
Multi-core IFC
Securing the space-time continuum

Gary Soeller and Deian Stefan
UC San Diego

{gsoeller, deian}@cs.ucsd.edu

Concurrent information-flow control (IFC) systems are a
promising defense against information leakage and corruption
in the presence of untrusted code. For example, the language-
level IFC system LIO [6] has been used to build web platforms
largely consisting of untrusted code [2]. In contrast to more tra-
ditional, sequential IFC systems, concurrent IFC systems must
address covert channels—which arise due to concurrency—
to be deemed secure. For example, LIO addresses the inter-
nal timing covert channel: a channel which allows a public
thread to observe the timing behavior of a concurrent secret
thread. Similarly, it addresses the termination covert channel:
a channel which allows a public thread to observe whether a
concurrent secret thread is still running.

Though LIO and other state-of-the-art concurrent IFC sys-
tems (e.g., [4]) eliminate these covert channels by construction,
the underlying concurrency models do not account for threads
running in parallel. To be truly useful, it is important for these
systems to account for parallelism—this is especially the case
for web servers which run on many-core CPUs. Unfortunately,
running threads of varying sensitivity in parallel (e.g., on two
cores) not only reintroduces the old covert channels, but also
introduces new covert channels.

Though we believe these issues arise in most existing
concurrent IFC systems, we focus on LIO as implemented atop
the Haskell/GHC runtime for which we have running attacks.

Time-based attacks. Consider an LIO program running a
public thread (p0) on one core c0 and, in parallel, two
threads—one public (p1) and one secret (s1)—on another
core c1. In this setting, the secret thread can leverage the
termination channel and collude with the public threads to leak
secret data. Specifically, based on a secret, s1 loops forever or
terminates early. In doing so, the amount of time the runtime
system will schedule p1 on c1 will either remain the same
or double—a measurement that directly leaks the secret and
is internally observable by the public threads. Alternatively,
s1 can employ a “fork bomb:” spawn n new threads on c1,
where n directly corresponds to a secret value. Here, again,
the amount of time p1 runs on c1 (relative to an unperturbed
p0) will directly reveal the secret.

Space-based attacks. In addition to abusing runtime sched-
ulers to leak information, in a parallel setting, memory
management—the garbage collector (GC) in the case of LIO—
can also be used to leak information. For example, s1 can,
based on a secret, exhaust all of memory (or not) to introduce

a new termination channel. Alternatively, as observed in [5]
for sequential programs, s1 can force garbage collection on c1
and directly affect p1’s run-time. As before, the public thread
p0 running on the other core can be used to race p1 and leak
the secret data internally to the program.

These covert channels exist because threads running in
parallel share time (CPU time) and space (memory heap)
which existing IFC models do not account for. Unsurprisingly,
a secret thread can manipulate the state of these shared
resources (e.g., via the scheduler or GC) and collude with
public threads to leak sensitive data.

Unifying space and time. We propose a new design for
a language runtime system that allows concurrent language-
level IFC systems in the style of LIO [3] to run threads in
parallel, on multiple cores. Our design is based on a key
insight: since the label of a newly spawned thread must be
at least as sensitive as the label of the parent [3, 6], i.e.,
a secret thread cannot create a public thread, we can safely
dynamically partition both space and time hierarchically. We
use this insight to create a hierarchical ownership model for
resources that operate in space and time.

In our model, a thread must give up some of its resources
to a child thread during thread creation. For example, when
a thread spawns new threads, it relinquishes some of its
resources—part of its CPU time and memory—to its children.
Similarly, when these threads spawn new threads they will, in
turn, give up part of their resources to their children, etc. By
ensuring that each thread owns and executes in its own space-
time continuum, a secret thread cannot affect public threads
via the scheduler (e.g., by fork bombing) or garbage collector
(e.g., by exhausting memory).

Since cleaning up memory is as crucial as not leaking it [1],
our model also ensures that memory and CPU time can always
be reclaimed. However, since reclaiming resources may leak
information (e.g., whether a secret child thread terminated),
our model imposes additional restrictions on the IFC system
to prevent inadvertent flows.

We are in the process of implementing this model by
extending LIO and its underlying Haskell runtime system,
GHC. Specifically, we are a) extending the resource containers
from [7] to hiearchically partition and reclaim thread heap
space and b) modifying the GHC scheduler to implement a
hierarchical scheduling algorithm that is synchronized across
multiple CPU cores.



REFERENCES

[1] S. Chong and A. C. Myers. End-to-end enforcement of
erasure and declassification. In Proceedings of the 21st
IEEE Computer Security Foundations Symposium. IEEE,
2008.

[2] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières,
J. Mitchell, and A. Russo. Hails: Protecting data privacy
in untrusted web applications. In Proceedings of the Sym-
posium on Operating Systems Design and Implementation.
USENIX, 2012.

[3] S. Heule, D. Stefan, E. Z. Yang, J. C. Mitchell, and
A. Russo. IFC inside: Retrofitting languages with dy-
namic information flow control. In Proceedings of the
Conference on Principles of Security and Trust. Springer,
2015.

[4] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and
A. C. Myers. Fabric: A platform for secure distributed
computation and storage. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems princi-
ples. ACM, 2009.

[5] M. V. Pedersen and A. Askarov. From trash to treasure:
timing-sensitive garbage collection. In Proceedings of the
38th IEEE Symposium on Security and Privacy. IEEE,
2017.

[6] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell,
and D. Mazières. Addressing covert termination and
timing channels in concurrent information flow systems.
In International Conference on Functional Programming.
ACM SIGPLAN, 2012.

[7] E. Z. Yang and D. Mazières. Dynamic space limits
for haskell. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation. ACM, 2014.


