Hardware Framework for the Rabbit Stream
Cipher

Deian Stefan*

S*ProCom?// Dept. of Electrical Engineering,
The Cooper Union,
New York NY 10003, USA

Abstract. Rabbit is a software-oriented synchronous stream cipher with
very strong security properties and support for 128-bit keys. Rabbit is
part of the European Union’s eSTREAM portfolio of stream ciphers
addressing the need for strong and computationally efficient (i.e., fast)
ciphers. Extensive cryptanalysis confirms Rabbit’s strength against mod-
ern attacks; attacks with complexity lower than an exhaustive key search
have not been found. Previous software implementations have demon-
strated Rabbit’s high throughput, however, the performance in hardware
has only been estimated. Three reconfigurable hardware designs of the
Rabbit stream cipher — direct, interleaved and generalized folded struc-
ture (GFS) — are presented. On the Xilinx Virtex-5 LXT FPGA, a direct,
resource-efficient (568 slices) implementation delivers throughputs of up
to 9.16 Gbits/s, a 4-slow interleaved design reaches 25.62 Gbits/s using
1163 slices, and a 3-slow 8-GFS implementations delivers throughputs of
up to 3.46 Gbits/s using only 233 slices.

Key words: FPGA, Rabbit, eSSTREAM, DSP, Stream Cipher

1 Introduction

The widespread use of embedded mobile devices poses the need for fast,
hardware-oriented encryption capabilities to provide higher security and
protection of private data for end users. Stream ciphers are cryptographic
algorithms that transform a stream of plaintext messages of varying bit-
length into ciphertext of the same length, usually by generating a keystream
that is then XORed with the plaintext. In general, stream ciphers have
very high throughput, strong security properties, and use few resources,
thus making them ideal for mobile applications; well-known examples of
stream ciphers include the RC4 cipher used in 802.11 Wireless Encryp-
tion Protocol [13], EO cipher used in Bluetooth protocol [13], and the
SNOW 3G cipher used by the 3GPP group in the new mobile cellular
standard [26].

* Part of this work was done while the author was visiting EPFL, Switzerland.

2 D. Stefan

The European Union sponsored the four-year eSTREAM project to
identify new stream ciphers which address not only strong security prop-
erties, but also the need for 1) high-performance software-oriented ciphers
and, 2) low-power and low-resource hardware-oriented ciphers. The Rab-
bit stream cipher is among four software-oriented stream ciphers which
were selected for the eSTREAM software portfolio in 2008 [3]. Rabbit per-
forms very well in software (e.g., 5.1 cycles/byte on a 1.7 GHz Pentium
4 and 3.8 cycles/byte on a 533 MHz PowerPC 440GX [6]) and detailed
cryptanalysis by the designers and recent studies [2,20] found no seri-
ous weaknesses or attacks more feasible than an exhaustive key search.
In [20], Lu et al. estimate the complexity of a time-memory-data-tradeoff
(TMDT) key-recovery attack to be 297° with 232 memory usage, 232 pre-
computations in addition to an exceptionally strong adversary assump-
tion. Moreover, they also present the best distinguishing attack with com-
plexity 218, which is considerably higher than the exhaustive key search
of 228 The strong security properties of Rabbit makes the cipher a de-
sirable candidate for both software and hardware applications. Until now
there were no hardware implementations of Rabbit to evaluate its per-
formance, only estimates of application-specific integrated circuit (ASIC)
and field-programmable gate array (FPGA) designs; as part of our frame-
work, we present three different architectures suitable for reconfigurable
hardware implementations that can be used as standalone hardware or
hardware/software co-designs for both cryptographic and cryptanalytic
applications.

First we introduce the structure of the Rabbit stream cipher and
the mathematical foundations. We then discuss the three hardware ar-
chitectures of the algorithm: direct, interleaved, and generalized folded
structure. The tradeoffs of each are considered along with hardware- and
software-based initialization designs. Finally, FPGA implementations and
performance benchmarks are presented.

2 Structure of Rabbit

Rabbit is a symmetric synchronous stream cipher with a 513-bit internal
state derived from the 128-bit key and an optional 64-bit initial vector
(IV). From the classical definition of a synchronous stream cipher [22], the
internal state during each system iteration is updated according to a next-
state function dependent on the previous (internal) state, and similarly,
the keystream is produced as a function of the internal states, independent
of the plaintext or ciphertext. An output function, XOR in this case, is

Hardware Framework for the Rabbit Stream Cipher 3

then used to combine the plaintext (ciphertext) message and keystream
to produce the output ciphertext (plaintext).

The 128-bit key allows for the safe encryption of 264 plaintext mes-
sages [21, 6], while the optional (public) 64-bit IV provides for the safe en-
cryption of up to 264 plaintexts using the same key [8]. Many stream cipher
keystream generators are based on the irregular clocking, non-linear com-
bination, or non-linear filtering of the output(s) of linear feedback shift
registers (LFSRs) and pseudo-random number generators (PRNGs) [24,
22]. The Rabbit design, although counter-assisted and dependent on the
highly non-linear mixing of the internal state, is a novel approach to
stream cipher design, adopting random-like properties from chaos the-
ory [7].

The Rabbit 513-bit internal state (at iteration 7) is divided into eight
32-bit state variables zj;, 0 < j < 7, eight 32-bit counters ¢;;, 0 <
j < 7 and a carry bit ¢7;. The design choice of a very large internal
state makes TMDT attacks (e.g., key recovery), which rely on “off-line”
precomputations to minimize “on-line” computing time, infeasible [5, 6].

