

N
=

ey Y

Practical Concerns

e Strawman: use discard to execute sensitive actions
» Do not observe result "™ no leak!

sendMessages :: [User] -> Message -> LIO () };-
sendMessages users message = do Lx
forM wusers $ Auser -> discard $ /n__ﬁ

[sendMessage user message

Wi
=

S 4 .3

ey YL

... discard covertly leaks termination information.

Termination Attack

* Leak secret bit through non-termination

isConsiprator :: User -> Int -> LIO ()
isConsiprator wvictim n = do
discard $ do
messages <- getUserMessages victim
let user = recipient (message!!n)
when (user == “Julian Assange”) 1
writeToPublicChannel “clean”

> If user matches: diverge in discard block
Else: write “clean” to public channel

Termination Attack

* Address at the framework/system level

e Use different attacker model
> Termination-insensitive non-interference: if a

program terminates, then confidentiality and integrity
of data 1s preserved

* Don’t address: very low bandwidth channel
> Leaks 1 bit per run

Adding Fire

e Threads are crucial to modern web frameworks
» Need to concurrently serve requests, etc.

* Viability of covert channel attacks
> Termination attack leaks 1 bit per thread
> Can leak data within same program
» Permits attacks relying on internal timing

Internal Timing Attack

* Leak secret bit by atfecting output ordering

isConsiprator :: User -> Int -> LIO ()
isConsiprator victim n = do

fork $ do delay 100
writeToPublicChannel “y”

discard $ do
messages <- getUserMessages victim

writeToPublicChannel “es”

fork S do S~

(

\.

Write race to
public channel

~N

J

let user = msgDestination (message!!n)
when (user == “Julian Assange”)$ delay 500

> If user matches: write “y” first, then “es”
Else: write “es” then “y”

* Analyze output: “yes” m contact with Assange

Solution: Threads

Fighting fire with fire

* Decoupling discard computations
> Spawn new thread to execute sub-computation
> Immediately return a labeled future to thread

* Making LIO safe:
—discard
+ 1Fork: spawn new, labeled threads

+ 1Wait: force thread evaluation, first “raising”
context label to read result and termination

[Y a ANa A
o \ J o

Cannot leak bits through non-termination

isConsiprator :: User -> Int -> LIO ()
isConsiprator wvictim n = do
lFork $ do

messages <- getUserMessages victim
let user = recipient (message!!n)

when (user == “Julian Assange”) 1
writeToPublicChannel “clean”

> If user matches: diverge in discard block
> Always write “clean” to public channel

a A a - A a ava /
(_
Cannot affect output ordering
isConsiprator :: User -> Int -> LIO ()

isConsiprator victim n = do

lFork $ do delay 100
writeToPublicChannel “y”

lFork $ do
lFork $ do
messages <- getUserMessages victim

writeToPublicChannel “es”

\.

NO race to
public channel

~N

J

let user = msgDestination (message!!n)
when (user == “Julian Assange”)$ delay 500

> Always write “es” first, then “y”

Status of LIO

* Used in production system

* Formalized as call-by-name A-calculus
> Support for thread spawning and joining
with 1Fork and 1Wait

» Support for MVars

e Theorem: Termination-sensitive non-interference

> Informally: Confidentiality and integrity of data is
preserved even if threads diverge.

A Practical Perspective

* Covert channels closed by LIO
> lermination
> Internal timing

* What about external timing channel?

A Practical Perspective

* Covert channels closed by LIO
> lermination
> Internal timing

* What about external timing channel?

A Practical Perspective

* Covert channels closed by LIO
> lermination
> Internal timing

* What about external timing channel?

A Practical Perspective

* Covert channels closed by LIO
> lermination
> Internal timing

* What about external timing channel?

O I

A Practical Perspective

* Covert channels closed by LIO
> lermination
> Internal timing

* What about external timing channel?

Ol 2

A Practical Perspective

* Covert channels closed by LIO
> lermination
> Internal timing

* What about external timing channel?

01203 30

A Practical Perspective

* Covert channels closed by LIO
> lermination
> Internal timing

* What about external timing channel?

01203 30

>
v
&

- Mitigation

Thank you

cabal install 1lio

http://gitstar.com/scs/lio

http://gitstar.com/scs/lio
http://gitstar.com/scs/lio
http://gitstar.com/scs/lio
http://gitstar.com/scs/lio

