
1

Liquid Information Flow Control

NADIA POLIKARPOVA, University of California, San Diego
DEIAN STEFAN, University of California, San Diego
JEAN YANG, Carnegie Mellon University
SHACHAR ITZHAKY, Technion
TRAVIS HANCE, Carnegie Mellon University
ARMANDO SOLAR-LEZAMA,Massachusetts Institute of Technology

We present Lifty, a domain-specific language for data-centric applications that manipulate sensitive data. A
Lifty programmer annotates the sources of sensitive data with declarative security policies, and the language
statically and automatically verifies that the application handles the data according to the policies. Moreover,
if verification fails, Lifty suggests a provably correct repair, thereby easing the programmer burden of
implementing policy enforcing code throughout the application.

The main insight behind Lifty is to encode information flow control using liquid types, an expressive yet
decidable type system. Liquid types enable fully automatic checking of complex, data dependent policies,
and power our repair mechanism via type-driven error localization and patch synthesis. Our experience
using Lifty to implement three case studies from the literature shows that (1) the Lifty policy language is
sufficiently expressive to specify many real-world policies, (2) the Lifty type checker is able to verify secure
programs and find leaks in insecure programs quickly, and (3) even if the programmer leaves out all policy
enforcing code, the Lifty repair engine is able to patch all leaks automatically within a reasonable time.

ACM Reference Format:

Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando Solar-Lezama. 2018.
Liquid Information Flow Control. Proc. ACM Program. Lang. 1, CONF, Article 1 (January 2018), 46 pages.

1 INTRODUCTION

Modern applications handle sensitive user data in complex ways, subject to increasingly complex
security policies. For example, social networks like Twitter and Facebook must ensure that they
handle user data according to GDPR, health record systems (e.g., the Dexcom diabetes management
system) must abide by HIPAA, and financial applications like Stripe and Mint must ensure they
are PCI compliant. In most cases, these applications even allow users to restrict who can access
their data—e.g., on Facebook a user can restrict access to (part of) their profile to their friends.
Unfortunately, many applications specify and enforce these policies by strewing checks throughout
application code—an error prone process that has lead to many inadvertent data leaks [Cimpanu
2020; Doctorow 2015; Hunt 2020; Privacy Rights Clearinghouse 2020].

A promising approach to tackling this challenge is to use web frameworks like Hails [Giffin et al.
2012] and Jacqueline [Yang et al. 2016a] which separate the security policy from the application code
and enforce the policy using dynamic information flow control (IFC). In such IFC frameworks, the
programmer declaratively specifies expressive data-dependent policies; the language runtime—or
in the case of Hails, the LIO monad [Stefan et al. 2017, 2011b]—then automatically enforces these
policies to prevent leaks (e.g., by throwing an exception or replacing sensitive values with defaults).

Authors’ addresses: Nadia Polikarpova, University of California, San Diego, npolikarpova@eng.ucsd.edu; Deian Stefan,
University of California, San Diego, deian@cs.ucsd.edu; Jean Yang, Carnegie Mellon University, jyang2@cs.cmu.edu; Shachar
Itzhaky, Technion, shachari@cs.technion.ac.il; Travis Hance, Carnegie Mellon University, thance@cs.cmu.edu; Armando
Solar-Lezama, Massachusetts Institute of Technology, asolar@csail.mit.edu.

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/

1:2 N. Polikarpova et al.

program

policies

expected type
synth

synth

synth

expected type

expected type

patch

patch

patch

type
checker

Fig. 1. Patching information leaks with Lifty.

Fig. 2. Author’s home screen in EDAS, shared with

permission of Agrawal and Bonakdarpour [Agrawal

and Bonakdarpour 2016].

Unfortunately, enforcing policies dynamically as in Hails and Jacqueline has inherent limitations.
First, the IFC systems often perform redundant checks. In many applications, developers already
insert checks in the application code to, for example, implement the user interface; alas, the IFC
systems do not know about these checks and will perform similar checks when enforcing the policy.
These checks impose unnecessary performance overheads, i.e., they tax the application latency
a second time. Second, errors due to policy violations only manifest at runtime: the programmer
doesn’t know if their policy is too strict until their application crashes at runtime.
Static IFC systems (e.g., [Buiras et al. 2015; Chlipala 2010; Jia and Zdancewic 2009; Li and

Zdancewic 2005; Myers 1999; Russo et al. 2008a; Swamy et al. 2010; Zheng and Myers 2007])
precisely address these limitations: they do not impose unnecessary runtime checks and catch
errors early—at compile time. Unfortunately existing static IFC systems either lack support for
expressive data-dependent policies (necessary in modern applications), or they require manual
proofs or annotations to be strewed thought the application code.

In this paper, we take the best from bothworlds: we present a static IFC system that automatically—
without manual proofs or annotations—enforces Hails-like expressive, declarative policies.
The Lifty language. Our first insight is that we can encode static IFC into the framework of liquid
types [Rondon et al. 2008; Vazou et al. 2013, 2014b], an expressive yet decidable type system. To
this end, we use predicates from decidable logics to directly specify expressive policies and adopt
security monads [Li and Zdancewic 2006; Russo et al. 2008a; Vassena and Russo 2016] to enforce
these policies. We do this in Lifty—short for Liquid Information Flow TYpes—a domain-specific
language (DSL) for writing secure data-centric applications. With Lifty, programmers (1) write
code in our custom IO monad called TIO and (2) specify policies in a decidable logic when declaring
sources of sensitive data. The Lifty type-checker uses liquid types to verify the program against
the policies and flags any unsafe access to sensitive data as a type error.
Leak Repair. By taking a static approach to enforcing information flow, Lifty can also help
programmers repair their unsafe code. Our insight here is to use type errors to localize the source of
each leak and suggest a best-effort leak patch (Fig. 1). The suggested patches guard the unsafe access
with a policy check and, for the failure case, implement a safe escape—e.g., they return a default
value. The key to the efficiency of our repair technique is a new leak localization mechanism that
relies on the Lifty type-checker to infer an expected type for each unsafe access. While efficient,
this approach is necessarily limited: although the patch is guaranteed to fix the leak, the generated
policy check might be conservative, or the repair attempt might fail (e.g., when it cannot find a safe
escape). Nevertheless, we find this best-effort useful in practice.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:3

Evaluation.We evaluated our prototype implementation of Lifty on a series of small, but repre-
sentative micro-benchmarks, as well as three case studies: a conference manager, a health portal,
and a student grade record system. For each of these programs, we write the code omitting all
policy checks (i.e., as if all the data were publicly visible), and ask Lifty to repair the code—and
make it secure. Our evaluation demonstrates that our solution supports expressive policies and
is able to generate all necessary patches for our benchmarks within a reasonable time (within a
minute for each of our case studies).
Contributions. In summary, we make the following contributions:
(1) The TIO Monad: an encoding of static IFC into liquid types, that supports fully automatic

verification of expressive policies.
(2) Leak repair: we combine novel leak localization with type-driven synthesis to generate

best-effort patches for the leaks.
(3) Prototype implementation: we implement a prototype of Lifty and evaluate our system on

several micro-benchmarks and case studies.

2 MOTIVATING EXAMPLE

We motivate Lifty using an example based on a leak from the EDAS conference manager [Agrawal
and Bonakdarpour 2016]. In this section, we describe the anatomy of this leak, show how Lifty
can detect it at compile-time given a declarative security policy, and demonstrate how our tool
automatically synthesizes a patch for this leak. The core technical innovation that enables automatic
verification and synthesis—the Lifty type system—is introduced in Sec. 3, together with more
advanced examples that demonstrate the flexibility of our language.

2.1 The EDAS Leak

Fig. 2 shows a screenshot of the EDAS conference manager home screen. On the home screen,
users are presented with an overview of all their submitted papers (both old and new). Color coding
indicates PC decisions: green papers have been accepted, orange have been rejected, and yellow
papers are awaiting notification. As usual, users are not supposed to learn the acceptance decision
of their papers before the notifications are out. But, the site is leaky: in the figure, we can infer that
the first one of the yellow papers has been tentatively accepted, while the second one has been
tentatively rejected. We can make this conclusion because the two rows differ in the value of the
“Session” column—and sessions are only displayed for accepted papers.

This leak is particularly insidious—indeed, it’s an example of an implicit flow: the “accepted”
decision does not appear anywhere on the screen, but it does conditionally influence the output of
the web applicatin. To prevent such leaks, it is insufficient to simply examine output values; we
must track the flow of sensitive information throughout the system.
Fig. 3 shows a simplified version of the leaky code (in Lifty syntax) that is used to display the

description of individual papers. This code retrieves the title and decision for paper p and, if the
paper has been accepted, it retrieves the session where the paper will be presented and displays it
to client together with the title; otherwise, it only displays the title1. In deciding to display the
session (or not), this code indirectly leaks the decision to client.

The easiest way to fix this leak is to check if the conference is in an appropriate phase (reviewing
is done), and only then display the session. But, even for a simple example like EDAS, we must
strew in such policy-enforcing code in the dozen of web request handlers that access papers, reviews,

1The ds parameter models the state of the data store; it is only used for specification purposes and is threaded through Lifty
programs explicitly for simplicity.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:4 N. Polikarpova et al.

1 showPaper ds client p = do

2 t ← getTitle ds p

3 dec ← getDecision ds p

4 if dec = Accept

5 then do

6 ses ← getSession ds p

7 print client (t + " " + ses)

8 else print client t

Fig. 3. Simplified version of the EDAS leak.

1 showPaper ds client p = do

2 t ← getTitle ds p

3 dec ← do x1 ← getPhase ds

4 if x1 = Done

5 then getDecision ds p

6 else return NoDecision

7 if dec = Accept

8 then do

9 ses ← getSession ds p

10 print client (t + " " + ses)

11 else print client t

Fig. 4. With a leak patch inserted by Lifty.

etc. Real web applications handle lots of sensitive data and have hundreads to thousands of such
handlers; getting all the right checks in all the right places is notoriously hard.

2.2 Programming with Lifty

In Lifty, the programmer explicitly associates sensitive data with declarative policies by annotating
input actions that retrieve data from the store with appropriate types. For example, to specify that
PC decisions are visible to everyone once the conference phase is Done but not otherwise, the action
getDecision in the EDAS example can be annotated with the type:
getDecision : : ds: Store → p: PaperId → TIO Decision <phase ds = Done, false>

The TIO type constructor is indexed by two security labels: the first label specifies when a user is
allowed to see the result of this action; we postpone the explanation of the second label to Sec. 3.
Labels can be expressive, value-dependent predicates as in this example—here, the label depends
on the state of the data store ds—or simple predicates (e.g., input actions for public fields “title” and
“session” are labeled true).

Given such policy-annotated actions, Lifty would statically reject the code in Fig. 3 with a type
error: the value of dec obtained on line 3 is flowing to client, but is not visible to client in the
current state ds. Moreover, Lifty would suggest a patch for this leak, as shown in Fig. 4. The fixed
code guards the access to the sensitive field “decision” with a policy check, and if the check fails, it
substitutes the true value of this field with a default value—a constant NoDecison. Lifty, in turn,
guarantees that the patched code respects the declared policies.
To our knowledge, only two other information-flow control tools support similarly expressive

declarative policies. The first is LIO, as used in the Hails web framework [Giffin et al. 2017, 2012],
or the LWeb framework [Parker et al. 2019]. LIO does not check policies statically. Hence, the
equivalent code of Fig. 3 would compile without errors. Instead, at run time, LIO would throw
an exception on either line 7 or 8, when trying to execute the print action (after inspecting the
decision). Though this successfully prevents the leak, it also means the programmer won’t find out
that their application is broken until run time.
The second tool is Jeeves as used in Jaqueline framework [Yang et al. 2016a]. As with LIO, the

equivalent Jeeves code of Fig. 3 would compile without errors. The runtime behavior of the Jeeves
code, however, is identical to the version patched by Lifty, i.e., the value of dec will be replaced
by a default whenever the conference is not Done. Unlike Lifty though, Jeeves achieves this using
faceted execution [Yang et al. 2012], i.e., by performing the computation on multiple versions of
each sensitive value, which can have prohibitive runtime overhead. Moreover, Jeeves replaces

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:5

sensitive values with default values implicitly, at run time—this makes it harder for the programmer
to modify the tool’s default mitigation strategy and find bugs due to default values.

3 OVERVIEW

In this sectionwe first describe how Lifty uses liquid types to enforce static information flow control.
We then explain how to use this IFC mechanism to implement secure data-centric applications with
complex, data-dependent policies. Next, we give the intuition for how Lifty’s type-driven repair
engine generates leak patches for these application. We wrap up the section with more advanced
examples from the conference manager.

3.1 Static IFC with TIO

Liquid types. Lifty builds upon a pure functional language with liquid types [Rondon et al. 2008;
Vazou et al. 2013]—types decorated with predicates from SMT-decidable logics. For example, we
can define the type of natural numbers as type Nat = {Int | 0 ≤ ν}, where ν is a reserved value
variable, which ranges over the values of the refined type. State-of-the-art liquid type systems feature
subtyping (e.g., Nat <: Int), as well as type constructors that can be indexed by both types and
refinement predicates. For example, we can define a type constructor List α <p: α → α → Bool>
for lists with elements of type α , where each in-order pair of elements satisfies a binary predicate
p; then the type List Nat <λ x y . x ≤ y> denotes a sorted list of natural numbers. Concretely our
implementation builds upon the Synqid language [Polikarpova et al. 2016], but a similar technique
could be used to add static IFC to LiqidHaskell [Vazou et al. 2014a].
Security lattice. Like almost all IFC systems, Lifty uses a security lattice to distinguish between
data with different levels of confidentiality. We, however, fix the security lattice to be the lattice of
refinement-logic predicates over principals. More precisely, a security label ℓ : User→ Bool denotes
information visible to users that satisfy ℓ2. For example, a key shared between alice and bob has a
security label λu .u ∈ [alice, bob]. In the rest of the paper we will use a reserved variable υ to range
over users in security labels and omit the λ-binding; for example, the label introduced above is
written as υ ∈ [alice, bob]. Note that the usual “can-flow-to” partial order in our security lattice
corresponds to reverse implication: l ⊑ h iff ∀υ.h ⇒ l , and hence the bottom (least secret) label is
⊥ = true and the top (most secret) label is ⊤ = false. Our lattice can be seen as a generalization of
DCLabels [Stefan et al. 2011a] and is thus at least as expressive [Montagu et al. 2013].
The TIO monad. To extend the base language with static IFC, we follow a long line of work on
security monads [Li and Zdancewic 2006; Russo 2015; Russo et al. 2008a; Vassena and Russo 2016]—
in particular SLIO [Buiras et al. 2015]—where sensitive computations are wrapped in a special
datatype indexed by a security label. Proper assignment of labels and their propagation through
the program are ensured by the types of primitives in the API of the security monad.