2.1 Internal State Update

The internal state update, i.e., a system iteration, is divided into the non-
linear next-state update of the state variables x;;’s, and the linear update
of the counter variables c;;’s.

Next-state update: At the core of the Rabbit algorithm is the iteration
of the state variables, from which the keystream is generated. After the
initialization of the internal state (explained in Section 2.2) the next-
state function, depending only on the previous state, is used to iterate
the system; so, the internal state at iteration ¢ + 1 depends solely on
the non-linear mixing of the internal state at i. Formally, following the
notation of [6], the eight 32-bit state variables are updated as follows:

9ji+9j-1, K16 + gj_2; K 16 for j even
Tiipr =93 C : (1)
9ii+ gi—1, <K 8+ 9j—2,i for j odd,
where << « is a bitwise-rotation by «a bits, the additions are mod 232
and all the indices j — k, 0 < k < 2 are mod 8 (the number of state and
counter variables). The chaos-inspired function g is defined as:

9ji = (15 + ¢ji11)” @ (5 + ¢ji1)° > 32)) mod 2%, (2)

4 D. Stefan

where > «a is a bitwise right-shift by a and the inner additions, (x;; +
¢ji+1) are mod 232 The g function is the source of the high non-linearity
in the state updates — 256 bits (all the bits of the x;;’s) of the 513-bit
internal state are non-linearly transformed; as (1) shows, each state vari-
able is a combination of three outputs from the g function. The g function
is the source of the cipher’s resistance to algebraic, differential, and lin-
ear correlation attacks, which commonly take advantage of ciphers with
few non-linear state updates, or the correlation between the difference of
inputs and outputs. These attacks seek to determine an output’s depen-
dence on the input, find a correlation between the output and internal
state or distinguish the keystream from a truly random sequence [12,1,
7,6].

Counter update: Similar to the state variable updates, during each
iteration the eight 32-bit counter variables are also updated, although
linearly, according to:

o coi + ao + o7 for j =0 (3)
Jitl Cji +a; + (;5]'_171'_,_1 otherwise

where,
0x4d34d34d for j = 0,3,6
a; = { 0xd34d344d3 for j =1,4,7 (4)
0x34d34d34 otherwise

and the carry ¢; ;41 is:

1 if j =0 and co; +ao + ¢7,; > 232
(bj,i—&-l =<1 if j#0 and Cjit+aj+ ¢j_172‘+1 > 232 (5)
0 otherwise.

It can be shown that the 256-bit counter state (eight 32-bit counters)
has a maximal period length of 2256 —1 [7], and since the counter variables
are used in (2), and thus in the next-state function (1), a lower-bound on
the period length of the state variables can also be guaranteed [7, 6].

2.2 Initialization

Key setup: The 128-bit key K is divided into eight 16-bit sub-keys
K = ky||- - ||ko, where || is the concatenation operation, with the least

Hardware Framework for the Rabbit Stream Cipher 5

significant bit (LSB) bit of ky and most significant bit (MSB) of k7 cor-
responding to the LSB and MSB of K, respectively. The key is expanded
to initialize the counter and state variables according to:

kjt1||k; for j even
R _ 6
%30 {kj+5|\kj+4 for j odd, (6)
and: |
| kjtallkj4s for j even
G0 = {kjukjﬂ for j odd, @

where the indices j + k are modulo 8. Additionally, the carry ¢7 is
initialized to zero.

Following the key expansion, the system is iterated four times accord-
ing to the next-state and counter-update functions described in Section
2.1, and finally the counter variables are modified according to:

Cja = Cja D Tjya, (8)

where the indices are again mod 8.

The expansion of the key is such that there is a one-to-one corre-
spondence between the key and the 512-bit internal state, while the four
system iterations and counter modifications assert both 1) the mixing of
all the key bits with every state variable and 2) the combination of the
counter with the non-linear state variables [6]. It is important to avoid
a many-to-one mapping between the key and internal state as this dras-
tically degrades the strength of the algorithm, for if two keys lead to
the same internal state an adversary could potentially generate the same
keystream with a different key. Equally essential are the counter modifi-
cations, as they prevent key-recovery attacks in which an adversary, with
knowledge of the counter’s state, can ‘clock’ the system in reverse and de-
duce the key. Since the next-state function is resistant to guess-and-verify
and correlation attacks [6], and thus resistant to the ‘reverse clocking’ of
the state variables, the modification of the counter variables as in (8)
secures against key-recovery attacks.

IV setup: If a 64-bit IV is provided, it is divided into four 16-bit sub-IVs
— IV =iwvs]| - - - ||ivg — where the LSB of ivy and MSB of iv3 correspond
to the LSB and MSB of IV, respectively. Using the sub-IVs the counters
are modified to:

cja @ ivrl|ivg for j =0,4
cja @ ivsllivy for j =1,5
cja @ tvsllivy for j =2,6
cja @ ivgllivg for j =3,7,

(9)

0]74 =

6 D. Stefan

after which the system is again iterated four times, guaranteeing the non-
linear combination of all the IV bits into the state variables [6].

