On the Parallelization of the MICKEY-128 2.0
Stream Cipher

Deian Stefan and Christopher Mitchell

S*ProCom? // Dept. of Electrical Engineering,
The Cooper Union
New York, NY 10003
{stefan,mitche2}@cooper.edu

Abstract. The increasingly widespread use of electronic devices necessi-
tates efficient stream ciphers providing high-throughput encryption with
minimal resource usage. MICKEY-128 2.0 is a recent hardware-oriented
synchronous stream cypher with a 128-bit key, proposed to the ECRYPT
Stream Cipher Project. Using a novel mathematical interpretation of the
algorithm, we present a method of parallelizing the stream cipher to pro-
duce an n-bit keystream output. We demonstrate a high-throughput (560
Mbps), area-efficient (392 slices) two-way parallelized implementation on
the Xilinx Virtex-1I Pro FPGA.

Key words: Cryptography, FPGA, MICKEY-128, Matrix analysis.

1 Introduction

As communications security becomes a higher priority across a range of appli-
cations, demand is growing for encryption implementable on hardware of widely
divergent capabilities. Stream ciphers are cryptographic algorithms that operate
on a continuous stream of plaintext data (usually one bit a time) to produce
the same amount of ciphertext [13]. They are designed to fulfill the require-
ments of high-throughput, low-resource usage, and high security [11]. Although
they are not as popular as block ciphers (DES and AES), stream ciphers are
used in such varied applications as the Bluetooth protocol', the Group Special
Mobile (GSM) cellular phone standard?, and the Secure Socket Layer (SSL)3.
MICKEY-128 (Mutual Irregular Clocking KEYstream generator) version 2.0 is
a recent stream cipher under consideration as a final candidate by the Euro-
pean Network of Excellence for Cryptography (eCRYPT) organization under
the eSTREAM* project.

We first introduce the proposed MICKEY-128 2.0 stream cipher, then present
a matrix—algebra interpretation of the cryptographic algorithm that allows for

! EO0 stream cipher.

2 A5/1 stream cipher.

3 RC4 stream cipher.

4 http://www.ecrypt.eu.org/stream/

2 D. Stefan and C. Mitchell

the generation of n bits at a time; this improves on previous implementations
that only generate a single bit a time. Finally, we present two hardware imple-
mentations on Field-Programmable Gate Arrays (FPGAs).

2 MICKEY-128 2.0 Stream Cipher

MICKEY-128 2.0 is a hardware-oriented binary additive stream cipher designed
to have a long period (254 bit keystream sequence) and high security while main-
taining low complexity [2]. Figure 1 shows the overall design of a binary additive
stream cipher; the keystream generator is initialized by a secret key (known only
to the communicating parties) and an initial variable (IV) (which can be pub-
lic) from which it generates a keystream z; which is simply added (XOR) to
the plaintext mj to form the ciphertext cx. The receiving party symmetrically
generates the same keystream z; and adds it to the received ciphertext cx to get
the original plaintext (since cx @ zp = [2k & mi] B 2 = My).

my

K
il Insecure channel Key
Keystream Keystream [—

— Generator z, 3 Generator [

my

Fig. 1. Symmetric Encoding

The design of MICKEY 128-2.0 is an improvement on the MICKEY 2.0 [1],
with a 128-bit key and longer keystream period. The increase in key length
from 80- to 128-bit addresses brute-force attacks; if an attacker should try an
exhaustive search for the correct key she would now have ~ 28 x 103 additional
possible keys to search through. The increase of the state size provides strong
protection again Biryukov-Shamir Time-Memory-Data attacks [1].

Note: We shall refer to MICKEY-128 2.0 simply as MICKEY from this point.

2.1 Clocking the Keystream Generator

The MICKEY architecture is based on two 160-bit registers R and .S; the state
of both the R and S registers controls the clocking of each register in a method
called mutual irregular clocking. Following the notation of [2], the pseudocode
defining the clocking of the keystream generator is shown below:

CrLock-KG(miz, I)
1 ¢ < S[p4] @ R[106]

On the Parallelization of the MICKEY-128 2.0 Stream Cipher 3

cs < S[106] & R[53]
ir < I & (S[80] - mix)
CLOCK-R(ir, cr)
CLock-S(I, ¢g)

T W N

where @ and - are the bitwise XOR and AND operations, respectively, and R][i]
and S[i] are the ith bits of registers R and S, respectively.