More specifically, Lifty introduces the type constructor TIO (“tagged input-output”), indexed by
a return type and two security labels, the input label i and the output label o. The type TIO T ⟨i,o⟩
denotes a secure computation that may read from resources at security level i (and below) and may
write to resources at security level o (and above). For example, a computation getSharedKey that
reads a key shared between alice and bob can have the type TIO String ⟨υ ∈ [alice, bob], false⟩
to indicate that its result should be viewed only by alice and bob, and that it does not have any
(user-visible) output effects.
Subtyping. The TIO constructor is covariant in the input label and contravariant in the output
label wrt. the lattice ordering, i.e., TIO T ⟨i1,o1⟩ <: TIO T ⟨i2,o2⟩ iff i1 ⊑ i2 and o2 ⊑ o1. For

2For simplicity, we use a concrete type User to denote principals; our approach also supports leaving this type as a parameter.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:6 N. Polikarpova et al.

getSharedKey : : TI String <υ ∈ [alice,bob]>

getSSN : : x: User → TI String <υ = x>

print : : x: User → String → TO () <υ = x>

Fig. 5. Example input/output actions.

1 -- Primitives (trusted)

2 data TIO α <i,o> = -- hidden from clients

3 return : : ∀α . α → TIO α <true, false>

4 bind : : ∀α,β,i,j,o,p . TIO α <i, o>

5 → (α → TIO β <j, i ∧ p>)

6 → TIO β <i ∧ j, o ∨ (p ∧ i)>

7 downgrade : : ∀ c,i,o .

8 TIO {Bool | ν ⇒ c} <i ∧ c> <o>

9 → TIO {Bool | ν ⇒ c} <i> <o>

10 -- Auxiliary (typed-checked)

11 type TI α <i> = TIO α <i, False>

12 type TO α <o> = TIO α <True, o>

13 seq : : ∀α,β,i,j,o,p . TIO α <i,o>

14 → TIO β <j,p>→ TIO β <j,o ∨ p>

15 mapM : : ∀α,β,i . (α → TIO β <i,i>)

16 → [α] → TIO [β] <i,i>

17 . . . -- liftM, filterM, sortByM

Fig. 6. Excerpt from the TIO API.

example, we can pass the getSharedKey computation from above to a function f with argument
x : TIO String ⟨υ = alice,υ = alice⟩. Intuitively this is safe, because f requires the result of x to
be visible at least to alice (while in fact the shared key is visible to both alice and bob), and
counts on x to output at most to alice (while in fact getSharedKey does not perform any user-
visible output). Because lattice ordering reduces to implication between refinement formulas, the
subtyping between TIO types can be automatically decided by the base language type checker (with
the help of an SMT solver).
Input/output actions. Lifty programmers identify sources and sinks of sensitive information
by providing a set of domain-specific atomic input and output actions, annotated with labels that
are assumed to be correct. Fig. 5 gives an example set of atomic actions that includes reading the
shared key of users alice and bob, reading a user’s social-security number (which is visible only to
the user themselves), and printing a string to a given user. TI and TO are type synonyms for TIO
computations that perform only input or only output, respectively (see Fig. 6).

Similar to other IFC systems (e.g., LIO and SLIO), we leave Lifty agnostic to the particular choice
of input/output actions; depending on the domain, actions can be used to model reading and writing
to mutable memory, file system, or database, as well as HTTP responses, sending emails, etc.
TIO Primitives. Client code manipulates TIO computations through the API shown in Fig. 6. The
API consists of three core primitives; these form the trusted computing base of Lifty (together
with the language runtime and type checker). The API also exposes several auxiliary functions that
are built on top of the primitives and verified using the type checker.
The first core primitive, return, simply embeds a pure value into a sensitive computation, and

hence has the strongest possible labels: input label ⊥ and output label ⊤. The bind primitive (the
analogue of >>= in Haskell) sequences two sensitive computations, a and b, such that a’s result
flows into b. To prevent leaks, we need to guarantee that a’s input label can flow to b’s output label.
To enforce this, we simply add a’s input label i as a conjunct to b’s output label. Moreover, we set
the input label of bind a b to the join (conjunction) of the input labels of a and b, and its output label
to the meet (disjunction) of the output labels of the two. Finally, the downgrade primitive supports
safe declassification of boolean terms; we postpone its presentation to the end of this section.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:7

1 ok1 =

2 do

3 k ← getSharedKey

4 print bob k

5 print alice k

1 bad1 =

2 do

3 b ← getSSN bob

4 print bob b

5 print alice b

1 bad2 =

2 do b ← getSSN bob

3 print bob b

4 a ← getSSN alice

5 print alice a

1 ok2 =

2 do do b ← getSSN bob

3 print bob b

4 a ← getSSN alice

5 print alice a

Fig. 7. Examples of well-typed (ok1, ok2) and ill-typed (bad1, bad2) TIO computations.

Auxiliary TIO API functions. Often a Lifty program sequences two computations a and b, but
no information is actually flowing from a to b. To relax the restrictions imposed by bind in this
case, we provide an API function seq (the analogue of >> in Haskell). The type of seq does not
enforce any relationship between the labels of a and b. Note that seq is not a primitive, and can be
implemented using bind and downgrade.

The rest of the TIO API contains monadic combinators such as liftM (for lifting a pure function
into TIO), mapM (for mapping a sensitive computation over a list)3, as well as filterM and sortByM

(for filtering and sorting based on sensitive criteria). All auxiliary functions are implemented in
terms of the three primitives and type-checked automatically by Lifty in less than a second.
Examples. To gain some intuition about our IFC encoding, consider simple examples of TIO
computations in Fig. 7. Lifty’s surface syntax supports Haskell-like do-notation [Marlow 2010],
which desugars into invocations of bind and seq in a standardway. For example, ok1 is desugared into
bind getSharedKey (λ k . seq (print bob k) (print alice k)). Note that the desugaring uses
seq (with its more permissive type) instead of bind whenever the return value of a line is not bound.
These snippets use atomic actions defined in Fig. 5. The snippet ok1 is well-typed in Lifty

because the output label of the sequence of two print actions, υ = bob ∨ υ = alice, implies the
input label of getSharedKey, υ ∈ [alice, bob]. More precisely, we can instantiate the type of bind
with i 7→ υ ∈ [alice, bob], p, j 7→ true, o 7→ false. On the other hand, the snippet bad1 is ill-typed
because the implication no longer holds—indeed, this would be leaking bob’s SSN to alice.

Perhaps surprisingly, the snippet bad2 is also ill-typed: we cannot bind getSSN bob to the rest of the
computation, whose output label permits output to alice. The code does not actually leak b to alice.
Instead, Lifty flags this snippet because our information flow tracking is coarse-grained [Buiras
et al. 2015; Stefan et al. 2017; Vassena and Russo 2016], and restricts outputs based on all the data in
scope; in particular, the output to alice on line 5 should be rejected because b, which is not visible
to alice, is still in scope on line 5.

This coarse-grained approach to IFC is simpler, but as expressive as fine-grained IFC [Rajani and
Garg 2020]. We simply need to tweak the code to express the desired program: ok2 performs the
same actions in the same order, but with a different binding structure. Here lines 2 and 3 handling
bob’s data are grouped into one TIO computation, while lines 4 and 5 handling alice’s data are
grouped into another TIO computation; the two actions are then sequenced with seq, which lets the
type checker know that no information flows between the two, leading to a well-typed program.
Type checking The Lifty type checker is based on the liquid types inference framework [Cosman
and Jhala 2017; Rondon et al. 2008]. To type-check a TIO computation, it uses the types of the API
3Why are the input and output labels of mapM the same? The only way to sequence two TIO computations and preserve both
of their return values is to use bind. But bind requires that the input label of the first computation can flow to the output
label of the second; hence mapM only verifies if its input label can flow to its output label. This is, of course, conservative: the
later iterations of mapM do not actually use the results of the previous iterations! To express this fact, we could equip TIO with
the applicative interface in addition to themonadic one, introducing a primitive operation for running two TIO computations
independently and then combining their results. We decided not to pursue this path in the interest of simplicity.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:8 N. Polikarpova et al.

functions to generate a system of subtyping constraints over TIO types. It then relies on the definition
of co- and contravariant subtyping to reduce subtyping constraints to a system of constrained Horn
clauses (CHCs), i.e., implications between (possibly unknown) refinement predicates. For example,
the snippet ok1 from Fig. 7 generates the following CHCs (trivial constraints are omitted):

I ∧ ¬(υ ∈ [alice, bob]) ⇒ false (1)
(O ∨ P) ⇒ I (2)
υ = alice⇒ P (3)
υ = bob⇒ O (4)

Here I ,O, P are unknown predicates over the reserved variable υ and any program variables in
scope; these unknowns stand, respectively, for the instantiations of indexes i in bind on line 3 and o

and p in seq on line 4. Specifically, constraint (1) relates bind to getSharedKey, constraint (2) relates
the output label of the seq computation to the input label of the left-hand-side of bind, while the
last two constraints relate the output labels of print actions to the output label of seq. The left- and
right-hand sides of the implication are called the body and the head of a CHC, respectively. CHCs
can be divided into rules (head is an unknown, like (2)–(4)) and queries (head is false, like (1)). In this
case, the CHCs are non-recursive, and hence can be solved by simple left-to-write unfolding of the
rules: from (3) and (4) we infer the strongest assignment toO and P : [O 7→ υ = bob, P 7→ υ = alice];
substituting this into (2), we similarly infer [I 7→ (υ = alice∨υ = bob)]; finally, with this assignment
the query (1) is valid, hence this assignment is a (strongest) solution. Recursive CHCs are a bit
more involved, but we can still find the strongest solution using a combination of unfolding and
predicate abstraction, as shown in [Cosman and Jhala 2017].
Safe downgrading. We leverage the power of refinement types to support safe, i.e., non-leaky,
declassification of boolean terms. We do this with the downgrade primitive. The intuition behind
downgrade t is that the input label of t can be safely lowered as long as we can prove that in
all relevant executions t always returns the same value (in particular, the value False), because
constants cannot leak information. Consider the following term:

downgrade (bind (getSSN x) (λ s . return valid(s) ∧ x = alice))

In Lifty, this term type-checks against the type TI Bool ⟨υ = alice⟩ even though it performs
an input action of an incompatible type TI Bool ⟨υ = x⟩. Intuitively, this is safe because in all
executions where the two input labels are indeed incompatible, it must be that x , alice, and
hence the result of the computation is always False. Lifty performs this reasoning automatically
by instantiating the type of downgrade shown in Fig. 6 with i 7→ υ = alice, c 7→ x = alice. Note
that this type would no longer work if we removed the conjunct x = alice from the term.

Safe downgrading in Lifty is restricted to boolean terms, which lets us rely on existing machinery
of liquid type inference to discover all intermediate labels completely automatically. Although
such a restrictive mechanism might not appear very useful at first, it turns out to be indispensable
for supporting applications with complex data-dependent policies, as we demonstrate in Sec. 3.4.
Finally, as we mentioned above, downgrade can be used to implement seq:

seq a b = bind (downgrade (bind a (λ _ . return False))) (λ _ . b)

3.2 Encoding Policies in Data-Centric Applications

The TIO monad is particularly suitable for enforcing secure information flow in data-centric web
applications (such as a conference manager or a social network). Such applications are built around
a data store, where different fields have different visibility policies, which might depend on the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:9

1 -- Datatypes and redaction functions

2 data Decision = Accept | Reject | NoDecision

3 redact NoDecision

4

5 -- Specification-only function for each field:

6 measure phase : : Store → Phase

7 measure authors : : Store → PaperId → Set User

8

9 -- Field getters as TIO input actions:

10 getPhase : : ds: Store → TI {Phase | ν = phase ds} <True>

11 getTitle : : ds: Store → p: PaperId → TI String <True>

12 getDecision : : ds: Store → p: PaperId → TI Decision <phase ds = Done>

13 getAuthors : : ds: Store → p: PaperId → TI {[User] | elems ν = authors ds p} <υ ∈ authors ds p

14 ∨ phase ds = Done>

15 -- Field setters as TIO output actions:

16 setDecision : : ds: Store → dec: Decision → TO Store <phase ds = Done>

Fig. 8. Excerpt from the data store API for the conference manager.

data itself. Web application are typically structured as a set of controllers or request handlers, i.e.,
functions called by a user request that read data from the store, process it and then respond to the
user. A Lifty programmer can encode store reads and writes as atomic input and output actions,
and responses as output actions. They can directly express data-dependent policies as types, instead
of translating them into an intermediate security lattice.
Conference manager. Let us revisit the conference manager example from Sec. 2 and demonstrate
how a Lifty programmer would specify its data-dependent policies. Fig. 8 shows an excerpt from
the data store API for this system. To encode the policies, we introduce an uninterpreted type
Store, which models the state of the data store. Next, for each field of the store we introduce a
measure, i.e., an uninterpreted function that models the value of the field. Note that both of these
are specification-only constructs, introduced solely for the purpose of expressing policies.
The actual program-level API of the data store contains a getter and a setter for each field of

the store, encoded as atomic TIO actions. The programmer, however, can use the uninterpreted
measures to relate the return values of the getters to the labels of the actions. For example, in Fig. 8,
we use the measure phase both in the return type of getPhase and in the input label of getDecision
(resp. output label of setDecision), thereby relating the two actions.

The reason Lifty considers the EDAS leak example from Fig. 3 ill-typed is now clear: the input
action getDecision ds p on line 3 has the input label phase ds = Done, but this action is bound to
a computation with the output label υ = client. For this occurrence of bind to be well-typed we
need to prove that υ = client⇒ phase ds = Done is valid, which does not hold.

On the other hand, the patched code in Fig. 4 is well-typed. To understand why, note that due to
the polymorphic type of bind, the type of the binder x1 on line 3 is {Phase | ν = phase ds}. Hence
the input action getDecision ds p is now being type-checked under the assumption Done = phase ds,
which makes the above implication valid.

3.3 Patching the Leaks

How does Lifty patch the leak in Fig. 3? Intuitively, our goal is to eliminate the type error in this
program by breaking the insecure flow from the input action getDecision ds p on line 3 into the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:10 N. Polikarpova et al.

output actions print client on lines 7 and 8. There are, of course, many ways to break this flow,
and in the absence of a complete functional specification for showPaper, Lifty cannot be sure what
the programmer indented. However, in the domain of data-centric applications there is a reasonable
default: Lifty can guard the offending input action with a policy check, and redact the sensitive
value whenever the policy check fails. Lifty borrows this repair strategy from Jeeves [Yang et al.
2016a, 2012], which enforces policies by replacing secret values with public defaults. Note, however,
that a Lifty programmer does not have to use this strategy: because repair happens statically, they
can inspect the suggested patch and if necessary replace it with a manual fix.