2.3 Keystream Generation

During each iteration 4, the state variables z;; are split into low (L)
and high (H) 16-bit sub-states z;; = 2, u||2; 1, from which the 128-bit
keystream output, a concatenation of eight 16-bit blocks s; = s; 7|| - - - ||si.0,
is extracted according to:

81,0 = 0,iL X545 H Sid4 = T4,iL DX1;H
8,1 = X0,iH D T34iL Si5 = T4,iH D T7,4L
Si2 = T2 L D X7l Sie = T6,iL D X341

8i3=T2,H D T54L Si;7 = T6,i,H D T1,L- (10)

It is important that adversaries gain no information from the output,
that is, they should not be able to distinguish the output of the keystream
generator from a truly random sequence [15]. The combination of the
outputs of the non-linear g function in the keystream extraction highlights
the strength of Rabbit in passing various statistical tests [6], including the
NIST Test Suite that seeks to find non-randomness in a sequence [4].

3 Rabbit in Hardware

As previously mentioned, Rabbit is a software-oriented stream cipher and
thus was designed to perform well on general purpose architectures, vary-
ing from 32-bit Intel processors to 8-bit microcontrollers. Estimates of
ASIC and FPGA throughput and area performance are presented in [6],
however the implementation details are limited. In the following sections,
we consider three architecture designs of the Rabbit algorithm optimized
for reconfigurable devices.

3.1 Direct Architecture and General Optimizations

The first architecture we consider is a direct implementation of the algo-
rithm. Observing the relationship between (3) and (5), we note that the
counter variables can be updated using a series of chained adders. Each
adder takes inputs c;;, a; and carry-in' ®j—1,i+1,7 > 0, producing output
¢ji+1 and carry-out ¢;;i1 each cycle. Figure 1 illustrates the chaining

! Note that the carry-in for the first adder is ¢7 ;.

Hardware Framework for the Rabbit Stream Cipher 7

Co,i+1 Xo,i+1
C1it1 X1,i+1
C2,it1 X2,i+1
c3,i+1 x3,i+1
—
ér‘D Ca,it1 Xa,i+1
|
g
ér—D Cs,ix1 Xs,iv1
|
é’ c X
F‘D 6,i+1 6,i+1
|
—
érD C7,i+1 X7,i+1
O

o7,i+1

Fig. 1. Direct architecture of the Rabbit algorithm, highlighting the critical path. The
H is a 32-bit adder with carries, while the dotted and dashed lines indicate a vari-
able rotate dependent on whether j is even or odd, see (1). Control logic, a; inputs,
initialization blocks and the keystream extractor are eliminated for clarity.

method within the full architecture design. The updated counters c; ;41
and state variables x;; are then used as inputs to the g function blocks,
the outputs of which, g;;, are combined according to (1) to produce the
next state variables x;;,1. Moreover, the next state variables are con-
currently combined according to (10) to produce the 128-bit keystream
output.

Below, we consider generic hardware optimizations, which are applied to
all the designs in the framework, including the direct implementation.

Efficient squaring: In implementing the next-state function, eight par-
allel realizations of the g function are required. Accordingly, the imple-
mentation of g can greatly affect the overall speed performance and area
usage. As Boesgaard et al. note [6], the most costly part of the g function,
the squaring, can be efficiently implemented using three 16-bit multiplies

8 D. Stefan

followed by a 32-bit addition. If we let u = x;; + ¢; ;41 and split u into
two 16-bit values v = ug||ur,, then the optimization follows directly from
the fact that u? = u% + 2321% + 27y ug mod 232, Thus the full ¢ func-
tion, as in (2), can be efficiently implemented using four (2-input) 32-bit
adders, three 16-bit multipliers, 3 shifts (which have no cost in hardware,
other than routing), and a 32-bit XOR.

Stage 1 Stage 2 Stage 3

Fig. 2. Three-stage pipeline for the direct architecture of the Rabbit algorithm.

Pipelining: In addition to optimizing g, the speed of the direct design
can be further increased by splitting the design into three pipeline stages.
Without pipeline registers, the critical path — the path with the high-
est computational cost between two delay elements — consists of the eight
counter adders, a g function (computing g7 ;), two 32-bit adders (comput-
ing x7,4+1) and a 16-bit XOR (extracting keystream output); excluding
the final XOR, the critical path is highlighted in Figure 1. The critical
path can, however, be reduced to either eight 32-bit adders or g and
two 32-bit adders? by introducing pipeline registers following the counter
adders and preceding the keystream output XORs, see Figure 2. To retain
correctness, keeping the inputs ¢; ;41 and z;; to the g functions synchro-
nized is required and can be accomplished by introducing a latency of one
cycle (using clock-enables) for the z;;’s to match the latency introduced
by the pipeline register for c¢; 1.

C-slow retiming: To further optimize the pipelined design, the criti-
cal path, which we experimentally determined to be in the second pipeline
stage (the calculation of the the next state variables: g+two 32-bit adders),
must be reduced with fine-grained pipelining of the g block, the costliest

2 Specifically, the critical path is max(eight 32-bit adders, g+two 32-bit adders).

Hardware Framework for the Rabbit Stream Cipher 9

element in the path. We note that since g; ;1 depends on x;; 1, which is
a function of the output of g;;, the direct design cannot take advantage
of multiplier pipelining. Instead, we optimize the design with C'-slow re-
timing, a DSP system-design technique that allows for the pipelining of
structures with feedback loops [23,27]. C-slow retiming is a modification
of a system design in which each register is replaced with C registers
(C-slowed) after which the full structure is retimed, whilst retaining al-
gorithmic correctness; we refer the reader to [23] for further details. For
C = 4, Figure 3(a) illustrates the partial C-slow design before retiming,
and Figure 3(b) shows it after retiming, where 3 of the 4 registers were
moved into the g block. Retiming stage 2 can thus be seen as fine-grained
pipelining of the g function into 3 simpler stages (addition, multiplica-
tion, and addition + XOR). Moreover, by pipelining g, the critical path
is “reduced” to the eight 32-bit chained counter adders.