The mix and input bit I are used when initializing the generator (using bits
from the key and IV), as explained in [2]. After initialization, however, both bits
are set to zero and the keystream output (at each clocking of CLOCK-KG) is
the combination of the first bits of R and S:

2z = R[0] & S[0] (1)

The use of bits from both registers to generate the keystream output is to prevent
algebraic attacks which take advantage of the correlation between the output and
linearity of one the registers (specifically, R); see Section 7 of [1] for more details
on the design principles of MICKEY.

2.2 Clocking the R Register

The “engine” behind the keystream generator is the 160-bit register R, where
the leftmost bit is labeled R[159] and the rightmost is R[0]. Babbage and Dodd
define register R as the linear register; when the control bit ¢y = 0 register R
is a Galois—style Linear Feedback Shift Register (LFSR) whose characteristic
polynomial Cg(z) is determined by the tap positions RTAPS, as explained in
[2]. Clocking a Galois—LFSR is performed by shifting the register and adding
the feedback bit f to the taps; Figure 2 illustrates this idea. After each clocking
the updated register is labeled R’. When the control bit ¢y = 1, in addition to
shifting and adding the feedback bit, the previous (buffered) state bits of R are
added to R’. The pseudocode below defines the clocking of R:

|7159 158157156 |155| 154|153 6 | 5|43 2 1 0

Fig. 2. Galois LFSR

Crock-R(ir, cr)

1 R «— R<1 /*shift left by 1*/

2 f < R[159] @iy /[*feedback bit*/
3 iff=1

4 D. Stefan and C. Mitchell

4 then R —« R T
5 ifer=1
6 then R' — R'®R
7 R—R

where T is a binary 160-bit vector whose bits are defined as:

(2)

Tli] = { 1if ¢ € RTAPS;
0 otherwise.
and iy is the input bit used during initialization.

In defining CLOCK-R we have used a higher level of abstraction (similar to
the submitted C code implementation by Babbage and Dodd) than the described
algorithm presented in [2]. Rather than describing the algorithm as operations
on 160 one-bit registers, we are equivalently describing the algorithm in terms
of 160-bit vector operations.

2.3 Clocking the S Register

Using the same level of abstraction as CLOCK-R we define the clocking of S, the
nonlinear register, according to the pseudocode below (note that the pseudocode
is equivalent to the clocking of S as originally defined in [2]):

CLocK-S(is, ¢s)
1 Ko« (0,1,1,...,1,1,0) /*160-bit mask*/

2 K« (1,0,0,...,0,0,0)

3 55«1

4 Sy —S>1

5 f« S[159] @ ig /*feedback bit*/
6 p<— S[158]

8 ifp=1

9 then ' — 5" @ K;

10 iff=1

11 then

12 if g =1

13 then S’ — S' © FB;
14 else S — S ®FBy
15 S5

To keep all the “instructions” as 160-bit vector operations, we extend the 158-bit
COMP; vectors (constants COMP; and FB; are defined in [2]) to 160-bit vectors
by padding the beginning and end with 0’s. Furthermore, rather than explicitly
assigning bits S’[159] = S[158] and S’[0] = 0 we use masks Ky and K; (lines
7-9); in doing so we will later be able to express CLOCK-S using simple algebraic
methods (see Section 3). Note that unlike clocking register R, when the control
bit ¢g = 0 the clocking of S does not reduce to that of a simple Galois—LFSR.

On the Parallelization of the MICKEY-128 2.0 Stream Cipher 5

Although R is the “engine” of the keystream generator, simply using the out-
put of a linear register as the keystream will allow an adversary to easily deter-
mine future stream values [11]. The use of the S register as part of the keystream
output and mutual clocking of the two registers as specified by Babagge and
Dodd avoids these distinguishing attacks [1], and therefore strengthens the se-
curity of MICKEY.