Lifty implements this leak repair strategy in three steps: (1) localize leaky input actions, (2) for
each such input action, infer the expected type of the patch (i.e., the weakest type that would
eliminate the type error), and (3) generate a term of the expected type by filling a domain-specific
template. We describe these steps in the rest of this section.
Localizing leaks. Type-checking the code in Fig. 3 against the policies in Fig. 8 generates the
following (simplified) system of CHCs:

I ∧ phase ds = Done⇒ false (5)
O ⇒ I (6)
υ = client⇒ O (7)

This system clearly has no solution; in particular, unfolding the rules (6)–(7) gives the strongest
assignment I 7→ υ = client, but this assignment does not validate the query (5). Our insight is that
each such invalid query corresponds to an atomic input action whose input label is too high for
the output action it is flowing to. Using this insight, the Lifty type checker can identify all leaky
input actions at the same time, with just a little extra bookkeeping—namely, tracking which term
generated which CHC. In this example, the query (5) is generated by getDecision ds p, so this is
the action we need to guard.
Inferring the expected type. From the same CHCs we can infer not only the offending term, but
also the highest input label a replacement term can have for the program to type-check. We obtain
this label from the strongest assignment computed from the rule clauses. In our example, the
strongest assignment has I 7→ υ = client, hence replacing getDecision ds p with any term of type
TI Decision ⟨υ = client⟩ would fix the leak. We refer to this type as the expected type of the patch.
Synthesizing the patch. Even though any term of the expected type is secure, not all solutions
are equally desirable: for example, we wouldn’t want the patch to return Accept unconditionally.
Intuitively, a desirable solution returns the original value whenever it is safe, and otherwise replaces
it with a reasonable redacted value. Lifty achieves this through a combination of two measures.
First, instead of synthesizing a single term of type TI Decision ⟨υ = client⟩, it generates a set of
candidate branches (by enumerating all branch-free terms of this type up to a fixed size). Second,
Lifty gives the programmer control over the space of possible redacted values by generating
the branches in a restricted environment, which only contains the original term and explicitly
designated redaction functions. When defining a new datatype, the programmer is expected to
designate one or more constructors (or functions) of this type as redactions (Fig. 8 shows an example
for type Decision). As a result, our running example generates only two branches:

getDecision ds p :: TI Decision ⟨phase ds = Done⟩

return NoDecision :: TI Decision ⟨true⟩

Next, for every branch, Lifty attempts to abduce a condition that would make the branch type-
check against the expected type. In our example, the second branch is correct unconditionally, while
the first branch generates the following logical abduction problem: C ∧ υ = client⇒ phase ds =

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:11

1 showMyPapers ds client =

2 let include p =

3 do auts ← getAuthors ds p

4 return (elem client auts) in

5 do

6 papers ← filterM include allPapers

7 titles ← mapM (getTitle ds) papers

8 print client (unlines titles)

Fig. 9. A controller that displays all client’s papers

(well-typed).

1 showMyAccepts ds client =

2 let include p =

3 do auts ← getAuthors ds p

4 dec ← getDecision ds p

5 return (elem client auts

6 ∧ dec = Accepted) in

7 do

8 papers ← filterM include allPapers

9 titles ← mapM (getTitle ds) papers

10 print client (unlines titles)

Fig. 10. A controller that displays all client’s ac-

cepted papers (ill-typed).

Done, where C is an unknown formula over only the program variables, i.e., it cannot mention
the user variable υ. Lifty uses existing techniques [Polikarpova et al. 2016] to find the following
solution to the abduction problem: C 7→ phase ds = Done. It then sorts all successfully abduced
branch conditions from strongest to weakest, and uses each condition to synthesize a guard, i.e., a
program that computes the monadic version of the condition. In our case, the guard for the first
branch is bind getPhase (λ x1 . x1 = Done). Finally, Lifty combines the synthesized guards and
branches into a single conditional, which becomes the patch and replaces the original offending
input action.

3.4 Advanced Policies

We conclude the overview of Lifty with another example from the conference manager, which
illustrates the kinds of policies we need to realistically express.
Self-referential policies. Consider the action getAuthors in Fig. 8 that retrieves the author list
of a given submission. Assuming that our conference is double-blind, we would like to enforce a
policy that the author list is only visible to the authors themselves until the reviewing is done (and
afterwards visible to everyone). Unlike the policy on field “decision”, which depends on a public
field “phase”, this is an example of a policy that depends on a sensitive field; moreover, in this case
the policy is self-referential: it guards access to “authors” in a way that depends on the value of
“authors”. By separating measures from input/output actions, Lifty makes it easy to express such
self-referential policies: the programmer simply uses the authors measure in both the return type
and the label of getAuthors.
Checking self-referential policies via downgrading. Consider the controller showMyPapers in
Fig. 9, which takes as argument a user client and displays to them the titles of all the papers they
authored. To that end, showMyPapers filters the list of all paper identifiers allPapers with a monadic
predicate include p, which returns True iff client is an author of p.
At a first glance, this program should be rejected: showMyPapers reads the author lists of every

paper, even those that client is not allowed to see. Moreover, because of the self-referential policy,
the programmer finds themselves in a catch-22 situation: in order to check whether the policy holds
for a paper p, they must retrieve the author list of p, but that retrieval itself violates the policy!
Observe, however, that showMyPapers does not in fact leak anything to the user. In particular, it
does not allow client to distinguish between two data stores that only differ in author lists that

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:12 N. Polikarpova et al.

client is not allowed to see. So, we would like showMyPapers to be well-typed, but that requires the
type checker to perform nontrivial reasoning about the values returned by include p.
This is exactly where the Lifty’s downgrade primitive comes in: it allows the type checker to

downgrade the input label on include p, because it always returns False for those papers that client
is not allowed to see. This is not a coincidence: in fact, any (correctly implemented) runtime check
of a self-referential policy is well-typed (only) if it is wrapped in a downgrade. In our example, the
programmer does not use downgrading explicitly because it is built into Lifty’s filterM function,
giving it the following, very strong type:

filterM : : ∀α,i,f . (x: α → TI {Bool | ν ⇒ f x} <f x ∧ i>)

→ [α] → TI [{a | f ν}] <i>

This type permits the filter predicate to have a higher label than the overall computation, as long
as for each list element x, the difference in labels f x is implied by the return value of the predicate.
This, in turns, allows the code in Fig. 9 to type-check in Lifty completely automatically.
Information leaks through search. Now consider the controller showMyAccepts in Fig. 10, which
is similar but only shows client their accepted papers. This code has an information leak of the
similar nature as our original example in Fig. 3: the decision leaks to client through the list of paper
titles before the reviewing in done. This example is inspired by real-world leaks through search
and recommendation functionality of data-centric applications (see Sec. 6 for concrete examples).

As expected, the Lifty type-checker identifies the input action getDecision ds p as the cause of
the leak, and replaces it with the same leak patch it generated for the EDAS leak. With this patch,
showMyAccepts always returns an empty list if called before reviewing is done; the programmer
deems this behavior acceptable and therefore accepts the patch.
Attacker model. Lifty’a attacker model is standard, and similar to that of sequential LIO [Stefan
et al. 2017]. In particular, we assume a language-level attacker who supplies TIO actions (which
we ensure to be well-typed as TIO () ⟨⊤,⊥⟩). We assume that policies are correct (i.e., the type
annotations on input-output actions) and that the underlying Lifty infrastructure (in particular
the type checker, SMT solver, runtime, operating system, etc.) are secure. Like most previous work
on language-level IFC, we consider side channels and transient execution attacks out of scope.

4 THE CORE CALCULUS

We now formalize a core language λL , which captures the essence of Lifty’s IFC mechanism. We
first present its syntax, as well as dynamic and static semantics. The main goal of this section is to
prove a noninterference guarantee, which we accomplish by reduction to LIO [Stefan et al. 2017].

4.1 Syntax of λL

λL is a pure call-by-name λ-calculus, equipped with refinement types and IFC constructs. We
summarize its syntax in Fig. 11.
Refinements. As is common in refinement types literature [Polikarpova et al. 2016; Rondon et al.
2008; Vazou et al. 2014b], λL distinguishes between program terms t and refinement terms r , used
inside types; for readability, we use the meta-variable l instead of r for those refinement terms
that represent labels. We assume a syntactic category of atomic refinement terms a drawn from a
first-order theory. For example, for the theory of equality and uninterpreted functions, a consists
of equalities such as x = phase ds . Our formalization is agnostic to the choice of theory, as long as
validity of universal formulas of the form ∀x1, . . . ,xn .r is decidable4.
4Our implementation uses the theory of arrays, uninterpreted functions, and linear integer arithmetic.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:13

Refinements

r , l ::= true | false | x | Ref. terms

| ¬r | r ∧ r | a
Types

B ::= () | Bool | User Base types

T ::= {B | r } | T1 → T2 Types

| TIO T ⟨l1, l2⟩
| Field T ⟨l⟩

Programs

b ::= () | True | False | U1 | U2 | . . . Base Values

f ::= F1 | F2 | . . . Fields

v ::= b | f | λx . t | TIO t Values

t ::= v | x | t1 t2 | if t1 then t2 else t3 Terms

| return t | bind t1 t2
| downgrade t1 t2
| get t | set t1 t2

Fig. 11. Syntax of the core language λL .

Types. The base types B in λL include the unit type, the booleans, and the type of users. As is
standard in refinement types systems, types include refined base types and function types. In a
refined base types {B | r }, r is a refinement predicate over the program variables and a special
value variable ν , which denotes the bound variable of the type. We sometimes write B as a shortcut
for {B | true}. Although the Lifty implementation supports dependent function types of the form
x : T1 → T2 (where the refinement of T2 can mention the argument x), and indeed we use them to
specify policies in data-centric applications, they are not central to our formalization, and hence
the dependency is omitted from λL for simplicity.

One non-standard feature of λL is the type of sensitive computations TIOT ⟨l1, l2⟩, indexed by the
return type T , and input and output labels l1 and l2. Both labels are refinement predicates over the
program variables and a special user variable υ. Since it is convenient to think of labels as elements
of a lattice, we define the following lattice-theoretic syntax for logical operations on labels:

l1 ⊔ l2 , l1 ∧ l2 l1 ⊓ l2 , l1 ∨ l2 ⊤ , false ⊥ , true

Another non-standard feature is a dedicated type of fields Field T ⟨l⟩, which is used to model
Lifty’s atomic input/output actions and intuitively represents a resource at security level l that
stores values of type T (where T is restricted to refined base types).
Program terms. Base values b include unit, booleans, and a finite set of user literals Ui . We also
assume a finite set of field literals f , each of which has a fixed type and label, denoted by ty(f)
and lab(f), respectively. We denote the set of all base values as B and the set of all fields as F . In
addition to base values and fields, values v include lambda abstractions and monadic actions TIO t .
Like in prior work [Buiras et al. 2015; Stefan et al. 2017; Vassena and Russo 2016], the TIO data
constructor is not part of the surface syntax.

Terms t include values, variables, function application, conditionals, as well as monadic primitives
return, bind, and downgrade introduced in Sec. 3. Atomic input/output actions are represented in
λL as two universal actions get and set parameterized by the field to read from or write to. The
downgrade construct in λL also takes an additional field argument, whose role is simply to specify
the label to downgrade to: intuitively, downgrade f t downgrades the result of t to lab(f). In the
Lifty implementation this label is implicit and inferred by the type checker; the reason λL needs to
reify this label in the term language will become clear in Sec. 4.4. We omit recursion from λL , since
it does not present distinct challenges for static IFC. The Lifty implementation supports recursion,
and uses refinement types to prove that all recursive functions terminate.

4.2 Dynamic Semantics of λL

To model input and output actions, we define the run-time behavior of λL in terms of a store
Σ : F → B that maps fields to base values. A program configuration ⟨Σ | t⟩ consists of a store and a

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:14 N. Polikarpova et al.

Evaluation ⟨Σ | t⟩ ↓ ⟨Σ′ | v⟩

ret
⟨Σ | return t⟩ ↓ ⟨Σ | TIO t⟩

down
⟨Σ | t2⟩ ↓ ⟨Σ

′ | TIO b⟩

⟨Σ | downgrade t1 t2⟩ ↓ ⟨Σ
′ | TIO b⟩

bind
⟨Σ | t1⟩ ↓ ⟨Σ

′ | TIO t ′1⟩ ⟨Σ′ | t2 t
′
1⟩ ↓ ⟨Σ

′′ | v⟩

⟨Σ | bind t1 t2⟩ ↓ ⟨Σ
′′ | v⟩

get
⟨Σ | t⟩ ↓ ⟨Σ | f ⟩

⟨Σ | get t⟩ ↓ ⟨Σ | TIO Σ[f]⟩
set
⟨Σ | t1⟩ ↓ ⟨Σ | f ⟩ ⟨Σ | t2⟩ ↓ ⟨Σ | b⟩

⟨Σ | set t1 t2⟩ ↓ ⟨Σ[f := b] | TIO ()⟩

Fig. 12. Big-step operational semantics of IFC constructs in λL (see Appendix A for the full semantics).

term. Fig. 12 defines a big-step evaluation relation ↓ on configurations. The behavior of monadic
primitives is mostly straightforward; in particular, since λL only tracks labels statically, there is no
label propagation or access checks at run time. The evaluation order of pure and monadic terms
is mostly standard for a call-by-name calculus [Peyton Jones 2001], in particular: bind is strict
in its first argument, as expected; set is strict to ensure that only values are written to the store.
downgrade fully evaluates its second argument—including under the TIO constructor—but ignores
its field argument; the purpose of the field argument will be clear from the noninterference proof
in Sec. 4.4. The rules for pure terms are standard and therefore omitted, and the rule for downgrade
is slightly simplified for exposition (the full set of rules can be found in Appendix A). Note that
evaluating a pure term—i.e., a term of a non-TIO type—does not change the store.

4.3 Static Semantics of λL

Fig. 13 shows a subset of typing rules for λL that are relevant to IFC. Other rules are standard for
languages with decidable refinement types and deferred to Appendix A. In the figure, a typing
environment Γ ::= ϵ | Γ,x : T | Γ, r maps variables to types and records path conditions r , which
arise when checking conditional terms.
Well-formedness.We showwell-formedness rules for base and TIO types. They rely on the auxiliary
sorting judgment Γ ⊢ r : B, which depends on the underlying refinement logic, but necessarily
checks that r only mentions variables in Γ. The two rules formalize the distinction between logical
refinements and labels: the former can mention the value variable ν and the latter can mention the
user variable υ. Well-formedness premises are implicit in all typing rules described below.
Subtyping. The rule <:-TIO specifies that tagged types are covariant in their input label and
contra-variant in the output label wrt. the can-flow-to order on labels. This order, Γ ⊢ l ⊑ l ′ is
defined as the logical validity of reverse implication between label predicates, under the assumptions
stored in the environment (which include path conditions and refinements on program variables).
For example, the judgment a : User,b : {User | ν = a} ⊢ υ = a ⊑ υ = b reduces to a formula
∀a,b,υ.b = a ∧ υ = b ⇒ υ = a, and hence is valid. Recall that under our assumptions on the
refinement logic, the validity of such formulas is decidable. Note that for a given Γ, the set of labels
with ⊑,⊔,⊓,⊤,⊥ forms a lattice.