We note that although C-slow retiming can acutely increase the clock
rate, the area usage will, in general, increase, as will the number of cy-
cles it takes to complete a single iteration; specifically the number of
cycles per iteration will increase to C'. Thus to avoid zero-filling the
C — 1 pipeline registers, it is essential that multiple streams be inter-
leaved, running in parallel, so that during the C' cycle system iteration,
C independent streams are updated and C' different keystream outputs
are generated. Multi-stream cipher applications have been studied before
(see e.g., [28,9]), and find use in many applications, including file system
encryption, securing virtual private networks, and cryptanalysis.

Initialization: Initialization of the direct architecture requires a key
expansion block for (6) and (7), which consist of simple combinations
of bit slices used to initialize the state and counter variables; additional
control logic (multiplexers) and XORs are needed for the IV setup and
modification of the counter as in (8). For multi-stream (C-slow retimed)
designs, control logic is necessary to correctly initialize the independent
streams.

Alternatively, for hardware/software co-designs, the initialization can
be performed in software from which the Rabbit hardware counter, state
and carry registers can be loaded; the Rabbit crypto-co-processor and
main CPU (e.g., MicroBlaze or PowerPC) can be interfaced using numer-
ous bus protocols that can directly access hardware registers, including
the Xilinx Fast Simplex Link (FSL), On-Chip Peripheral Bus (OPB) and
the IBM-based Processor Local Bus (PLB). For many security system-
and network-on-chip applications, which commonly consist of a CPU and

10 D. Stefan

(b) 4-slow after retiming

Fig. 3. C-slow retiming for C' = 4 is accomplished by first replacing each register
with C' of them, as shown in (a), followed by the retiming, which relocates registers to
optimize the design, as shown in (b).

peripherals in addition to the FPGA, initialization in software eliminates
the need for additional hardware resources and further simplifies the over-
all design. Moreover, the saved resources can be dedicated to additional
cryptographic cores in multi-stream applications, or to other hardware-
assisted applications running concurrently, e.g., MPEG-4 encoder.

3.2 Interleaved Architecture

Although a C-slow retimed implementation is suitable for hardware, the
high data-dependency between the counters (due to the percolating car-
ries ¢; i+1) still poses a limitation on the clock rate. This is because a 256-
bit addition® must be completed in a single cycle. For a 3-stage pipeline
and C-slow retimed design (assuming C' > 2), the cost can be reduced
to that of a 128-bit addition using cut-set retiming; in this section we,
however, focus on interleaved architecture (IA) design, which is a consid-
erably more balanced structure. See Appendix A for further details on
the cut-set retiming approach.

The interleaved design is a generalization of the C-slow retiming ap-
proach to fine-grained pipelining of, not only the state variable updates

3 The eight 32-bit additions with carries is equivalent to a 256-bit addition of
crill -+ llco,; and azl|| - - -||ao with ¢7; as a carry-in.

Hardware Framework for the Rabbit Stream Cipher 11

(stage 2 of the pipelined design in Figure 2), but the counter updates as
well (stage 1). Given a C-slow design (C = 21,1 > 1), a C/k-interleaved
architecture (in short C'/k-IA) interleaves k independent streams in a
single clock cycle for k cycles (ignoring the initial first cycle used to fill
the pipeline), where k£ < C' and k|8. For example, a 2/2-IA consists of 2
streams which are interleaved such that during the first cycle half of the
state variables of each stream are updated and during the second cycle
the second half of the variables are updated. As another example, con-
sider the 4/2-TA case; this design is equivalent to interleaving two 2/2-IA
streams. We further note that the C-slow retimed design discussed in
Section 3.1 is a special case for k = 1, i.e., C/1-IA.

1
xo,i+1

@;,i m Co,i+1
g’f 1 1
&r) i X1,i+1
g 1 1
o C2,ix1 X2,ix1
g’f 1 1
thD) Sz X3,is1
2
E = 03,i+1
2 2
o Ca,iv1 Xa,i+1
g 2 2
& O 5 Cs,iv1 Xs,iv1
&& E Cei Xg i
I 5 6,i+1 6,i+1
2
. X7,i+1

—@— "

2D gi
(b) h function

Fig. 4. 4/2-Interleaved Architecture design and corresponding h block.

12 D. Stefan

We denote variables of different stream with a superscript, e.g., cjy s
the j-th counter variable at iteration i of stream m. For clarity we limit
our discussion to the 4/2-IA design shown in Figure 4. From Figure 4 we
observe that during the first cycle, half of stream 1’s counters cjlZ 41,0 <
J < 3 and final half of stream 4’s counters c§7i+1,4 < j < 7 are updated
in the top and bottom of the structure, respectively. Because ¢3 ;41 is
buffered, in the following cycle we can update cjll 11,4 <7 < 7 in the
bottom half, and cj27i+2,0 < j < 3 in the top. Table 1 illustrates the
update of the counter variables over time corresponding to Figure 4. With
the exception of the first cycle, during every cycle a full-state update is
completed.

t lo|1|2]3] 4 | 5 | 6

11,2 1.3 |4 |.1 2 3
Co,i Cg,i Co,i Cg,i Co,it+1 Cg,i+1 Cg,i+1
1 1 :
Top: C1,i|C1,i|C1,i|C1,i|C1,i4+1|C1,i4+1|C1,i4+1
op: 1 |23 |4 |.1 2 3
C2,i|C1,i|C2,i|C2,i|C2,i+4+1|C2,i+1|C2,i+1
1

17123 | 4
C3,i|C3,i|C3,i|C3,i|C3,i4+1|C3,i+1|C3,i+1

4,0 Cz21,i Cz,i Cii Czll,iJrl 0421,2‘+1
é,i Cg,i Cg,i Cs,i |C5,i+1|C5,i+1
é,i Cg,i Cg,i Cg,; Cé,iﬂ C%,i+1
%,i C%,i C?,i C‘;,i C%,i+1 C%,i+l

Cl
C
C,
C

Bottom:

Table 1. Example counter update of 4/2-IA over increasing time ¢.