3 Parallelizing the Algorithm

The cryptographic algorithm is parallelized nx by looking-ahead for n —1 future
feedback, control, and keystream bits {f®), ¢ 2,1, : 1 < i < n} and then
clocking the R and S registers n times ahead. For example, if we wish to obtain
four output bits z;1;(0 < i < 3) at once, at current state k we need to look-
ahead for three control, feedback, and output bits which are then used to clock
the two registers four times ahead.

In [1, 2], Babbage and Dodd suggest a method of generating multiple keystream
bits using lookup tables (LUTs). We considered a table—based method, however,
it proved to be less efficient than the method we present next. See the Appendix
for details on the table-based optimization.

3.1 Calculating the Critical Look-ahead Bits

At each clocking of the keystream generator we calculate the upcoming control,
feedback, and keystream output bits and then clock registers R and S. Examining
the algorithm, however, we observe that future control and feedback bits can be
determined without having to fully clock the two registers again; the control,
feedback, and keystream bits only depend on the clocking of a small number of
bits from R and S. We refer to these bits as the critical bits of R and S.

From the CLOCK-KG pseudocode (see Section 2.1) the upcoming control bits
(¢ and ¢§) and upcoming keystream output (zx+1) depend on the following look-
ahead critical bits: R'[0], R'[53], R'[106], S’[0], S'[54], and S’[106]. To correctly
parallelize the algorithm we need to clock the two registers twice ahead; to do
so we also need to determine the upcoming feedback bit (f’) for both registers.

Determining the look-ahead critical bits of R (considering the values of FB;[]
and whether R[] is a tap) is simply accomplished by clocking each bit (R[])
individually:

R'[159] = R[158] ® (R[159] - er) = f'
R'[106] = (R[105] & f) @ (R[106] - cr) @)
R’[53} 5[[52] @ f) @ (R[53] - ex)

R0 = f @ (R[0] - er)

6 D. Stefan and C. Mitchell

and similarly for S (considering the values of COMP;]]),

S'[159] = S[158] @ (f - T5) =

S'[158] = S[157] & (S[158] - (S [159]@91)):
5'[106] = S[105] & (S[106] - S[107]) & (f - cs) (4)
ﬁﬂ:?] (S[54] - S[55]) & (f - ¢s)

where the bar operator on cg is defined as the NOT operation
Cs = 1- Cs , (5)

so that 0 =1 and 1 = 0.
Using the critical bits of (3) and (4) we can determine the upcoming keystream
output

Zrp1 = R'[0] @ S7[0] (6)

and calculate the look-ahead control bits
cr = S'[54] @ R'[106] and cg = S'[106] & R'[53] . (7)

These bits (and the feedback bits) are then used to clock registers R and S
ahead by two. Note that in the above equations we assume that the keystream
generator has already been initialized, so mix = 0 and I = 0. To consider the
initialization, (3) and (4) need to be slightly altered.

It is important to see that if we wish to clock by n > 2 we need to also
determine R”[], R”'[-],..., R™ VD[] and §"[],5"[],..., 8" VD[], which depend
on an increasing number of individually—clocked critical bits. This increases the
overall complexity of the look-ahead architecture.

For example, if we wish to clock ahead by three, to calculate R’[159] we
need f' = R'[159] and R’[158]. The feedback bit f’ was already calculated,
however R'[158] was not; therefore, we need to clock R[158] which depends on
an additional critical bit R[157].

As n increases, the number of critical bits approaches the size of the registers
and the complexity of the look-ahead architecture becomes impractical.

3.2 Clocking R Ahead n Times

To distinguish between matrices and vectors, in the following two sections we
follow a different notation: registers R and S and constant T are represented by
row vectors r, s, and t.

Thus far we have represented the algorithm for clocking register R (vector
r) using pseudocode CLOCK-R . The short algorithm, which simply performs
linear operations on r can instead be expressed more compactly using simple
matriz algebra according to:

h(r) =r' = Ar + (fD)t + (exDr = [A + (erD)]r + (fDt (8)

On the Parallelization of the MICKEY-128 2.0 Stream Cipher 7

where I is a 160 x 160 identity matrix and A is defined as:

00---00
10---00

A—|01---00 (9)
00---10

an operator performing a left shift by 1 (line 1 of CLOCK-R is equivalent to Ar).
Note that all the operations and elements of the vectors and matrices in (8) are
modulo 2, so the 4+ operator is simply a bitwise XOR on the binary vectors.