Subtyping for base types and function types is standard. Importantly, field types are invariant in
both the value type and the label (since fields are used for reading and writing).
Term typing. The rest of Fig. 13 defines the typing judgment for program terms Γ ⊢ t :: T . The first
three rules encode the same label propagation logic we have introduced in Fig. 6; the difference

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:15

Well-formedness Γ ⊢ T

wf-base
Γ,ν :B ⊢ r : Bool

Γ ⊢ {B | r }
wf-TIO

Γ ⊢ T Γ,υ : User ⊢ li ∧ lo : Bool
Γ ⊢ TIO T ⟨li , lo⟩

Subtyping and Flow Γ ⊢ T <: T ′ Γ ⊢ l ⊑ l ′

<:-TIO
Γ ⊢ T1 <: T2 Γ ⊢ l1 ⊑ l2 Γ ⊢ l ′2 ⊑ l ′1

Γ ⊢ TIO T1 ⟨l1, l
′
1⟩ <: TIO T2 ⟨l2, l

′
2⟩

flow
Γ,υ : User � l ′⇒ l

Γ ⊢ l ⊑ l ′

Typing Γ ⊢ t :: T

t-ret
Γ ⊢ t :: T

Γ ⊢ return t :: TIO T ⟨⊥,⊤⟩

t-bind
Γ ⊢ t1 :: TIO T1 ⟨l1, l ′1⟩ Γ ⊢ t2 :: T1 → TIO T2 ⟨l2, l

′
2⟩ Γ ⊢ l1 ⊑ l ′2

Γ ⊢ bind t1 t2 :: TIO T2 ⟨l1 ⊔ l2, l ′1 ⊓ l
′
2⟩

t-down
Γ ⊢ t1 :: Field _ ⟨l⟩ Γ ⊢ t2 :: TIO {Bool | ν ⇒ r } ⟨l ⊔ r , l ′⟩

Γ ⊢ downgrade t1 t2 :: TIO Bool ⟨l , l ′⟩

t-get
Γ ⊢ t :: Field T ⟨l⟩

Γ ⊢ get t :: TIO T ⟨l ,⊤⟩
t-set

Γ ⊢ t1 :: Field T ⟨l⟩ Γ ⊢ t2 :: T
Γ ⊢ set t1 t2 :: TIO () ⟨⊥, l⟩

Fig. 13. Static semantics of IFC constructs in λL (see Appendix A for the full semantics).

is that in λL the monadic primitives are built-in and have custom typing rules, whereas in the
actual Lifty implementation they are represented as library functions with polymorphic types.
Note that we leverage the flexibility of custom typing rules to simplify the static semantic of bind
slightly: here we add an explicit premise Γ ⊢ l1 ⊑ l ′2, whereas in Fig. 6 we encode this implicitly by
representing l ′2 as l1 ⊔ p. The last two rules type the universal actions get and set using the type of
the corresponding field.

4.4 Noninterference in λL

In this section we show that Lifty programs cannot leak sensitive data by proving noninterference
for the core calculus. Instead of proving noninterference from first principles, we accomplish
this by reducing λL to core LIO, a language with dynamic IFC, whose noninterference proof
has been mechanized in Coq [Stefan et al. 2017]. Our proof strategy is a as follows: first, we
present instrumented operational semantics that adds dynamic IFC to λL ; next, we argue that the
instrumented λL is a subset of core LIO and hence exhibits noninterference; finally, we show that
well-typed terms behave equivalently under the original and instrumented semantics.

4.4.1 Instrumented Semantics. An instrumented configuration k is a triple ⟨Σ, ℓc | t⟩, where ℓc is
the current (program counter) label. Intuitively, ℓc starts out at ⊥ and then gradually rises as the
evaluation progresses, keeping track of the most sensitive field that the computation has read so
far and blocking output to any field not above ℓc . In the interest of clarity, we introduce a distinct
syntactic category ℓ of run-time labels, which are labels that do not mention any variables except υ;
the can-flow-to judgment between run-time labels does not require an environment, so we write it
simply as ℓ ⊑ ℓ′. Note that all labels of field literals lab(f) are naturally run-time labels.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:16 N. Polikarpova et al.

Instrumented Evaluation ⟨Σ, ℓc | t⟩ ⇓ ⟨Σ
′, ℓ′c | v⟩

i-ret
⟨Σ, ℓc | return t⟩ ⇓ ⟨Σ, ℓc | TIO t⟩

i-bind
⟨Σ, ℓc | t1⟩ ⇓ ⟨Σ

′, ℓ′c | TIO t ′1⟩ ⟨Σ′, ℓ′c | t2 t
′
1⟩ ⇓ ⟨Σ

′′, ℓ′′c | v⟩

⟨Σ, ℓc | bind t1 t2⟩ ⇓ ⟨Σ
′′, ℓ′′c | v⟩

i-down-1
⟨Σ, ℓc | t1⟩ ⇓ ⟨Σ, ℓc | f ⟩ ⟨Σ, ℓc | t2⟩ ⇓ ⟨Σ

′, ℓ′c | TIO b⟩ lab(f) = ℓ ℓ′c ⊑ ℓ ⊔ ℓc

⟨Σ, ℓc | downgrade t1 t2⟩ ⇓ ⟨Σ
′, ℓ ⊔ ℓc | TIO b⟩

i-down-2
⟨Σ, ℓc | t1⟩ ⇓ ⟨Σ, ℓc | f ⟩ ⟨Σ, ℓc | t2⟩ ⇓ ⟨Σ

′, ℓ′c | TIO b⟩ lab(f) = ℓ ℓ′c ̸⊑ ℓ ⊔ ℓc

⟨Σ, ℓc | downgrade t1 t2⟩ ⇓ ⟨Σ
′, ℓ ⊔ ℓc | TIO False⟩

i-get
⟨Σ, ℓc | t⟩ ↓ ⟨Σ, ℓc | f ⟩ lab(f) = ℓ

⟨Σ, ℓc | get t⟩ ⇓ ⟨Σ, ℓ ⊔ ℓc | TIO Σ[f]⟩

i-set
⟨Σ, ℓc | t1⟩ ↓ ⟨Σ, ℓc | f ⟩ ⟨Σ, ℓc | t2⟩ ⇓ ⟨Σ, ℓc | b⟩ ℓc ⊑ lab(f)

⟨Σ, ℓc | set t1 t2⟩ ⇓ ⟨Σ[f := b], ℓc | TIO ()⟩

Fig. 14. Instrumented operational semantics of IFC constructs in λL (see Appendix A for the full semantics).

Fig. 14 defines a big-step evaluation relation ⇓ on instrumented configurations. The rules for pure
terms keep the current label intact and are omitted (the full set of rules can be found in Appendix A).
The core mechanism for propagating and checking run-time labels is captured in the rules i-get,
i-set, and i-bind. The rule i-get raises the current label by ℓ—the label of the field being read. The
premise of i-set checks that the current label can flow to the label of the field being written. Finally
the rule i-bind uses the final label of the first action as the starting label of the second action.
The most interesting part of the instrumented semantics is the behavior of downgrade t1 t2,

expressed in i-down-1 and i-down-2. Both of these rules start by fully evaluating t1 to f (which
changes neither the store nor the current label, since t1 is a pure term) and then t2 to TIO b (i.e.,
either TIO True or TIO False). The latter evaluation raises the current label to ℓ′c . Instead of adopting
ℓ′c as the new current label, however, both rules downgrade it to ℓ ⊔ ℓc , effectively only raising the
current label by the manifest label lab(f) of the downgrade operation. But won’t such downgrading
leak information at level ℓ′c through b? This is where the i-down-2 comes in: if in fact ℓ′c can not
flow to the downgraded label, then the true value of b is discarded and False is returned instead.

4.4.2 From Instrumented Semantics to LIO. We argue that the semantics in Fig. 14 is equivalent
to a subset of sequential LIO with references, as defined in [Stefan et al. 2017]. For pure terms, as
well as return and bind the equivalence is straightforward by comparing the evaluation rules. The
remaining primitives get, set, and downgrade can be encoded in LIO as follows:

get f ≡ readLIORef f

set f t ≡ writeLIORef f t

downgrade f t ≡ do lc ← getLabel

lb ← toLabeled ((labelOf f) ⊔ lc) t

catchLIO (unlabel lb) (λ _ → return False)

Both get and set simply read and write a reference f, labeled with l = lab(f) (created at the
start of the program with newLIORef l). The more interesting case is downgrade. The toLabeled

primitive returns a labeled value—whose label is l ⊔ lc—that either contains the result of t or a
“delayed” exception if t reads data more sensitive than l ⊔ lc. unlabel raises the current label to

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:17

l ⊔ lc and either returns the value computed within the toLabeled block or throws the delayed
exception—hence the need to catch the exception and return False.

Since noninterference in LIO has been proven wrt. an arbitrary security lattice, the instrumented
λL inherits its guarantee. Noninterference is formalized in terms of ℓ-equivalence on instrumented
configurations, which is formally defined in Appendix A. Intuitively, two stores are considered
ℓ-equivalent if they only differ in fields whose label is not below ℓ.

Lemma1 (Noninterference of instrumented semantics). Instrumented evaluation from ℓ-equivalent
configurations leads to ℓ-equivalent configurations: if k1 ≈ℓ k2, k1 ⇓ k ′1, and k2 ⇓ k

′
2, then k

′
1 ≈ℓ k

′
2

4.4.3 Simulation. The core of our noninterference argument is a proof that instrumented execution
simulates original execution for well-typed terms. The full proofs can be found in Appendix A;
here we only state the key lemma and give the intuition for the proof.

Lemma 2 (Simulation). If ϵ ⊢ t :: TIO T ⟨ℓi , ℓo⟩ and ⟨Σ | t⟩ ↓ ⟨Σ′ | v⟩, then for any ℓc ⊑ ℓo ,
there exists a new current label ℓ′c such that (1) ⟨Σ, ℓc | t⟩ ⇓ ⟨Σ′, ℓ′c | v⟩, (2) ℓ′c ⊑ ℓc ⊔ ℓi ,
(3) ϵ ⊢ v :: TIO T ⟨ℓi , ℓo⟩.

Intuitively, this lemma says that executing a well-typed monadic term t from a configuration
where the current label ℓc is not too-high (with respect to the static output label) leads to the same
result under the instrumented semantics (1). In addition, we also show that instrumented execution
would only raise the current label by the static input label of the computation (2). The proof is by
induction on the derivation of big-step evaluation. Interesting cases include set, where we show
that the runtime check never fails (this follows from ℓc ⊑ ℓo); bind, where we show that after
executing the first action, the current label remains below the output label of the second action
(this follows from property (2) and the last premise of t-bind); and downgrade, where we show that
whenever i-down-2 applies, b is False anyway.

Finally we can combine Lemma 1, Lemma 2, and LIO’s noninterference proof to show noninter-
ference of λL programs:

Theorem 1 (Noninterference for λL). Evaluating a computation t statically visible to ℓ from ℓ-
equivalent stores leads to ℓ-equivalent stores: If Σ1 ≈ℓ Σ2, ϵ ⊢ t :: TIO T ⟨ℓ, _⟩, ⟨Σ1 | t⟩ ↓ ⟨Σ

′
1 | v1⟩,

and ⟨Σ2 | t⟩ ↓ ⟨Σ
′
2 | v2⟩, we have v1 = v2 and Σ′1 ≈ℓ Σ′2.

Technically, our noninterference guarantee is termination-insensitive: we state that final configu-
rations are equivalent only as long as both initial configurations evaluate to a value. However in λL

this is not an issue, since all well-typed programs evaluate to a value: progress and termination can
be shown by a straightforward extension of proofs of these properties for simply-typed lambda
calculus. More interestingly, the full Lifty language also enjoys this property: although it supports
recursion, it uses refinement types to prove that all recursive calls terminate.

5 LEAK REPAIR IN λL

We now formalize Lifty’s leak repair mechanism for the core calculus λL . Fig. 15 shows the
pseudocode of the algorithm Enforce, which performs type-checking and repair of an individual
controller function. More precisely, the algorithm takes as input a typing environment Γ and a
program t , and determines whether t can be patched to produce a well-typed TIO computation, i.e.,
a term t ′ such that Γ ⊢ t ′ :: TIO () ⟨⊤,⊥⟩. The algorithm proceeds in two steps. First, procedure
Localize identifies unsafe terms (line 2), replacing them with type casts to produce a “program
with holes” t̂ (Sec. 5.1). Then, the algorithm replaces each type cast in t̂ with an appropriate patch,
generated by the procedure Generate (Sec. 5.2).

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:18 N. Polikarpova et al.

1: Enforce(Γ, t)
2: t̂ ← Localize(Γ, t)
3: for ⟨Te ▹Ta⟩ta ∈ t̂ do
4: tp ← Generate(x : Ta , Γ,Te)[x 7→ ta]

5: t̂ ← t̂[⟨Te ▹Ta⟩ta 7→ tp]

6: Localize(Γ, t)
7: t̂ ← t
8: (rules, queries) ← CHC(Γ ⊢ t :: TIO () ⟨⊤,⊥⟩)
9: A ← HornSolver(rules)
10: for Q ← queries | A 2 Q do

11: (ta , sub) ← source(Q)
12: if sub = TI B ⟨i⟩ <: TI B ⟨l⟩ then
13: t̂ ← [ta 7→ ⟨TI B ⟨A[l]⟩ ▹ TI B ⟨i⟩⟩ta]t̂
14: else fail

15: Generate(ΓR , ΓG , TI B ⟨l⟩)
16: ΓR ← ΓR∪ R
17: branches← SynthAll(ΓR ⊢ ?? :: TI B ⟨⊤⟩)
18: conds← Abduce(ΓG , ?? ⊢ tb :: TI B ⟨l⟩)
19: for tb ← branches
20: ((td , rд) : guarded) ← Sort(branches, conds)
21: if rд ⇔ true then

22: t ← td
23: else fail

24: for (rд , tb) ← guarded do

25: Tд ← TI {Bool | ν ⇔ rд} ⟨l⟩
26: tд ← Synth(ΓG ⊢ ?? :: Tд)
27: t ← bind tд (λy.if y then tb else t)

28: return t

Fig. 15. Leak repair algorithm.

t-cast
Γ ⊢ ⟨T ′ ▹T ⟩ :: T → T ′

l-get
Γ ⊢ get t :: T T = TIO B ⟨l ,⊤⟩ T ′ = TIO B ⟨l ′,⊤⟩

Γ ⊢ get t ↪→ ⟨T ′ ▹T ⟩ (get t) :: T ′

Fig. 16. Cast typing and cast insertion for λL .

5.1 Leak Localization

Type casts. For the purpose of leak localization, we extend the values of λL with type casts:
v ::= · · · | ⟨T ′ ▹T ⟩

Statically, our casts are similar to those in prior work [Knowles and Flanagan 2010]; in particular,
the cast ⟨T ′ ▹ T ⟩ has type T → T ′, as indicated in Fig. 16. However, the dynamic semantics of
casts in λL is undefined: casts are inserted solely for the purpose of leak localization, and, if repair
succeeds, are completely eliminated. We restrict the notion of type-safe λL programs to those that
are well-typed are free of type casts.
Cast insertion. Declaratively, leak localization can be formalized using a cast insertion judgment
Γ ⊢ t ↪→ t̂ :: T , which informally means that inserting type casts into term t can yield a term t̂ of
type T . Unlike prior work, our cast insertion is specific to IFC and our intended repair strategy—
guarding and redacting unsafe input actions. As a result, we only allow inserting casts around
get expressions, as shown in the l-get rule in Fig. 16; for all other terms the judgment is defined
homomorphically. Furthermore, the rule l-get imposes two important restrictions: (1) the cast
can only change the input label of the action (intuitively, it downgrades l into l ′), and (2) the cast
must be functionally oblivious: the result type {B | r } of TIO must have a trivial refinement, i.e.,
r = true. As we explain below, these restrictions are crucial for the efficiency of repair, and although
they introduce incompleteness, we found them to work well in practice. In particular, functionally
oblivious casts make sense in our use case because patch generation will redact the input action
anyway, so we are unlikely to be able to satisfy any functional property r of the original action.
Minimal sound localizations. Using the typing and cast insertion rules, we can show that if
Γ ⊢ t ↪→ t̂ :: T then Γ ⊢ t̂ :: T . We refer to t̂ as a sound localization of t at type T in Γ. A sound
localization t̂ of t is also minimal, if replacing any T ′i in ⟨T

′
i ▹Ti ⟩ in t̂ with its supertype prevents t̂

from type-checking against T . The following lemma follows directly from well-typing of t̂ :

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:19

Lemma 3 (Localization). If Γ ⊢ t ↪→ t̂ :: T , replacing each subterm of the form ⟨T ′i ▹Ti ⟩ ti in t̂ with
a type-safe term of type T ′i yields a type-safe program.