Due to the interleaving and need to retain correctness of the algo-
rithm, the retiming of g is slighlty more complex than that of a C-slow
design. First, because we start from a 4-slow design, 2 registers can be
dedicated to the fine-grained pipelining of g, while the others are used to
buffer either 1) the output of g so that the next state variables can be
computed according to (1) or 2) the next state variable. As the update is
completed over 2 cycles, half of the g blocks need an additional register
and a multiplexer (see Figure 4(b)) to select the correct g output; we
denote this function by h. For example, in computing x4 11, the outputs
of the first two h blocks (hy and hg) are the previously buffered x2 ;11
and z3 ;41 (and not the output of the g function).

We further note that for the 4/2-TA, in addition to registers which
buffer the next state variables, two keystream extractors are needed in
order to produce four 128-bit outputs in four cycles.

Hardware Framework for the Rabbit Stream Cipher 13

3.3 Generalized Folded Structure

Although FPGAs contain digital signal processing (DSP) slices? that can
be used in implementing an optimized direct or IA design, with the ex-
ception of the DSP-enhanced FPGAs (such as the Xilinx Spartan-3A,
Virtex-5 SXT and Virtex-4 SX [29]), most FPGAs have a small num-
ber of DSP slices which may be necessary for applications other than the
encryption module (e.g. Fast Fourier Transform block used for image pro-
cessing). As such, we seek a more compact implementation of the Rabbit
stream cipher.

From (1), (2), (3) and Figure 1, we observe the repeated use of identi-
cal circuit blocks in the design (e.g. block g followed by addition), which
can be reduced to fewer shared copies at the cost of additional control
logic and intermediate state registers. Specifically, the g block, adders and
rotation blocks used to update a state variable can be shared to compute
all the eight state variables at the cost of 1/8-th the time each computing
block is used to update a state variable. Similar to the sharing of re-
sources to update the state variables, the calculation of the eight counter
variables at 1/8-th the time per resource can be accomplished by sharing
a single adder and carry register.

In DSP terminology, the general design optimization is referred to as
a n-folded or n-rolled design [23], reducing the number of used computa-
tional resources (e.g., g blocks) to 1/n at the cost of taking n cycles to
complete a full iteration. It is constructive to think of folded designs as
n threads running on a pipelined system sharing the same computational
units, and during every cycle a different thread, cycled in a round-robin
fashion, gets a chance to use the computational units (and advance in the
pipeline) [16], such that after n cycles all the threads have finished their
necessary computations and the iteration is complete.

Although a directly folded design of Rabbit is realizable, it is ineffi-
cient because each iteration requires g ; and g7; to compute the first two
next-state variables, x¢ ;41 and x1,41, and as such, an elegant solution
buffering only the last two g values is not feasible without the use of an
additional g block. Instead, we propose a generalized filter structure that
allows access to intermediate values—following the threading analogy:
the threads are no longer independent and can share data. Moreover, an
n-GFS implementation only requires 1/n of the number of computational
elements (e.g., adders and ¢ functions) used by a direct implementation.

4 The design of a DSP slice is FPGA-family-specific, however the most common design
is a 18 x 18 multiplier followed by an adder/accumulator and a small number of
registers and multiplexers.

14 D. Stefan

As the counter implementation in an n-GFS architecture is the same as
that of a folded design (i.e., in an n-GFS design, the counter system is
simply the chaining of 8/n adders whose (partial) inputs are n delayed
counter variables that need to be updated sequentially), we limit our
discussion to the more interesting case of the state updates.

) R
C. 9; X;,is1

8D j+1,i+1 Ijii
O i EL "
d"+1,i+1 }' gj-m i

J

Fig. 5. 8-GFS design. Every 8-th cycle, the multiplexers select the g7; and gs,; re-
sults for the gj—1,; and gj—2,; inputs of the 32-bit adder. The dashed and dotted lines
highlight rotations dependent on j.

As shown in Figures 5 the 8-GFS design uses a minimal number of
resources, both in terms of the register usage and computational elements
(g function and adders). Only two additional registers, which buffer g;_1 ;
and g;_2,, are needed when computing z; ;41 according to (1). We note
that every 8 cycles all intermediate terms, go; through g7 ;, are available
and thus any of the next-state variables can be updated, including x ;1.
Similarly, Figure 6 shows the compact 4-GFS design split into a top and
bottom pipeline, each computing even and odd next-state variables, re-
spectively. As with the 8-GFS, every n = 4 cycles, all the intermediate
terms are available and thus x ;41 and x2 ;41 can be computed. A 2-GFS
design follows directly from these.

From the figures, we observe that a straight-forward GFS implemen-
tation will be limited by the rate at which it can be clocked (due to the
fact that the critical path consists of a g block and two 32-bit adders).
However, the pipelining and C-slow retiming techniques presented in Sec-
tion 3.1 are adopted to further speed up the compact n-GFS designs.