Since we are interested in clocking forward, clocking by n can be accomplished
by clocking (8) n times

r(= h(r(”_l)) = h(h(---h(h(r))---)) (10)

while keeping track of all the feedback and control bits {f(*), cg) (0<i<n)}.
For example, according to the above equation, clocking twice is equivalent to
clocking (8) again, such that

' = p(r) = h(h(r)) = [A+ (DA + (@Dlr + (/D) + (Dt (11)

where f’ and ¢} are the upcoming feedback and control bits calculated using the
method previously discussed in Section 3.1.

To achieve the desired result (clocking by n), clocking once every “iteration”
according to (10) would take ~ n iterations. However, if n = ab the number
of iterations is O(a + b) since we already clocked by b to get r’ and a to get
r® = 7(r) we simply have to clock b using the “clock-by-ax” equation 7(r®) =
r%. Furthermore, if b | @ then it only takes ~ a iterations. More importantly, if
n = 2F, it is only necessary to go through ~ lgn equations to derive the desired
result for clocking r.

For example, to clock r in advance by four, we can directly clock r four times
using (10) or equivalently clock r’ one time using (11):

r® = 6(r) = h(h(h(h(r)))) = (") , (12)
which is

o(r) = [A+ (er'DI([A + (er D" + (F7D)t) + (F7 1)t
= [A+ (' D]([A + (¢ DI([A + (erD]([A + (erT)r+ (13)
+(fDt) + (f'Dt) + (f"Dt) + (f’”I)t
Similarly, clocking ahead by eight is most efficiently accomplished by clocking
r™® once using ¢(r) of (13):

<) = [A+ (@ DI(A + (DA + (@ DI(A+ (@ Do)+)
H(IODE) + (D) + (FO1)E) + (FOD)e

taking a total of ~ Inn = 3 iterations to derive the final 8 x clocking equation.

8 D. Stefan and C. Mitchell

Note: In implementing the above, (14) needs to be expressed in terms of r
(simply by replacing ¢(r) with the expanded (13)). If clocking by n > 8, this is
also necessary to keep track of all the look-ahead feedback and control bits.

3.3 Clocking S Ahead n Times

Analogous to representing CLOCK-R with (8), although significantly more com-
plicated, we can represent CLOCK-S with:

k(s) = (Ko + pKi)(s.(Bs) + [A + CoB + Cy]s + Ick) + fesIfy + fesIfy , (15)

where . is element-wise multiplication modulo 2 (implemented using bitwise
AND), f; are the FB; vectors and vector ¢; = c¢g.c; and c; are the COMP;
vectors, from which matrices C; = diag(c;). Row vectors k; are the the bit-
masks K; defined in CLOCK-S and K; = diag(k;). Multiplication by a diagonal
matrix is equivalent to element-wise multiplication, so for example

C;s = diag(cy)s =cy.8, (16)

which can be implemented by a bitwise AND of the vectors ¢, and s. For clarity
we express (15) using all the constants of CLOCK-S . However when deriving
the equations for clocking by n > 2 (e.g n = 8) it is important to combine terms
(e.g L = A + CyB + C). Finally, matrix B is defined as

B=AT, (17)

a right shift by one operator, so that Bs is equivalent to line 4 of CLOCK-S .
In the same manner that we clocked r in (8), clocking s n times is directly
accomplished by:

S = k(s D) = k(k(- - k(k(s))) (1)
from which clocking by two is
s = 9(s) = (Ko +p'K1)(k(s).(Bk(s)) + Lk(s) + Icg) + f'csIfy + f/ciIfy . (19)

Using the same method of clocking r n times using ~ lgn relations, we can clock
s four times ahead by clocking s” with the expanded (in terms of s) ¥(s) of (19)
and representing this result by s = 0(s) we can clock s ahead eight times by
clocking s once (effectively four times): £(s) = 0(s®). The results for the 4x-
and 8x-clocking are not shown as they provide no additional insight into the
method of clocking ahead.