Once a sound localization is found, this lemma enables patch generation to proceed independently
for each type cast (taking the typeT ′i as the expected type). If the localization is also minimal, patch
generation has the highest chance to succeed. Hence the goal of the leak localization algorithm is
to find a minimal sound localization of t at type TIO () ⟨⊤,⊥⟩ in Γ.

In a general-purpose type-driven repair setting, a term might have many minimal sound localiza-
tions, and the repair engine would have to explore all of them, until it finds one where all type casts
can be patched, leading to inefficiency. For our domain-specific repair strategy, however, there is no
need to search through localizations: in fact, given the restrictions we introduced on cast insertion,
any λL term has at most one minimal sound localization (up to equivalence of refinement terms).
To see why, recall that sound localizations can only differ in expected labels of atomic input

actions. From the typing rules we know that in the typing derivation of t̂ , the expected label l ′ can
only appear on the right-hand side of an implication Γ � l ⇒ l ′; hence the weakest expected type
for each cast can be chosen independently: it is the type with the highest label l ′ that satisfies the
above constraint. If we omitted the requirement that casts be functionally oblivious and allowed
the expected type to be any TIO {B | r } ⟨l ′,⊥⟩, the uniqueness property would be violated. This is
because, unlike labels, refinements r can appear in a typing derivation as environment assumptions.
Hence cast insertion would have a trade-off: picking a stronger type for one action (with a stronger
r) might validate a choice of a weaker type for another action.
Inferring the localization. Given the restrictions outlined above, finding the minimal sound
localization for a λL term, amounts to inferring the highest expected label for each unsafe access.
Procedure Localize formalizes our new algorithm that infers expected labels efficiently during
type checking. It first uses the λL typing and subtyping rules to reduce the problem of checking the
source program t to a system of constrained Horn clauses (CHCs) over unknown refinements and
labels. As we explained in Sec. 3, CHCs can be divided into rules and queries. In line 9, we use an
existing CHC solver [Cosman and Jhala 2017] to obtain the strongest assignment A of refinement
terms to unknowns. If this assignment satisfies all the queries, then t is well-typed, and Localize
terminates without modifying it. Otherwise, for each query Q that does not hold under A, we
obtain its source, i.e., the term ta and the subtyping constraint that generated the query. Now if
the query was generating by a can-flow check from the input label i of term ta to some (possibly
unknown) label l , then we insert a type-cast around ta , taking the expected label to be A[l], i.e.,
the valuation of l inA. If, on the other hand, Q is not derived from a can-flow check, then the type
error is not caused by an information leak, hence Localize fails.

5.2 Patch Generation

Next, we describe how our algorithm replaces a type-cast ⟨Te ▹Ta⟩ ta with a patch term tp of the
expected type Te , using the patch generation procedure Generate (line 4). Generate implements
a domain-specific synthesis strategy: first, it generates a list of branches, which return the original
term redacted to a different extent; then, for each branch, it infers an optimal guard (a policy check)
that makes the branch satisfy the expected type; finally, it constructs the patch by arranging the
properly guarded branches into a (monadic) conditional.
Synthesis of branches. Given TI B ⟨l⟩ as the goal type, Generate first uses Synqid [Polikarpova
et al. 2016] to synthesize the set of all terms up to certain size of type TI B ⟨⊤⟩, i.e., with the right
content type, but with no restriction on the label (line 17). Branches are generated in a restricted
environment ΓR , which contains only the original faulty term and a small set of redaction functions
R. This set is specified by the programmer, and typically includes a “default value” of each type, but

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:20 N. Polikarpova et al.

may also include e.g., functions that sanitize strings (we show examples in Sec. 6). This restriction
gives the user control over the space of patches and also makes the synthesis more efficient.
Synthesis of guards. Consider a branch tb synthesized by SynthAll: its actual, strongest type
is some TI B ⟨l ′⟩, while the expected type of the patch is TI B ⟨l⟩. Generate now attempts to
synthesize the optimal guard that would make tb respect the expected type. At a high level, this
guard must be logically equivalent to the weakest refinement formula rд , such that (1) ΓG , rд ⊢ l ′ ⊑ l
and (2) ΓG ⊢ rд : Bool (i.e., rд does not mention the user variable υ). This formula can be inferred
using existing techniques, such as logical abduction [Dillig and Dillig 2013]. In particular, Generate
relies on Synqid’s liquid abduction mechanism to infer rд for each branch in line 19.

In line 20 we topologically sort the branches according to their abduced conditions, from weakest
to strongest (i.e., in the reverse order of how they are going to appear in the program). In line 21,
we check that the first branch can be used as the default branch, i.e., it is correct unconditionally.
This property is always satisfied as long as ΓR contains a pure value b of type B, in which case
return b is a valid default branch.
The main challenge of guard synthesis, is that the guard itself must be monadic, since it might

need to retrieve and compute over some data from the store. Since the data it retrieves might itself
be sensitive, we need to ensure that two conditions are satisfied (1) functional correctness: the guard
returns a value equivalent to rд , and (2) no leaky enforcement: the input label of the guard itself
may flow to the expected label l of the patch. To ensure both conditions, we again use Synqid,
this time with the goal type TI {Bool | ν ⇔ rд} ⟨l⟩ to synthesize the guard.

Lemma 4 (Safe patch generation). If Generate succeeds, it produces a type-safe term of the
expected type TI B ⟨l⟩.

Assuming correctness of Synth and Abduce, we can use the typing rules of Sec. 4 to show
that the invariant ΓR ∪ ΓG ⊢ patch :: TI B ⟨l⟩ is established in line 22 and maintained in line 27. In
particular, the type of the bound variable y in line 27 is {ν : Bool | ν ⇔ rд}, hence, then branch
is checked under the path condition rд ⇔ true. Since rд is the result of abduction, we know that
ΓG , rд ⊢ TI B ⟨l

′⟩ <: TI B ⟨l⟩, and hence ΓG , rд ⊢ b :: TI B ⟨l⟩.

5.3 Guarantees and Limitations

In this section we summarize the soundness guarantee of leak repair in λL and then discuss the
limitations on its completeness and minimality.

Theorem 2 (Soundness of leak repair). If procedure Enforce succeeds, it produces a program that
satisfies noninterference.

This is straightforward by combining Lemmas 3 and 4 with Theorem 1.
Completeness. When does procedure Enforce fail? Localize fails when it cannot find a safe
localization satisfying our domain-specific restrictions, which happens if (1) the program contains
an error unrelated to information flow, or (2) the program depends on a functional property of
an unsafe input action we want to redact. We consider both of these cases out of scope of our
domain-specific repair algorithm. Generate can fail in lines 23 and 26. The first failure indicates
that ΓR does not contain any sufficiently public terms; in this case, Lifty prompts the programmer
to add a default value of an appropriate type. The second failure happens when no guard satisfies
both functional and security requirements; this commonly indicates that the policy is not enforceable
without leaking some other sensitive information. For instance, in the EDAS leak example, if the
programmer declared “phase” to be only visible to the program chair, no program could precisely
check the policy on “decision” without leaking the information about “phase”. In this case, Lifty

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:21

Code size (AST nodes) Time
Policy enforcing

Benchmark Original Lifty Localize Generate Total
1 EDAS 66 25 0.1s 0.1s 0.3s
2 EDAS-Multiple 87 50 0.3s 0.3s 0.6s
3 EDAS-Self-Ref 87 76 0.3s 0.9s 1.2s
4 Search 76 25 0.8s 0.2s 1.0s
5 Sort 64 58 0.5s 0.6s 1.1s
6 Broadcast 27 25 0.1s 0.2s 0.2s
7 HotCRP 68 22 0.5s 0.0s 0.5s
8 AirBnB 52 33 0.2s 0.1s 0.4s
9 Instagram 73 42 0.5s 0.9s 1.4s

Table 1. Microbenchmarks.

prompts the programmer to change the policies in a way that respects dependencies between
sensitive fields (i.e., to make the policy on “decision” at least as restrictive as the one on “phase”).
Minimality. Ideally, we would like to show that the changes made by Enforce are minimal: in
any execution where t did not cause a leak, t ′ would output the same values as t . Unfortunately,
this is not true: Enforce is conservative and might hide more information than is strictly necessary.
The reason for the imprecision is two-fold: (1) the minimal localization inferred by Localize might
over-approximate the actual runtime label of output actions due to imprecisions of refinement type
inference; and (2) the guard condition rд abduced by Generate might be overly strong due to the
limitations of the abduction engine. In the latter case, the programmer can provide a more precise
guard manually; the former is a fundamental limitation of all static IFC systems.

6 EVALUATION

Implementation.We have implemented a prototype Lifty compiler by extending the Synqid
program synthesizer [Polikarpova et al. 2016]. From Synqid, Lifty inherits a liquid type checker
and a type-driven synthesis mechanism. On top of this, our implementation adds (1) the TIO

library, which implements the API shown in Fig. 6 plus some standard output actions and redaction
functions (90 lines of Lifty code); (2) the implementation of the Enforce algorithm from Sec. 5
that calls out to the type-checker and the synthesizer; (3) a Synqid-to-Haskell translator, which
can link Lifty code with other Haskell modules. Thanks to the translator, a possible usage scenario
for Lifty is to serve as a language for the data-centric application core, while low-level libraries
can be implemented directly in Haskell.
Programs. To evaluate the Lifty compiler, we implemented (1) a set of microbenchmarks that
highlight challenging scenarios and model reported real-world leaks; and (2) three larger case
studies based on existing applications from the literature. For each of these programs, we specified
the security policies in the style of Fig. 8 and implemented the basic logic of the controllers omitting
all policy checks. Hence, for each controller, Lifty must localize unsafe data accesses and generate
leak patches. For one of our case studies, we additionally implemented a non-leaky version with
manually written policy checks.
Evaluation criteria. Our goal is to evaluate the following parameters:
• Expressiveness of policy language. We demonstrate that Lifty is expressive enough
to support interesting policies from in a range of problem domains, including conference
management, course management, health records, and social networks. In particular, we
were able to replicate all the desired policies in three case studies from prior work [Swamy
et al. 2010; Yang et al. 2016a].

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:22 N. Polikarpova et al.

(a) Conference Management System Policy size (AST nodes): 247
Code size (AST nodes) Time

Policy enforcing Manual Auto
Benchmark Original Manual Lifty Verify Localize Generate Total
Register user 22 0 0 0.1s 0.1s 0.0s 0.1s
View users 26 16 25 0.5s 0.2s 0.2s 0.4s
Paper submission 65 0 0 2.0s 2.2s 0.0s 2.2s
Search papers 123 77 96 29.0s 6.5s 5.4s 11.9s
Show paper record 63 61 85 8.0s 0.8s 2.0s 2.8s
Show reviews for paper 96 61 70 14.6s 5.0s 0.8s 5.8s
User profile: GET 46 0 0 0.2s 0.2s 0.0s 0.2s
User profile: POST 20 0 0 0.1s 0.1s 0.0s 0.1s
Submit review 103 0 0 9.0s 7.8s 0.0s 7.8s
Assign reviewers 63 0 0 0.6s 0.6s 0.0s 0.6s
Totals 627 215 276 64.1s 23.5s 8.4s 31.9s

(b) Gradr—Course Management System Policy size (AST nodes): 75
Code size (AST nodes) Time

Policy enforcing
Benchmark Original Lifty Localize Generate Total
Display the home page (static content) 17 0 0.0s 0.0s 0.0s
View a user’s profile (owner) 119 59 3.0s 0.8s 3.8s
View a user’s profile (any user) 120 59 3.1s 1.5s 4.6s
Instructor: view scores for an assignment 73 103 0.9s 1.4s 2.3s
Instructor: view top scores for an assignment 99 147 2.4s 2.4s 4.8s
Student: view all scores for user 100 112 3.7s 9.5s 13.2s
Totals 528 480 13.2s 15.6s 28.8s

(c) HealthWeb—Health Information Portal Policy size (AST nodes): 95
Code size (AST nodes) Time

Policy enforcing
Benchmark Original Lifty Localize Generate Total
Search a record by id 27 161 0.1s 13.0s 13.1s
Search a record by patient 74 339 1.2s 41.6s 42.8s
Show authored records 76 0 1.2s 0.0s 1.2s
Update record 25 0 0.0s 0.0s 0.0s
List patients for a doctor 80 87 1.3s 3.5s 4.8s
Totals 282 587 3.8s 58.1s 61.9s

Table 2. Case studies: conference management, course manager, health portal.

• Performance.We show that the Lifty compiler is reasonably efficient at leak localization
and patch synthesis: Lifty is able to generate all necessary patches for each of our case
studies in 30–60 seconds.
• Quality of patches. We compare the code generated by Lifty to a version with manual
policy enforcement and show that it is able to recover all necessary policy-enforcing code,
without reducing functionality.

6.1 Microbenchmarks

To exercise the flexibility of our language, we implemented a series of small but challenging
microbenchmarks, summarized in Tab. 1. The code of each benchmark, with leak patches inserted
by Lifty, is available in Appendix C.

Benchmark 1 is our running example from Sec. 2; benchmarks 2–3 are its variations with multiple
unsafe accesses in the same controller and with a self-referential policy on the “authors” field,
respectively. Benchmarks 4 and 5 exercise tricky cases of implicit flow through higher-order

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:23

functions. Search is the controller from Fig. 10, which displays the titles of all client’s accepted
papers; here Lifty inserts a patch inside the filterM’s predicate.

Sort displays the list of all conference submissions sorted by their score, using a higher-order
sortM function with a custom comparator. The order of submissions might leak paper scores to
a conflicted reviewer. To prevent this leak, Lifty rewrites the comparator to return a default
score if a paper is conflicted with the viewer. Interestingly, this benchmark features a negative
self-referential policy for the list of conflicted reviewers: this list is visible only to users who are not
on the list. Such policies are not supported by Jeeves, since they are incompatible with its fixpoint
interpretation of self-referential policies (Sec. 7); in Lifty, the semantics of policies is decoupled
from their evaluation, hence this example presents no difficulty.

Broadcast sends a decision notification to all authors of a given paper. This benchmark tests
Lifty’s ability to handle messages sent to multiple users; Lifty infers that all those users are authors
of the paper, and hence are allowed to see its decision, as long as the phase is Done. An additional
challenge is that the list of recipients is itself sensitive, since the conference is double-blind; Lifty
infers that no additional check is needed, since authors are always allowed to see themselves.

The last three benchmarks model reported real-world leaks. HotCRP models a leak in the HotCRP
conference manager, first reported in [Yip et al. 2009], where the conference chair could send
password reminder emails to PC members, and then glean their passwords from the email preview.
Lifty repairs this leak by masking the password in the preview (but not in the actual email), since
the preview is flowing to the chair, while the email is flowing to the owner of the password.

AirBnB models a leak in the AirBnB website [Voss 2016]. The website redacts phone numbers
from user messages (presumably to keep people from going around the site), but phone numbers
appear unredacted in message previews. In Lifty we model the AirBnB messaging system by
designating the message text visible only to its sender and the site administrator, and introducing a
special redaction function scrubPhoneNumbers, whose result is additionally visible to the message
recipient. With these policies, whenever a message is displayed to the recipient, Lifty inserts a
check whether they are the administrator, and otherwise redacts the text with scrubPhoneNumbers.