Keystream extraction: To extract the keystream output according
to (10), a time division demultiplexer (TDD) is needed so that x;;, 0 <
j < 7 are simultaneously available for the calculation of the s;’s. Since a
TDD uses a considerable number of registers, applications of 8-GFS where

Hardware Framework for the Rabbit Stream Cipher 15

Xjiv1

,‘ y
&I“I) Cj+2,i+1
|

Pry

x‘+3,i
&l“l) Cj+3,it1 e N N N & gj”.'i FD Xjs1iv1
N > P R E— _u’ N
D311 91

Fig. 6. 4-GFS design with the top pipeline computing every even state variable, and
the bottom every odd. Every 4-th cycle, the top and bottom multiplexers select the gs,:
and g7 ; results, respectively. The dashed and dotted lines highlight rotations dependent
on j.

variable output lengths and out-of-order keystreams are acceptable (such
as random number generators), the TDD (and following XORs) can be
replaced by two 16-bit XORs producing the following output sequence:
Si0ll8i,1, si7l|si4, Si2|]Si,3, Si6, Si5- As the 4-GFS does not directly benefit
from this optimization, the keystream extractor of 4-GFS consists of a 2-
to-8 TDD followed by a series of XORs to generate the output.

Initialization: The generalized filter structure has a very flexible ini-
tialization process. For an 8-GFS, the hardware initialization requires
additional 1) four registers so that zg 4 is available for the modification of
c4,4 according to (8), 2) two XORs for the mixing of the counters with the
state variables and IV, 3) set of control logic. Similar requirements follow
for the 4-GFS. We note that although minimal additions are needed for
the hardware initialization, software initialization (as discussed in Sec-
tion 3.1) can be used without the need for any additional resources.

4 Implementation and Discussion

Three direct designs, a 4/2-IA design, and various 4- and 8-GFS designs
of the Rabbit cipher were implemented using System Generator and syn-
thesized using Xilinx XST (ISE 11.1). We targeted the Xilinx Virtex-5

16 D. Stefan

LXT (XC5VLX50TFFG1136) FPGA hosted on the Xilinx ML 501 devel-
opment board, consisting of 7,200 slices, 60 Block RAMs and 48 DSP48
slices. Table 2 summarizes the post-place and route results, where the
suffix V is used to identify the implementations with variable output rate
(see Section 3.3). We stress the advantage of using C-slow retiming by
observing that a direct design can be maximally clocked at 71.58 MHz,
while the fine-grained pipelining of the g function increases the clock rate
to 141.38 MHz. This nearly doubles the throughput from 9.16 Gbps to
18.10 Gbps, in addition to increasing throughput/area ratio. Although
using SLICEM and SLICEL slices (memory- and logic-enhanced slices)
for more efficient carry propagation endures a clock rate of 71.58 MHz, we
notice the advantage of pipelining the adders in the very high throughput
(25.62 Gbps) of the 4/2-TA design; we expect that using C'/k-IA designs
with & > 2 will further allow for an increase in the clock rate, and thus
throughput. Furthermore, our results confirm that the estimates made
in [6] are reasonably accurate.

Table 2 also shows the performances of the more compact n-GFS de-
signs. The ascent from an 8- to 4-GFS shows a linear increase in the
throughput, with only a slight increase in slice count. The single stream
4-GFS and 3-slow 8-GF'S are ideal for resource-constrained environments,
while delivering reasonably high throughputs (2.74 and 3.43 Gbps, respec-
tively). For cases where variable rate and out-of-order keystream output
is acceptable, we recommend the use of the 3-slow 8-GFS, as it outper-
forms the 4-GFS by more than 26% while using approximately 35% fewer
slices, and half the number of DSP slices.

We measured the performance penalty and additional resource of us-
ing hardware-initialized designs as compared to hardware/software co-
designs to be less than 5% and 10%, respectively. Moreover, since the
initialization circuit will not be needed after initialization, we recom-
mend the hardware/software co-design as a very resource efficient design
approach.

For completeness, we also compare our results to other stream ci-
pher implementations in Table 2. The table shows previous results of the
three eSTREAM hardware-oriented ciphers; a direct comparison is diffi-
cult, since [14, 10, 25] are based on the Spartan-3, Virtex-1I, and Virtex-
IT Pro FPGAs and we present results on the Virtex-5 (which is based
on the new-generation 6-input LUT architecture). However, we observe
that, in general, the throughput/slice ratio of our results is greater than
that of Mickey 128 2.0 and comparable with that of Grain. Trivium’s
throughput/slice is higher than the compared stream ciphers, including

Hardware Framework for the Rabbit Stream Cipher 17

. Freq . DSP Block |[Thruput|Mbps
Design (MHz)| 311 () |g1ices(%) RAMSs(%)| (Gbps) el
(Rabbit)