4 Implementation and Discussion

The implemented designs were targeted to the Xilinx Virtez-II Pro XC2VP30
FPGA hosted on the XUPV2P evaluation board. The code was written in Verilog

On the Parallelization of the MICKEY-128 2.0 Stream Cipher 9

T
SRy
B
LD]
_‘f

160

<<2 R"
3 }>D
£ / -
160

<<1

B
Lo |
_‘f

Fig. 3. Clocking R twice ahead.

and synthesized using Synplicity’s Synplify Premiere version 9.0.1. The compiled
designs were then simulated in Modelsim version 6.2c and the final timing anal-
ysis was performed in Modelsim and Premiere for further optimization.

As a proof-of-concept, we implemented two different designs. The first design
is a direct implementation of the pseudocode presented in Section 2; the final
synthesized design is clocked at 292.9 MHz with a throughput of 292 Mbps
using only 1% of the slices available on the FPGA (186 out of 13,696). The
second design is an implementation of the stream cipher based on the method
of parallelization presented in Section 3. We implemented a 2x clocking of R by
factoring (11) and recombining terms to obtain

" = AAr + (¢ + cr)Ar + (cper)Ir + (ep f + f)It + fAL (20)

which can be easily expressed in pseudocode and logic primitives. Figure 3 shows
a possible implementation a synthesis tool might create.

Because the equation for clocking S twice is more complex than that of R, our
design is a direct implementation of (19), leaving the simplification to the design
tools. The final design is clocked at 280.5 MHz with a throughput of 560 Mbps
using 392 slices. Table 1 compares our results with previous implementations
of MICKEY and the AES and A5/1 ciphers on similar FPGAs (Virtex and
Virtex-II). With the exception of AES, the throughput of the proposed two-
way parallelized MICKEY outperforms the other implementations while still
maintaining an excellent throughput/area ratio of 1.43.

10 D. Stefan and C. Mitchell

Table 1. Comparison of different stream cipher implementations

Cipher Device |Slices | (cnonsPt| MEP/
AES[4] XC2VP50| 466 1.30 2.79
A5/1[6] XC2V250 | 32 0.19 5.88
MICKEY-128[10] XCV50 | 167 0.17 1.02
MICKEY-128 2.0[3]| XC2V6000| 190 0.20 1.05
Direct design XC2VP30| 186 0.29 1.58
Parallelized 2x XC2VP30| 392 0.56 1.43

Initialization of the 128-bit key, variable IV, and pre-clocking is performed
as explained in [2]. However the number of times R and S are clocked for the
second design is half that of the direct implementation (requiring the IV to be
even).

5 Conclusion

In this paper we present a method of improving the MICKEY-128 2.0 stream
cipher proposed to the eSTREAM project. The eSTREAM project is currently in
its final evaluation phase, with MICKEY-128 2.0 being one of the final candidates
to be widely adopted.

We implemented a direct (1-bit keystream output) and a two-way paral-
lelized (2-bit keystream output) design of MICKEY-128 2.0 on a Xilinx Virtex-1I
Pro FPGA to demonstrate the feasibility of maintaining the low-resource, high-
throughput, and high-security qualities of the stream cipher. In addition, we con-
sidered the algorithmic design for generating an arbitrary number of keystream
bits simultaneously. Future work includes further optimization and pipelining of
the stream cipher as well as implementations considering 4- and, more impor-
tantly, 8-bit keystream generation.

Acknowledgments

The authors would like to thank Fred Fontaine for his support in providing the
necessary resources and Ishaan L. Dalal, Jared Harwayne-Gidansky and Sara E.
Foley for their insightful comments and suggestions.

References

1. Babbage, S., Dodd, M.: The stream cipher MICKEY 2.0.
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf

2. Babbage, S., Dodd, M.: The stream cipher MICKEY-128 2.0.
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey128_p3.pdf

On the Parallelization of the MICKEY-128 2.0 Stream Cipher 11

3. Bulens, P., Kalach, K., Standaert, F-X., Quisquater, J.: FPGA Implemen-
tations of eSTREAM Phase-2 Focus Candidates with Hardware Profile.
http://www.ecrypt.eu.org/stream/papersdir/2007/024.pdf (2007).

4. Denning, D., et al.: An Implementation of a Gigabit Ethernet AES Encryption
Engine for Application Processing in SDR. IEEE 60th Vehicular Technology Conf.
2004-Fall, vol. 3, pp. 19631967 (Sep. 2004).