Instagram is inspired by several reported cases, where sensitive social network data was revealed
through recommendation algorithms [Hill 2017; Yang 2017]. In particular, if an Instagram account
is private, their photos and “following” relations are supposedly only visible to their followers
(which have to be approved by the user). Yet, journalist Ashley Feinberg was able to identify the
private Instagram account of the former FBI director James Comey, because Instagram mistakenly
revealed that James was followed by his son Brien (whose account is public). In Lifty, we model the
Instagram “following” relation using a getter, whose policy requires that both accounts be visible
to the viewer:

measure following : : Store → User → Set User

getIsFollowing : : ds: Store → who: User → whom: User →

TI {Bool | ν = (whom in following ds who)} <canSee ds υ who ∧ canSee ds υ whom>

inline canSee ds x y = x = y ∨ isPublic ds y ∨ y ∈ following ds x

When the recommendation system attempts to retrieve all accounts followed by Brien Comey,
Lifty injects a check that those accounts be visible to the viewer, and otherwise replaces the true
value of “is following” with false.

6.2 Case Studies

We use Lifty to implement three larger case studies: a conference manager and a course manager,
both based on examples from Jacqueline [Yang et al. 2016a], and a health portal based on the
HealthWeb example from Fine [Swamy et al. 2010]. Tab. 2 lists the controllers we implemented

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:24 N. Polikarpova et al.

for each case study, together with their sizes in AST nodes. More precisely, the column “Original”
refers to the size of manually-written code without policy checks, and “Lifty” refers to the size of
auto-generated policy-enforcing code; for an example, see grayed-out vs highlighted code in Fig. 4.
Conference manager additionally reports the size of manually written policy-enforcing code in the
column “Manual”. For each case study, we also report the size of the policy, which is the cumulative
size of all refinements of input and output actions, plus the size of inline macro definitions; we do
not include the size of the Lifty standard library into the policy size.
Conference manager.We implemented two versions of a basic academic conference manager: one
where the programmer enforces the policies by hand (and Lifty only verifiers correctness) and one
where the programmer omits all policy-enforcing code (and Lifty is responsible for injecting leak
patches). The former version contains 247 lines of Lifty code while the latter contains 216; both
systems share 364 lines of Haskell code that implement non-security-critical functionality. The
manager handles confidentiality policies for user profiles, submissions, and reviews, and enforces
policies such as: “a user profile is only visible to that user and the conference chair” or “the list of
PC members conflicted with a submission is only visible to PC members who are not conflicted”.

While Jacqueline only supports constant default values, we decided to deviate from the original
system to experiment with nontrivial redaction functions. In our version, reviewer names that
are hidden for any reason are displayed as “Reviewer A”, “Reviewer B”, etc., following common
convention. This is implemented by representing each reviewer entry as a pair of (index, name),
where the redaction replaces name with “Reviewer x ” according to index.
Course manager. We implemented a system for sending grades to students based on their course
enrollment and assignment status. An example policy is that a student can see their own scores,
whereas instructors can see scores for all of their students.
Health portal. Based on the HealthWeb case study from [Swamy et al. 2010], we implemented
a system that supports viewing and searching over health records. This case study is interesting
because of the complexity of the associated policies. For example, the policy that guards patients
associated with health records states that the viewer must be the author of the record or the patient;
otherwise non-withheld records can be viewed by a doctor, but psychiatric records can only be
viewed by the doctor actually treating the patient:

inline recordPolicy w v rid = v = recordAuthor w rid ∨ v = recordPatient w rid ∨

(¬(shouldWithhold w rid) ∧ isDoctor w v ∧

(isTreating w v (recordPatient w rid) ∨ ¬(recordIsPsychiatric w rid)))

getRecordPatient : : ds: Store → rid: RecordId

→ TI {User | ν = recordPatient ds rid} <recordPolicy ds υ rid>

As a result, the generated policy enforcement code for this study is significantly larger than the
original program, and takes twice as long to generate as in the conference manager.

6.3 Performance Statistics

We show compilation times for the microbenchmarks in Tab. 1, and for the case studies in Tab. 2. We
break them down into leak localization (including type checking) and patch synthesis. Lifty was
able to patch each of the microbenchmarks in under two second. For each of the three case studies,
Lifty takes 30–60 seconds. Interestingly, the version of the conference manager with manual policy
enforcement takes longer to verify than the leaky version takes to repair (64 vs 32 seconds). This is
a side-effect of the restriction imposed by our repair algorithm (Sec. 5.1) that expected types for
patches be functionally oblivious. Thanks to this restriction, automatically-generated leak patches
can be verified independently from the rest of the controller (and from each other); on the other

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:25

hand, with manual policy enforcement Lifty verifies the controller function as a whole, which is
less efficient but more precise.
Scalability. Note that Lifty verifies and patches each top-level function in a program completely
independently. Moreover, unlike prior work on program repair, patch synthesis proceeds indepen-
dently for different leaks inside one function, which allows Lifty to scale to functions that require
multiple patches. For a stress test, we created a benchmark that sequences together N reads of a
sensitive field, and then a print to an arbitrary user. Lifty’s job is to patch each of the N leaks. Both
leak localization and patch generation scale non-linearly but relatively well: as N grows from 1 to
16, the total compilation time increases from less than a second to just over 20 seconds. The repair
time is non-linear because with the sequential structure of our benchmark each read introduces a
new variable, which is visible in all the following patches, and hence increases the search space for
policy checks. You can find the detailed results of this experiment is Appendix B.

6.4 Quality of Patches

We compared the two versions of our conference manager (Tab. 2). The column “Original” shows the
size of the code, in AST nodes, without any policy enforcement. We also show the cumulative size
of policy-enforcing code, both hand-written and generated by Lifty. Note that the size of policy-
enforcing code often approaches or exceeds the size of the core functionality, which motivates
the Lifty repair engine as an approach to reducing the programmer burden. Manual inspection
reveals that while the two versions of policy-enforcing code are syntactically different, they differ
in neither functionality nor performance.

6.5 Discussion and Limitations

We conclude this section with a discussion of Lifty’s limitations.
Policy Language. The expressiveness of Lifty policies is limited by the underlying SMT theory
of quantifier-free linear arithmetic, uninterpreted functions, and arrays. For example, policies
cannot involve non-linear arithmetic or arbitrary recursive functions over data (e.g., refer to the
maximum of all paper scores). Since all functions are uninterpreted, Lifty does not automatically
know, for example, that paper reviewers cannot be in conflict with a paper. This could result in
generating redundant checks but is also easy to avoid by adding postconditions to the input action
getReviewers, relating it not only to the reviewers measure but to the conflicts measure. Perhaps
most importantly, complex policies are most naturally expressed using existential quantification;
for example, to state that a review r is visible only to reviewers that have submitted a reviews for
the same paper, we would like to write: ∃r ′.reviewPaper r = reviewPaper r ′ ∧υ = reviewer r ′. This
policy is currently not supported by Lifty: instead, a programmer would need to introduce “inverse
measures” for reviewPaper and reviewer and write reviewsBy υ ∩ reviewsFor (reviewPaper r) , ∅
(and add postconditions to getters to connect direct and inverse measure).
Programming Model.While the present work lays a foundation for static IFC with liquid types,
our ultimate goal is to turn Lifty into a realistic web framework for Haskell, building upon
LiqidHaskell [Vazou et al. 2014a]. Apart from a significant engineering effort, there are several
research challenges involved in achieving this goal: most importantly, encoding a realistic database
model that supports provably secure interaction with the data store through SQL-like queries
rather than retrieving fields “one at a time”. This is challenging because the type checker has to
infer an aggregate label for all the data returned by the query, which has to be precise enough to
verify common data retrieval patterns. In addition, we will need a more convenient way to specify
existential policies mentioned above, a way to generate input-output actions automatically from a

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:26 N. Polikarpova et al.

declarative description of the application’s model (i.e., database schema with policies), as well as a
way to tie the TIO monad into a server framework. We leave all these improvements to future work.

7 RELATEDWORK

Lifty builds upon several lines of prior work, most notably in static information flow control,
program synthesis and repair, and type error localization. Each of these areas has a rich history,
but until now they have developed relatively independently.

7.1 Information Flow Control

The Lifty type system builds upon a long history of work in language-based information flow
control [Sabelfeld and Myers 2003]. Though we (indirectly) borrow some ideas from dynamic IFC
systems—in particular Hails/LIO [Giffin et al. 2012; Stefan et al. 2017, 2011b] and Jeeves [Austin
et al. 2013; Yang et al. 2016a, 2012]—Lifty enforces security policies using an information-flow type
system. We see our work as complimentary to previous efforts on static information flow type sys-
tems. For example, Jif [Myers 1999], Fabric [Arden et al. 2012; Liu et al. 2009] and Paragon [Broberg
et al. 2017] have been used to enforce IFC for Java programs, FlowCaml [Pottier and Simonet 2002]
for OCaml, and SLIO [Buiras et al. 2015], MAC [Vassena et al. 2018], and others [Devriese and
Piessens 2011; Hughes 2000; Li and Zdancewic 2006; Russo 2015; Russo et al. 2008b] for Haskell. To
our knowledge, Lifty is the first system to encode IFC into the framework of liquid types—and
while our implementation is for Synqid, we think Lifty can be similarly be implemented in other
languages with liquid types (e.g., LiqidHaskell [Vazou et al. 2014a]).
Our IFC encoding shares some similarities to SLIO [Buiras et al. 2015], Fine [Chen et al. 2010;

Swamy et al. 2010] and F∗ [Swamy et al. 2011]. Like Lifty, all three use a monadic encoding of
information flow; many others share a similar encoding [Crary et al. 2005; Li and Zdancewic 2006;
Russo 2015; Russo et al. 2008a; Vassena and Russo 2016], going back as far as the Dependency Core
Calculus [Abadi et al. 1999]. Fine [Chen et al. 2010; Swamy et al. 2010], F∗ [Swamy et al. 2011],
and others [Lourenço and Caires 2014, 2015] additionally support value-dependent security types.
The key difference is that our system uses (SMT-decidable) predicates as security labels, which
supports (1) a direct encoding of Hails- and Jeeves-like policies, and (2) fully automatic verification
and leak localization, crucial for repair. UrFlow [Chlipala 2010] is the only automated verification
system that supports a similar flavor of policies, but it does not provide a sound treatment of self-
referential policies. More importantly, none of these approaches address the issue of programmer
burden: they simply prevent unsafe programs from compiling, but do not help programmers write
policy-enforcing code.
Our policies are closer to policies used in IFC web frameworks (e.g., Hails [Giffin et al. 2012]

and Jacqueline [Yang et al. 2016b]) than most IFC systems. Indeed, most IFC systems track the flow
of information by associating labels with data and thus need to keep labels simple to be efficient.
While existing label models can be used to encode web application policies [Montagu et al. 2013;
Myers and Liskov 2000; Stefan et al. 2011a], high-level declarative policies like Lifty’s are usually
instantiated to these labels. Jeeves [Yang et al. 2012] and Nexus [Sirer et al. 2011] are exceptions
to these—they respectively encode policies in SMT-decidable and first-order logics—but enforce
these policies at run time. Beyond runtime overhead, such rich policies are also harder to debug at
runtime—e.g., in Jeeves this is the case because the runtime replaces sensitive values with default
values when the policy is not satisfied.

7.2 Program Synthesis and Repair

Lifty is related to techniques for synthesizing provably correct programs from formal specifica-
tions [Alur et al. 2017; Kneuss et al. 2013; Kuncak et al. 2010; Manna andWaldinger 1980; Polikarpova

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:27

et al. 2016]. These techniques, however, generate programs from scratch, from end-to-end functional
specifications, while Lifty injects code into an existing program based on the cross-cutting concern
of information flow.
Our problem statement is similar to that of deductive program repair [Kneuss et al. 2015], but

in the specific setting of policy enforcement Lifty is able to infer a local specification for each
patch, and synthesize all patches independently, which makes it more scalable. There has been prior
work on program repair for security concerns [Fredrikson et al. 2012; Ganapathy et al. 2006; Harris
et al. 2010; Son et al. 2013], but it does not involve reasoning about expressive information-flow
policies, and hence, both the search space for patches and their verification is much less complex.
Finally, our repair technique is based on CHCs and uses a Horn solver to infer the optimal expected
type; [Hojjat et al. 2016] also propose a Horn-based repair technique but for a different domain
(software-defined networks).

7.3 Type Coercions and Type Error Localization

Our use of type errors to target program rewriting resembles type-directed coercion insertion [Swamy
et al. 2009]; in particular, their coercion insertion and coercion generation mechanisms are similar
to our fault localization and patch synthesis, respectively, and their coercion set is similar to our
set R of redaction functions. The Lifty type system, however, is far more expressive than the type
systems explored in that work. In particular, the combination of polymorphism and subtyping
complicates type error localization (since there are many valid type derivations), while refinements
complicate coercion generation (which becomes a refinement type inhabitation problem).
Hybrid type checking [Knowles and Flanagan 2010] can be viewed as coercion insertion for

refinement types. In fact, their coercions also amount to wrapping the original value in a conditional,
however, in their case both the guard and the alternative branch are straightforward.
Existing work on type error localization for expressive types systems [Loncaric et al. 2016;

Seidel et al. 2017; Zhang et al. 2015] is in a more general—yet more forgiving—context of giving
feedback to programmers. Our leak localization technique (removing constraints that make the
system unsatisfiable) is similar to [Loncaric et al. 2016], but for our specific purpose we have more
information to decide between possible error locations.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers and our shepherd, Nikhil Swamy, for
their valuable feedback on earlier drafts of this paper. We are also grateful to Marco Vassena for
suggesting how to simplify and strengthen the noninterference theorem. This material is based
upon work supported by the National Science Foundation under Grant No. 1911149.

REFERENCES

M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. 1999. A Core Calculus of Dependency. In Symposium on Principles of
Programming Languages. ACM.

Shreya Agrawal and Borzoo Bonakdarpour. 2016. Runtime Verification of k-Safety Hyperproperties in HyperLTL. In CSF.
Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumerative Program Synthesis via Divide and

Conquer. In Tools and Algorithms for the Construction and Analysis of Systems - 23rd International Conference, TACAS
2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings, Part I. 319–336.

O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov, and A. C. Myers. 2012. Sharing Mobile Code Securely with Information
Flow Control. In Oakland.

Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama. 2013. Faceted execution of policy-agnostic
programs. In PLAS.

Niklas Broberg, Bart van Delft, and David Sands. 2017. Paragon–Practical programming with information flow control.
Journal of Computer Security 25, 4-5 (2017), 323–365.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:28 N. Polikarpova et al.

Pablo Buiras, Dimitrios Vytiniotis, and Alejandro Russo. 2015. HLIO: Mixing static and dynamic typing for information-flow
control in Haskell. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming. 289–301.

Juan Chen, Ravi Chugh, and Nikhil Swamy. 2010. Type-preserving compilation of end-to-end verification of security
enforcement. In PLDI.

Adam Chlipala. 2010. Static Checking of Dynamically-Varying Security Policies in Database-Backed Applications. In OSDI.
Catalin Cimpanu. 2020. Walgreens says mobile app leaked users’ personal data. https://www.zdnet.com/article/

walgreens-says-mobile-app-leaked-users-personal-data/.
Benjamin Cosman and Ranjit Jhala. 2017. Local refinement typing. PACMPL 1, ICFP (2017), 26:1–26:27. https://doi.org/10.