Direct 71.582 | 568 (7.88%)| 24 (50%)| 0 (0.00%) | 9.16 | 16.10
Direct, 3-slow 137.155| 884 (12.28%)| 24 (50%)| 0 (0.00%) 17.56 19.86
Direct, 4-slow 141.383| 961 (13.35%)| 24 (50%)| 0 (0.00%) 18.10 18.83
4/2-1A 200.120(1163 (16.15%)| 24 (50%)| 0 (0.00%) | 25.62 | 22.03
8-GFS 83.724 | 260 (3.61%)| 3 (6%)| 0 (0.00%) | 1.34 | 5.15
8-GFS, 2-slow |138.198| 368 (5.11%)| 3 (6%)| 0 (0.00%) | 2.21 | 6.01
8-GFS, 2-slow, V|142.227| 239 (3.32%)| 3 (6%)| 0 (0.00%) | 2.28 | 9.52
8-GFS, 3-slow 214.638| 351 (4.88%) 3 (6%)| 0 (0.00%) 3.43 9.78
8-GFS, 3-slow, V|216.450| 233 (3.24%)| 3 (6%)| 0 (0.00%) | 3.46 | 14.86
4-GFS 85.697 | 360 (5.00%) 6 (12%)| 0 (0.00%) | 274 | 7.62
4-GFS 2-slow |155.982| 602 (8.36%)| 6 (12%)| 0 (0.00%) | 4.99 | 8.29
4-GFS 3-slow |195.198| 588 (8.17%)| 6 (12%)| 0 (0.00%) | 6.25 | 10.62
Estimate [6] — — 24 — 17.8 —

(eSTREAM)

Mickey128 [25] | 280.5 | 392 (2.86%)| 0 (0.00%)| 0 (0.00%) | 0.56 | 1.43
Grain [14] 155 | 356 (46.35%)] — — 248 | 6.97
Grain-128 [10] 181 48 (0.14%)| — — 018 | 3.77
Trivium [14] 190 | 388 (10.83%)] — — 12.16 | 31.34
(other)

AES [11] 350 400 (—%)| 0 (0.00%)| 0 (0.00%) | 4.1 10.2
AES [17] 168.3 | 5177 (37.8%)| — |84 (61.7%)| 215 | 4.2

RCA4 [18] 64 138 (8.98%)| — 3(12.5%) | 0.22 | 0.16
LILI-II [19] — | 866 (2.56%)] — 1(0.69%) | 024 | 028
SNOW 2.0 [19] — | 1015 (3.00%)] — | 3(2.08%) | 5.659 | 5.57

Table 2. Rabbit Resource Usage and Performance Evaluation.

our 4/2-TA, whose throughput is much higher than all three eSTREAM
candidates. We stress that although Rabbit is a software-oriented stream
cipher, its performance in hardware is commendable in terms of both
throughput and area-usage.

Finally, we compare our results to the Advanced Encryption Stan-
dard (AES, Rijndael) and various well-known stream ciphers. In terms of
speed, the compact 4-GFS 3-slow Rabbit outperforms all these ciphers,
including the Virtex-5 implementation of AES [11], in addition to main-
taining the highest throughput/area ratio of 10.62. Similarly, the 4/2-IA
outperforms one of the fastest AES implementations [17]; again, a direct
comparison is difficult since the AES block cipher of [17] was implemented
on older generation Virtex-II Pro FPGAs. In addition to the very high
speed performance of Rabbit in hardware, with the exception of RC4,

18 D. Stefan

the compact n-GFS implementations outperform the compared stream
ciphers in terms of slices used as well; however we also expect the slice
count of the compared ciphers to be lower on a Virtex 5.

5 Conclusion

The first hardware standalone and hardware/software co-designs of the
Rabbit stream cipher were presented and optimized using DSP system
design techniques. As part of the generalized hardware framework, three
different architectures were presented: a direct, interleaved and general-
ized folded structure. These implementations on the Virtex-5 LXT FPGA
outperform previous FPGA implementations of stream ciphers such as
MICKEY-128, RC4 and LILI-II, while also maintaining area-efficiencies
above 5 Mbps/slice. Future work includes further optimization of Rabbit
for ASICs, low-power Spartan-6 FPGAs, and implementation of addi-
tional TA and GFS variants.

Acknowledgment The author would like to thank Om Agrawal, David
Nummey, and anonymous reviewers for their insightful comments and
suggestions. The support of Fred L. Fontaine and S*ProCom?, and Arjen
K. Lenstra and LACAL is also appreciated.

References

1. Cryptico A/S. Differential properties of the g-function. White paper, http://
www.cryptico.com/Files/filer/wp_differential_properties_gfunction.pdf,
2003.

2. J.P. Aumasson. On a bias of Rabbit. In State of the Art of Stream Cliphers
Workshop (SASC 2007), eSTREAM, ECRYPT Stream Cipher Project, Report,
2007.

3. S. Babbage, C. Canniere, A. Canteaut, C. Cid, H. Gilbert, T. Johansson, M. Parker,
B. Preneel, V. Rijmen, and M. Robshaw. The eSTREAM Portfolio. eSTREAM,
ECRYPT Stream Clipher Project, 2008.

4. E.B. Barker, M.S. Nechvatal, E. Barker, S. Leigh, M. Levenson, M. Vangel, G. Dis-
cussion, and E. Studies. A Statistical Test Suite For Random And Pseudorandom
Number Generators For Cryptographic Applications.

5. A. Biryukov and A. Shamir. Cryptanalytic Time/Memory/Data Tradeoffs for
Stream Ciphers. Lecture Notes in Computer Science, pages 1-13, 2000.

6. M. Boesgaard, M. Vesterager, T. Christensen, and E. Zenner. The Stream Cipher
Rabbit. ECRYPT Stream Cipher Project Report, 6, 2005.

7. M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and O. Scavenius.
Rabbit: A new high-performance stream cipher. Proc. Fast Software Encryption
2003. Lecture Notes in Computer Science, pages 307-329, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Hardware Framework for the Rabbit Stream Cipher 19

M. Boesgaard, M. Vesterager, and E. Zenner. The Stream Cipher Rabbit. New
Stream Clipher Designs. Lecture Notes in Computer Science, 4986:69-83, 2008.