5. Gaj, K., Southern, G., Bachimanschi, R.: Comparison of hard-
ware performance of selected Phase II eSTREAM candidates.
http://www.ecrypt.eu.org/stream/papersdir /2007/026.pdf (2007).

6. Galanis, M.D., Kitsos, P., Kostopoulos, G., Sklavos, N., Koufopavlou, O., Goutis,
C.E.: Comparison of the Hardware Architectures and FPGA Implementations of
Stream Ciphers. Proceedings of the 2004 11th IEEE International Conf. 2004-Fall,
pp. 571-574 (Dec. 2004).

7. Good, T., Benaissa, M.: Hardware Results for Selected Stream Cipher Candidates.
http://www.ecrypt.eu.org/stream /papersdir/2007/023.pdf (2007).

8. Gurkaynak, F. K., Luethi, P., Bernold, N., Blattman, R., Goode, V., Marghitola, M.,
Kaeslin, H., Felber, N., Fichtner, W.: Hardware Evaluation of eSTREAM Candi-
dates: Achterbahn, Grain, MICKEY, MOSQUITO, SFINKS, Trivium, VEST, ZK-
Crypt. http://www.ecrypt.eu.org/stream/papersdir/2006,/015.pdf (2006).

9. Khazaei, S., Samasizadeh, M., Mohajeri, J.: On the Statistically Opti-
mal Divide and Conquer Correlation Attack on the Shrinking Generator.
http://mirror.cr.yp.to/eprint.iacr.org/2005/126.pdf (2005).

10. Kitsos, P.: On the Hardware Implementation of the MICKEY-128 Stream Cipher.
http://www.ecrypt.eu.org/stream/papersdir/2006 /059.pdf

11. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, London (1996).

12. Rogawski, M.: Hardware evaluation of eSTREAM Can-
didates: Grain, Lex, Mickey128, Salsa20 and Trivium.
http://www.ecrypt.eu.org/stream/papersdir/2007/025.pdf (2007).

13. Schneier, S.: Applied Cryptography: Protocols, Algorithms, and Source Code in C,
Second Edition. John Wiley & Sons, Inc. (1996).

Appendix: LUT-based Parallelization

In Section 3 we referred to a different method of generating more than one
keystream output bit and clocking the two registers based on lookup tables, as
suggested by Babbage and Dodd in [1,2]. We briefly discuss the table-based
approach optimization with respect to register R; however, the same method
can be applied to register S.

The most direct method of clocking the register R twice is to duplicate the
code of CLOCK-R (see Section 2.2) for the next clocking. This technique is
essentially the same as loop-unrolling in compiler optimizations, where more
than one iterations of the loop are unrolled into one iteration. However, most
operations of CLOCK-R are conditional (depend on ¢y and f) and to include the
next iteration (in order to clock twice), additional conditions (¢; and f’) must
also be considered. Table 2 summarizes the operations needed to clock R twice
based on the current and upcoming control and feedback bits. It is important
to note that the implementation would not be a direct LUT based on Table

12 D. Stefan and C. Mitchell

2, but would instead be composed of a smaller LUT of operations on T (e.g
(T' < 1) & T), which will be added to conditional-transformations of R (e.g.
(R<2)s (R« 1)).

From the table, we see that many of the operations can be easily combined
resulting in an implementation would be at least as efficient as our presented
method. However, for increasing n the table-based method becomes difficult to
simplify without software (the table size is ~ 22"), in comparison to a few lines
of algebra using the method we presented in Section 3.

Table 2. Necessary Operations for 2x Optimization

cr f ¢t f'| Expression for R”

000 0|Rx2

000 1|(RK2)®T

001 0| (RK2)BRKI)

001 1|(R<2)8R<1)8T
010 0| (R<2)B(TK1)
0101|(Rk2)(T<<)aT

011 0| (Rk2T<<l)®RK1)®T
011 1|(Rk2T<BRKI)
1000|(Rg2)dR<1)
1001 (Rg2)®(R<)T
101 0|RK2

101 1|(RK2)®ROT

1100 (R2)BR<KB(T<)
1101 [(R2)(T<K1)B(RK)BT
1110 (RK2)8(T<)aT
1111 (Rk2)8(T<K1)®R