1145/3110270
K. Crary, A. Kliger, and F. Pfenning. 2005. A monadic analysis of information flow security with mutable state. Journal of

Functional Programming 15, 2 (March 2005).
Dominique Devriese and Frank Piessens. 2011. Information flow enforcement in monadic libraries. In Proc. of the 7th ACM

SIGPLAN Workshop on Types in Language Design and Implementation. ACM.
Isil Dillig and Thomas Dillig. 2013. Explain: A Tool for Performing Abductive Inference. In Computer Aided Verification -

25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. 684–689.
Cory Doctorow. 2015. United website breach let fliers see each others’ private data. https://boingboing.net/2015/01/28/

united-website-breach-let-flie.html.
Matthew Fredrikson, Richard Joiner, Somesh Jha, Thomas W. Reps, Phillip A. Porras, Hassen Saïdi, and Vinod Yegneswaran.

2012. Efficient Runtime Policy Enforcement Using Counterexample-Guided Abstraction Refinement. In CAV.
Vinod Ganapathy, Trent Jaeger, and Somesh Jha. 2006. Retrofitting Legacy Code for Authorization Policy Enforcement. In

SP.
Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John Mitchell, and Alejandro Russo. 2017. Hails:

Protecting Data Privacy in Untrusted Web Applications. Journal of Computer Security 25 (2017).
Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John C. Mitchell, and Alejandro Russo. 2012. Hails:

Protecting Data Privacy in Untrusted Web Applications. In 10th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012. 47–60.

William R. Harris, Somesh Jha, and Thomas Reps. 2010. DIFC Programs by Automatic Instrumentation. In CCS.
Kashmir Hill. 2017. How Facebook Outs Sex Workers. https://gizmodo.com/how-facebook-outs-sex-workers-1818861596
Hossein Hojjat, Philipp Rümmer, Jedidiah McClurg, Pavol Cerný, and Nate Foster. 2016. Optimizing horn solvers for network

repair. In 2016 Formal Methods in Computer-Aided Design, FMCAD 2016, Mountain View, CA, USA, October 3-6, 2016.
73–80.

J. Hughes. 2000. Generalising monads to arrows. Science of Computer Programming 37, 1–3 (2000), 67–111.
Troy Hunt. 2020. Have I Been Pwned: Check if your email has been compromised in a data breach. https://haveibeenpwned.

com/.
Limin Jia and Steve Zdancewic. 2009. Encoding information flow in Aura. In PLAS.
Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. 2015. Deductive Program Repair. In CAV.
Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013. Synthesis modulo recursive functions. In Proceedings

of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013. 407–426.

Kenneth Knowles and Cormac Flanagan. 2010. Hybrid Type Checking. ACM Trans. Program. Lang. Syst. 32, 2, Article 6 (Feb.
2010), 34 pages. https://doi.org/10.1145/1667048.1667051

Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. 2010. Complete functional synthesis. In PLDI.
Peng Li and Steve Zdancewic. 2005. Downgrading Policies and Relaxed Noninterference. (2005).
Peng Li and Steve Zdancewic. 2006. Encoding Information Flow in Haskell. In Proceedings of the 19th IEEE Workshop on

Computer Security Foundations (CSFW âĂŹ06). https://doi.org/10.1109/CSFW.2006.13
J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers. 2009. Fabric: a platform for secure distributed computation

and storage. In SOSP. ACM.
Calvin Loncaric, Satish Chandra, Cole Schlesinger, andManu Sridharan. 2016. A Practical Framework for Type Inference Error

Explanation. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2016). ACM, New York, NY, USA, 781–799. https://doi.org/10.1145/2983990.2983994

Luísa Lourenço and Luís Caires. 2014. Information flow analysis for valued-indexed data security compartments. In
Trustworthy Global Computing. Springer, 180–198.

Luísa Lourenço and Luís Caires. 2015. Dependent information flow types. In Proceedings of the 42nd Symposium on Principles
of Programming Languages. ACM, 317–328.

Zohar Manna and Richard Waldinger. 1980. A Deductive Approach to Program Synthesis. ACM Trans. Program. Lang. Syst.
2, 1 (Jan. 1980).

Simon Marlow. 2010. Haskell 2010 language report. https://www.haskell.org/onlinereport/haskell2010/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://www.zdnet.com/article/walgreens-says-mobile-app-leaked-users-personal-data/
https://www.zdnet.com/article/walgreens-says-mobile-app-leaked-users-personal-data/
https://doi.org/10.1145/3110270
https://doi.org/10.1145/3110270
https://boingboing.net/2015/01/28/united-website-breach-let-flie.html
https://boingboing.net/2015/01/28/united-website-breach-let-flie.html
https://gizmodo.com/how-facebook-outs-sex-workers-1818861596
https://haveibeenpwned.com/
https://haveibeenpwned.com/
https://doi.org/10.1145/1667048.1667051
https://doi.org/10.1109/CSFW.2006.13
https://doi.org/10.1145/2983990.2983994
https://www.haskell.org/onlinereport/haskell2010/

Liquid Information Flow Control 1:29

Benoît Montagu, Benjamin C. Pierce, and Randy Pollack. 2013. A Theory of Information-Flow Labels. In Proceedings of the
2013 IEEE Computer Security Foundations Symposium.

Andrew C. Myers. 1999. JFlow: Practical Mostly-Static Information Flow Control. In POPL.
Andrew C Myers and Barbara Liskov. 2000. Protecting privacy using the decentralized label model. ACM Transactions on

Software Engineering and Methodology (TOSEM) 9, 4 (2000), 410–442.
James Parker, Niki Vazou, and Michael Hicks. 2019. LWeb: Information flow security for multi-tier web applications.

Proceedings of the ACM on Programming Languages 3, POPL (2019), 1–30.
S. Peyton Jones. 2001. Tackling the awkward squad: monadic input/output, concurrency, exceptions, and foreign-language

calls in Haskell. Engineering theories of software construction 180 (2001), 47.
Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement Types.

In PLDI.
François Pottier and Vincent Simonet. 2002. Information flow inference for ML. In Proceedings of the 29th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages. 319–330.
Privacy Rights Clearinghouse. 2020. Data Breaches. https://www.privacyrights.org/data-breach/.
Vineet Rajani and Deepak Garg. 2020. On the expressiveness and semantics of information flow types. Journal of Computer

Security 28 (2020).
Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types. In PLDI.
Alejandro Russo. 2015. Functional Pearl: Two Can Keep a Secret, If One of Them Uses Haskell. In Proceedings of the 20th

ACM SIGPLAN International Conference on Functional Programming (ICFP 2015). https://doi.org/10.1145/2784731.2784756
Alejandro Russo, Koen Claessen, and John Hughes. 2008a. A Library for Light-weight Information-flow Security in

Haskell. In Proceedings of the First ACM SIGPLAN Symposium on Haskell (Haskell ’08). ACM, New York, NY, USA, 13–24.
https://doi.org/10.1145/1411286.1411289

Alejandro Russo, Koen Claessen, and John Hughes. 2008b. A library for light-weight information-flow security in Haskell.
In Haskell ’08: Proc. of the first ACM SIGPLAN symposium on Haskell. 13–24.

Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based information-flow security. IEEE Journal on Selected Areas in
Communications 21, 1 (2003).

Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley Weimer, and Ranjit Jhala. 2017. Learning to blame: localizing
novice type errors with data-driven diagnosis. PACMPL 1, OOPSLA (2017), 60:1–60:27. https://doi.org/10.1145/3138818

E.G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh, D. Williams, and F.B. Schneider. 2011. Logical attestation: an
authorization architecture for trustworthy computing. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. 249–264.

Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov. 2013. Fix Me Up: Repairing Access-Control Bugs in Web Applications.
In NDSS. The Internet Society.

Deian Stefan, David Mazières, John C. Mitchell, and Alejandro Russo. 2017. Flexible dynamic information flow control in
the presence of exceptions. J. Funct. Program. 27 (2017), e5. https://doi.org/10.1017/S0956796816000241

Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. 2011a. Disjunction Category Labels. In Nordic
Conference on Security IT Systems (NordSec). Springer.

Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. 2011b. Flexible Dynamic Information Flow Control in
Haskell. In Haskell Symposium. ACM SIGPLAN.

Nikhil Swamy, Juan Chen, and Ravi Chugh. 2010. Enforcing Stateful Authorization and Information Flow Policies in Fine.
In ESOP.

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. 2011. Secure distributed
programming with value-dependent types. In ICFP.

Nikhil Swamy, Michael Hicks, and Gavin M. Bierman. 2009. A Theory of Typed Coercions and Its Applications. In Proceedings
of the 14th ACM SIGPLAN International Conference on Functional Programming (ICFP ’09). ACM, New York, NY, USA.

Marco Vassena and Alejandro Russo. 2016. On Formalizing Information-Flow Control Libraries. In Proceedings of the 2016
ACM Workshop on Programming Languages and Analysis for Security, PLAS@CCS 2016, Vienna, Austria, October 24, 2016,
Toby C. Murray and Deian Stefan (Eds.). ACM, 15–28. https://doi.org/10.1145/2993600.2993608

Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye. 2018. MAC: a verified static information-flow control
library. Journal of logical and algebraic methods in programming 95 (2018), 148–180.

Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. 2013. Abstract Refinement Types. In ESOP.
Niki Vazou, Eric L. Seidel, and Ranjit Jhala. 2014a. LiquidHaskell: experience with refinement types in the real world. In

Haskell.
Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon L. Peyton Jones. 2014b. Refinement types for Haskell.

In ICFP.
Chelsea Voss. 2016. private email communication.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

 https://www.privacyrights.org/data-breach/
https://doi.org/10.1145/2784731.2784756
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1145/3138818
https://doi.org/10.1017/S0956796816000241
https://doi.org/10.1145/2993600.2993608

1:30 N. Polikarpova et al.

Jean Yang. 2017. James Comey’s Twitter Security Problem Is Your Problem, Too. https://www.technologyreview.com/s/
604286/james-comeys-twitter-security-problem-is-your-problem-too

Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac Flanagan, and Stephen Chong. 2016a. Precise,
Dynamic Information Flow for Database-backed Applications. In PLDI.

Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac Flanagan, and Stephen Chong. 2016b. Precise,
Dynamic Information Flow for Database-backed Applications. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2016). ACM, New York, NY, USA, 631–647.

Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. 2012. A language for automatically enforcing privacy policies.
Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. 2009. Improving application security with data flow

assertions. SOSP (2009).
Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2015. Diagnosing type errors with class.

In 36th ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI).
Lantian Zheng and Andrew C. Myers. 2007. Dynamic security labels and static information flow control. International

Journal of Information Security 6, 2 (2007), 67–84.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://www.technologyreview.com/s/604286/james-comeys-twitter-security-problem-is-your-problem-too
https://www.technologyreview.com/s/604286/james-comeys-twitter-security-problem-is-your-problem-too

Liquid Information Flow Control 1:31

Evaluation ⟨Σ | t⟩ ↓ ⟨Σ′ | v⟩

ret
⟨Σ | return t⟩ ↓ ⟨Σ | TIO t⟩

bind
⟨Σ | t1⟩ ↓ ⟨Σ

′ | TIO t ′1⟩ ⟨Σ′ | t2 t
′
1⟩ ↓ ⟨Σ

′′ | v⟩

⟨Σ | bind t1 t2⟩ ↓ ⟨Σ
′′ | v⟩

down
⟨Σ | t1⟩ ↓ ⟨Σ | f ⟩ ⟨Σ | t2⟩ ↓ ⟨Σ

′ | TIO t⟩ ⟨Σ′ | t⟩ ↓ ⟨Σ′ | b⟩

⟨Σ | downgrade t1 t2⟩ ↓ ⟨Σ
′ | TIO b⟩

get
⟨Σ | t⟩ ↓ ⟨Σ | f ⟩

⟨Σ | get t⟩ ↓ ⟨Σ | TIO Σ[f]⟩
set
⟨Σ | t1⟩ ↓ ⟨Σ | f ⟩ ⟨Σ | t2⟩ ↓ ⟨Σ | b⟩

⟨Σ | set t1 t2⟩ ↓ ⟨Σ[f := b] | TIO ()⟩

if-true
⟨Σ | t⟩ ↓ ⟨Σ | True⟩ ⟨Σ | t1⟩ ↓ ⟨Σ

′ | v⟩

⟨Σ | if t then t1 else t2⟩ ↓ ⟨Σ
′ | v⟩

if-false
⟨Σ | t⟩ ↓ ⟨Σ | False⟩ ⟨Σ | t2⟩ ↓ ⟨Σ

′ | v⟩

⟨Σ | if t then t1 else t2⟩ ↓ ⟨Σ
′ | v⟩

app
⟨Σ | t1⟩ ↓ ⟨Σ | λx . t

′
1⟩ ⟨Σ | [x 7→ t2]t

′
1⟩ ↓ ⟨Σ

′ | v⟩

⟨Σ | t1 t2⟩ ↓ ⟨Σ
′ | v⟩

val
⟨Σ | v⟩ ↓ ⟨Σ | v⟩

Fig. 17. Big-step operational semantics of λL .

A THE LANGUAGE λL

A.1 Operational Semantics of λL

The full operational semantics of λL is given in Fig. 17.

A.2 The λL Type System

The full static semantics of λL is given in Fig. 18.

A.3 Noninterference

Instrumented Semantics. The full instrumented operational semantics is given in Fig. 19.
From Instrumented Semantics to LIO. To formalize the noninterference guarantee, we extend
our calculus with erased terms, denoted with •. We define the erasure function on stores and
instrumented configurations as follows:

εℓ(Σ)[f] =

{
Σ[f] lab(f) ⊑ ℓ

• otherwise

εℓ(⟨Σ, ℓc | t⟩) =

{
⟨εℓ(Σ), ℓc | t⟩ ℓc ⊑ ℓ

⟨•, • | •⟩ otherwise

We say that two stores are ℓ-equivalent (Σ1 ≈ℓ Σ2) iff εℓ(Σ1) = εℓ(Σ2). Similarly, we say that two
instrumented configurations are ℓ-equivalent (k1 ≈ℓ k2) iff εℓ(k1) = εℓ(k2)

Lemma 5 (Noninterference of instrumented semantics). If k1 ≈ℓ k2 and k1 ⇓ k ′1 and k2 ⇓ k
′
2, then

k ′1 ≈ℓ k
′
2

This lemma follows directly from Theorem 1 in [Stefan et al. 2017], if we implement get, set,
and downgrade as specified in Sec. 4.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:32 N. Polikarpova et al.