J. W. Bos, N. Casati, and D. A. Osvik. Multi-stream hashing on the playsta-
tion 3. In International Workshop on State-of-the-Art in Scientific and Parallel
Computing 2008, Minisymposium on Cell/B.E. Technologies, 2008.

P. Bulens, K. Kalach, F.X. Standaert, and J.J. Quisquater. FPGA implementations
of eSTREAM phase-2 focus candidates with hardware profile. In State of the Art
of Stream Ciphers Workshop (SASC 2007), eSTREAM, ECRYPT Stream Cipher
Project, Report, 2007.

P. Bulens, F.X. Standaert, J.J. Quisquater, P. Pellegrin, and G. Rouvroy. Imple-
mentation of the AES-128 on Virtex-5 FPGAs. AFRICACRYPT 2008. Lecture
Notes in Computer Science, 5023:16-26, 2008.

N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
Advances in Cryptology-CRYPTO, volume 2729, pages 176-194. Springer, 2003.
E. Ferro and F. Potorti. Bluetooth and Wi-Fi wireless protocols: a survey and a
comparison. IEEE Wireless Communications, 12(1):12-26, 2005.

K. Gaj, G. Southern, and R. Bachimanchi. Comparison of hardware performance
of selected Phase II eSTREAM candidates. State of the Art of Stream Cliphers
Workshop (SASC 2007), eSTREAM, ECRYPT Stream Clipher Project, Report,
2007.

O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press New York, NY, USA, 2000.

S. Hauck and A. DeHon. Reconfigurable Computing: The Theory and Practice of
FPGA-Based Computation. Morgan Kaufmann, 2007.

A. Hodjat and I. Verbauwhede. A 21.54 Gbits/s fully pipelined AES processor on
FPGA. In Field-Programmable Custom Computing Machines, 2004. FCCM 2004.
12th Annual IEEE Symposium on, pages 308-309, 2004.

P. Kitsos, G. Kostopoulos, N. Sklavos, and O. Koufopavlou. Hardware implemen-
tation of the RC4 stream cipher. In Clircuits and Systems, 2003. MWSCAS’03.
Proceedings of the 46th IEEE International Midwest Symposium on, volume 3,
2003.

P. Leglise, F.X. Standaert, G. Rouvroy, and J.J. Quisquater. Efficient implemen-
tation of recent stream ciphers on reconfigurable hardware devices. In 26th Sym-
posium on Information Theory in the Beneluz, pages 261-268, 2005.

Y. Lu, H. Wang, and S. Ling. Cryptanalysis of Rabbit. In Proceedings of the 11th
international conference on Information Security, pages 204-214. Springer, 2008.
W. Mao. Modern Cryptography: Theory and Practice. Prentice Hall Professional
Technical Reference, 2003.

A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone. Handbook of applied cryp-
tography. CRC press, 1997.

K.K. Parhi. VLSI Digital Signal Processing Systems: Design and Implementation.
Wiley, 1999.

B. Schneier. Applied Cryptography Second Edition: protocols, algorithms, and
source code in C. John Wiley and Sons, 1996.

D. Stefan and C. Mitchell. Parallelized Hardware Implementation of the MICKEY-
128 2.0 Stream Cipher. State of the Art of Stream Ciphers Workshop (SASC 2007),
eSTREAM, ECRYPT Stream Cipher Project, Report, 2007.

ILA. UEA2&UIA. Specification of the 3GPP Confidentiality and Integrity Al-
gorithms UEA2& UIA2. Document 2: SNOW 3G Specifications. Version: 1.1.
ETSI/SAGE Specification, 2006.

20 D. Stefan

27. N. Weaver, Y. Markovskiy, Y. Patel, and J. Wawrzynek. Post-placement C-slow
retiming for the Xilinx Virtex FPGA. In Proceedings of the 2008 ACM/SIGDA
eleventh international symposium on Field programmable gate arrays, pages 185—
194. ACM New York, NY, USA, 2003.

28. C.M. Wee, P.R. Sutton, N.W. Bergmann, and J.A. Williams. Multi stream cipher
architecture for reconfigurable system-on-chip. In Field Programmable Logic and
Applications, 2006. FPL ’06. International Conference on, pages 1-4, Aug. 2006.

29. Xilinx. DSP Solutions Using FPGAs. http://www.xilinx.com/products/design_
resources/dsp_central/grouping/fpgas4dsp.htm, 2009.

A Cut-set Retiming

Given a data flow graph G, cut-set retiming is a technique in which the
graph is split into two disconnected subgraphs Gg and G;. Further, for
every edge from Gg to G, k delays are added and, similarly, for every edge
from G to Gy k delays are removed (note that this assumes the existence
of the k delays). We refer to [23] for additional details. Figure A shows part
of the chained counter adders of a 4-slow Rabbit cipher with an example
of a cut-set (Figure 7(a)) and the respective retiming (Figure 7(b)). This

G
G
ok

- \' - /ééfa 2 Cai+1 é

(a) Determining the cut-set (b)

Q

ut-se retiming

Fig. 7. Example of cut-set retiming to pipeline the chained counter adders.

particular example shows a reduction from a 256-bit addition to two 128-
bit additions. Similarly, for C' = 4 and C' = 8-slow designs, the 256-bit
addition can be further reduced to four 64-bit or eight 32-bit additions,
respectively. We note that the TA design of Section 3.2 can be similarly
pipelined, however unlike the latter, the cut-set retimed design leads to
an unbalanced design with a buildup of many registers between cg j41
and the g function. As such, we prefer the IA design approach.