Well-formedness Γ ⊢ T

wf-base
Γ,ν :B ⊢ r : Bool

Γ ⊢ {B | r }
wf-fun

Γ ⊢ T1 Γ ⊢ T2

Γ ⊢ T1 → T2
wf-Field

Γ ⊢ {B | r } Γ,υ : User ⊢ l : Bool
Γ ⊢ Field {B | r } ⟨l⟩

wf-TIO
Γ ⊢ T Γ,υ : User ⊢ li : Bool Γ,υ : User ⊢ lo : Bool

Γ ⊢ TIO T ⟨li , lo⟩

Subtyping and Flow Γ ⊢ T <: T ′ Γ ⊢ l ⊑ l ′

<:-Base
Γ � r ⇒ r ′

Γ ⊢ {B | r } <: {B | r ′}
<:-Fun

Γ ⊢ T ′1 <: T1 Γ ⊢ T2 <: T ′2
Γ ⊢ T1 → T2 <: T ′1 → T ′2

<:-TIO
Γ ⊢ T1 <: T2 Γ ⊢ l1 ⊑ l2 Γ ⊢ l ′2 ⊑ l ′1

Γ ⊢ TIO T1 ⟨l1, l
′
1⟩ <: TIO T2 ⟨l2, l

′
2⟩

flow
Γ,υ : User � l ′⇒ l

Γ ⊢ l ⊑ l ′

<:-Field
Γ ⊢ Field T ⟨l⟩ <: Field T ⟨l⟩

Typing Γ ⊢ t :: T
t-True

Γ ⊢ True :: {Bool | ν }
t-False

Γ ⊢ False :: {Bool | ¬ν }
t-Unit

Γ ⊢ () :: ()

t-User
Γ ⊢ Ui :: User

t-λ
Γ,x : T1 ⊢ t :: T2

Γ ⊢ λx . t :: T1 → T2
t-Field

ty(Fi) = T lab(Fi) = l

Γ ⊢ Fi :: Field T ⟨l⟩

t-TIO
Γ ⊢ t :: T

Γ ⊢ TIO t :: TIO T ⟨⊥,⊤⟩
t-var

x :T ∈ Γ
Γ ⊢ x :: T

t-app
Γ ⊢ t1 :: T → T ′ Γ ⊢ t2 :: T

Γ ⊢ t1 t2 :: T ′

t-if

Γ ⊢ t :: {Bool | r }
Γ, [ν 7→ true]r ⊢ t1 :: T Γ, [ν 7→ false]r ⊢ t2 :: T

Γ ⊢ if t then t1 else t2 :: T

t-ret
Γ ⊢ t :: T

Γ ⊢ return t :: TIO T ⟨⊥,⊤⟩

t-bind
Γ ⊢ t1 :: TIO T1 ⟨l1, l ′1⟩ Γ ⊢ t2 :: T1 → TIO T2 ⟨l2, l

′
2⟩ Γ ⊢ l1 ⊑ l ′2

Γ ⊢ bind t1 t2 :: TIO T2 ⟨l1 ⊔ l2, l ′1 ⊓ l
′
2⟩

t-down
Γ ⊢ t1 :: Field _ ⟨l⟩ Γ ⊢ t2 :: TIO {Bool | ν ⇒ r } ⟨l ⊔ r , l ′⟩

Γ ⊢ downgrade t1 t2 :: TIO Bool ⟨l , l ′⟩

t-get
Γ ⊢ t :: Field T ⟨l⟩

Γ ⊢ get t :: TIO T ⟨l ,⊤⟩
t-set

Γ ⊢ t1 :: Field T ⟨l⟩ Γ ⊢ t2 :: T
Γ ⊢ set t1 t2 :: TIO () ⟨⊥, l⟩

t-<:
Γ ⊢ t :: T ′ Γ ⊢ T ′ <: T

Γ ⊢ t :: T

Fig. 18. λL static semantics.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:33

Instrumented Evaluation ⟨Σ, ℓc | t⟩ ⇓ ⟨Σ
′, ℓ′c | v⟩

i-ret
⟨Σ, ℓc | return t⟩ ⇓ ⟨Σ, ℓc | TIO t⟩

i-bind
⟨Σ, ℓc | t1⟩ ⇓ ⟨Σ

′, ℓ′c | TIO t ′1⟩ ⟨Σ′, ℓ′c | t2 t
′
1⟩ ⇓ ⟨Σ

′′, ℓ′′c | v⟩

⟨Σ, ℓc | bind t1 t2⟩ ⇓ ⟨Σ
′′, ℓ′′c | v⟩

i-down-1

⟨Σ, ℓc | t1⟩ ⇓ ⟨Σ, ℓc | f ⟩ ⟨Σ, ℓc | t2⟩ ⇓ ⟨Σ
′, ℓ′c | TIO t⟩ lab(f) = ℓ ℓ′c ⊑ ℓ ⊔ ℓc

⟨Σ′, ℓ′c | t⟩ ⇓ ⟨Σ
′, ℓ′c | b⟩

⟨Σ, ℓc | downgrade t1 t2⟩ ⇓ ⟨Σ
′, ℓ ⊔ ℓc | TIO b⟩

i-down-2

⟨Σ, ℓc | t1⟩ ⇓ ⟨Σ, ℓc | f ⟩ ⟨Σ, ℓc | t2⟩ ⇓ ⟨Σ
′, ℓ′c | TIO t⟩ lab(f) = ℓ ℓ′c ̸⊑ ℓ ⊔ ℓc

⟨Σ′, ℓ′c | t⟩ ⇓ ⟨Σ
′, ℓ′c | b⟩

⟨Σ, ℓc | downgrade t1 t2⟩ ⇓ ⟨Σ
′, ℓ ⊔ ℓc | TIO False⟩

i-get
⟨Σ, ℓc | t⟩ ↓ ⟨Σ, ℓc | f ⟩ lab(f) = ℓ

⟨Σ, ℓc | get t⟩ ⇓ ⟨Σ, ℓ ⊔ ℓc | TIO Σ[f]⟩

i-set
⟨Σ, ℓc | t1⟩ ↓ ⟨Σ, ℓc | f ⟩ ⟨Σ, ℓc | t2⟩ ⇓ ⟨Σ, ℓc | b⟩ ℓc ⊑ lab(f)

⟨Σ, ℓc | set t1 t2⟩ ⇓ ⟨Σ[f := b], ℓc | TIO ()⟩

i-if-true
⟨Σ, ℓc | t⟩ ⇓ ⟨Σ, ℓc | True⟩ ⟨Σ, ℓc | t1⟩ ⇓ ⟨Σ

′, ℓ′c | v⟩

⟨Σ, ℓc | if t then t1 else t2⟩ ⇓ ⟨Σ
′, ℓ′c | v⟩

i-if-false
⟨Σ, ℓc | t⟩ ⇓ ⟨Σ, ℓc | False⟩ ⟨Σ, ℓc | t2⟩ ⇓ ⟨Σ

′, ℓ′c | v⟩

⟨Σ, ℓc | if t then t1 else t2⟩ ⇓ ⟨Σ
′, ℓ′c | v⟩

i-app
⟨Σ, ℓc | t1⟩ ⇓ ⟨Σ, ℓc | λx . t

′
1⟩ ⟨Σ, ℓc | [x 7→ t2]t

′
1⟩ ⇓ ⟨Σ

′, ℓ′c | v⟩

⟨Σ, ℓc | t1 t2⟩ ⇓ ⟨Σ
′, ℓ′c | v⟩

i-val
⟨Σ, ℓc | v⟩ ↓ ⟨Σ, ℓc | v⟩

Fig. 19. Instrumented operational semantics.

Simulation. We now prove that instrumented semantics simulates original semantics for well-
typed closed terms. We first prove this for pure term (terms of types other than TIO), and then for
TIO terms.

Lemma 6 (Pure Simulation). If ϵ ⊢ t :: T where T = {B | r }, T = T1 → T2, or T = Field T ⟨l⟩, and
⟨Σ | t⟩ ↓ ⟨Σ′ | v⟩, then for any ℓc :
(1) Σ′ = Σ
(2) ⟨Σ, ℓc | t⟩ ⇓ ⟨Σ, ℓc | v⟩,
(3) ϵ ⊢ v :: T .

Proof. By induction on ⟨Σ | t⟩ ↓ ⟨Σ | v⟩. The only applicable cases are val, app, if-true,
if-false; the rest of the cases contradict the premise that t is well-typed at a non-TIO type.
Case val:

val
⟨Σ | v⟩ ↓ ⟨Σ | v⟩

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:34 N. Polikarpova et al.

Trivial by rule i-val.
Case app:

app
⟨Σ | t1⟩ ↓ ⟨Σ | λx . t

′
1⟩ ⟨Σ | [x 7→ t2]t

′
1⟩ ↓ ⟨Σ

′ | v⟩

⟨Σ | t1 t2⟩ ↓ ⟨Σ
′ | v⟩

By rule t-app, ϵ ⊢ t1 :: T ′ → T ; hence we can apply the IH to the first premise to get: ⟨Σ, ℓc |
t1⟩ ⇓ ⟨Σ, ℓc | λx . t

′
1⟩ (a). By t-app and substitution lemma for refinement types from prior work

(e.g., [Knowles and Flanagan 2010]), ϵ ⊢ [x 7→ t2]t
′
1 :: T ; hence we can apply the IH also to the

second premise to get: Σ′ = Σ (hence 1 holds), ⟨Σ, ℓc | [x 7→ t2]t
′
1⟩ ⇓ ⟨Σ, ℓc | v⟩ (b), and ϵ ⊢ v :: T

(hence 3 holds). From (a) and (b) we conclude 2 by rule i-app.
Case if-true:

if-true
⟨Σ | t⟩ ↓ ⟨Σ | True⟩ ⟨Σ | t1⟩ ↓ ⟨Σ

′ | v⟩

⟨Σ | if t then t1 else t2⟩ ↓ ⟨Σ
′ | v⟩

From the typing premise by rule t-if, ϵ ⊢ t :: {Bool | r } and ϵ, [ν 7→ true]r ⊢ t1 :: T (a). We can
apply the IH to the first premise to get: ⟨Σ, ℓc | t⟩ ⇓ ⟨Σ, ℓc | True⟩ (b) and ϵ ⊢ True :: {Bool | r }. By
soundness of refinement types, the latter implies that [ν 7→ true]r ⇔ true; hence we can remove
the trivial path constraint from the environment in (a) and get ϵ ⊢ t1 :: T . With that we can apply
the IH to the second premise, obtaining: Σ′ = Σ (hence 1 holds), ⟨Σ, ℓc | t1⟩ ⇓ ⟨Σ, ℓc | v⟩ (c), and
ϵ ⊢ v :: T (hence 3 holds). From (b) and (c) we conclude 2 by rule i-if-true.
Case if-false: Symmetric to if-true. �

Lemma 7 (Simulation). If ϵ ⊢ t :: TIO T ⟨ℓi , ℓo⟩ and ⟨Σ | t⟩ ↓ ⟨Σ′ | v⟩, then for any ℓc ⊑ ℓo , there
exists a new current label ℓ′c such that
(1) ⟨Σ, ℓc | t⟩ ⇓ ⟨Σ′, ℓ′c | v⟩,
(2) ℓ′c ⊑ ℓc ⊔ ℓi ,
(3) ϵ ⊢ v :: TIO T ⟨ℓi , ℓo⟩.

Proof. By induction on the derivation of ⟨Σ | t⟩ ↓ ⟨Σ′ | v⟩.
Case get:

get
⟨Σ | t⟩ ↓ ⟨Σ | f ⟩ (a)

⟨Σ | get t⟩ ↓ ⟨Σ | TIO Σ[f]⟩

From the well-typing premise we know ϵ ⊢ get t :: TIO T ⟨ℓ,⊤⟩ and hence ϵ ⊢ t :: Field T ⟨ℓ⟩ (b)
by rule t-get. Let ℓc be arbitrary and the new current label be ℓ′c = ℓ ⊔ ℓc . From (a) and (b) by pure
simulation (Lemma 6), we know that ⟨Σ, ℓc | t⟩ ↓ ⟨Σ, ℓc | f ⟩ (c) and ϵ ⊢ f :: Field T ⟨ℓ⟩, and hence
lab(f) = ℓ (d) by t-Field and because field types are invariant in the label.
• From (c) and (d) by rule i-get: ⟨Σ, ℓc | get t⟩ ⇓ ⟨Σ, ℓ ⊔ ℓc | TIO Σ[f]⟩, hence (1) holds.
• ℓ ⊔ ℓc ⊑ ℓ ⊔ ℓc , hence (2) holds.
• By rule t-TIO: ϵ ⊢ TIO Σ[f] :: TIO T ⟨⊥,⊤⟩ <: TIO T ⟨ℓ,⊤⟩, hence (3) holds.

Case set:

set
⟨Σ | t1⟩ ↓ ⟨Σ | f ⟩ ⟨Σ | t2⟩ ↓ ⟨Σ | b⟩

⟨Σ | set t1 t2⟩ ↓ ⟨Σ[f := b] | TIO ()⟩
By well-typing premise and rule t-set, we have ϵ ⊢ set t1 t2 :: TIO () ⟨⊥, ℓ⟩ and hence ϵ ⊢ t1 ::
FieldT ⟨ℓ⟩ and ϵ ⊢ t2 :: T . Pick some ℓc ⊑ ℓ. By pure simulation for t1 we get ⟨Σ, ℓc | t⟩ ↓ ⟨Σ, ℓc | f ⟩
(a) and ϵ ⊢ f :: Field T ⟨ℓ⟩ and hence lab(f) = ℓ (b). Because T must be a (refined) base type, by
pure simulation for t2 we we get ⟨Σ, ℓc | t⟩ ↓ ⟨Σ, ℓc | b⟩ (c) and ϵ ⊢ b :: T . Let the new current label
be unchanged, i.e., ℓ′c = ℓc .
• From (b) we know that ℓc ⊑ lab(f), hence by rule i-set from (a) and (c), we have ⟨Σ, ℓc |
set t1 t2⟩ ⇓ ⟨Σ[f := b], ℓc | TIO ()⟩, hence (1) holds.
• ℓc ⊑ ℓc ⊔ ⊥, hence (2) holds.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:35

• By rule t-TIO: ϵ ⊢ TIO () :: TIO () ⟨⊥,⊤⟩ <: TIO () ⟨⊥, ℓ⟩, hence (3) holds.
Case ret:

ret
⟨Σ | return t⟩ ↓ ⟨Σ | TIO t⟩

By the well-typing premise ϵ ⊢ return t :: TIO T ⟨⊥,⊤⟩, and hence ϵ ⊢ t :: T (a) by rule t-ret. Pick
any ℓc , and let the new current label be unchanged, i.e., ℓ′c = ℓc .
• By rule i-ret: ⟨Σ, ℓc | return t⟩ ⇓ ⟨Σ, ℓc | TIO t⟩, hence (1) holds.
• ℓc ⊑ ℓc ⊔ ⊥, hence (2) holds.
• By (a) and rule t-TIO: ϵ ⊢ TIO t :: TIO T ⟨⊥,⊤⟩, hence (3) holds.

Case bind:

bind
⟨Σ | t1⟩ ↓ ⟨Σ

′ | TIO t ′1⟩ (a) ⟨Σ′ | t2 t
′
1⟩ ↓ ⟨Σ

′′ | v⟩ (b)

⟨Σ | bind t1 t2⟩ ↓ ⟨Σ
′′ | v⟩

By the well-typing premise we have ϵ ⊢ bind t1 t2 :: TIO T2 ⟨ℓ1 ⊔ ℓ2, ℓ′1 ⊓ ℓ
′
2⟩, and hence ϵ ⊢ t1 ::

TIO T1 ⟨ℓ1, ℓ
′
1⟩ (c), ϵ ⊢ t2 :: T1 → TIO T2 ⟨ℓ2, ℓ

′
2⟩ (d), and ϵ ⊢ ℓ1 ⊑ ℓ

′
2 (e). Pick some ℓc ⊑ ℓ′1 ⊓ ℓ

′
2 (f).

We can apply the IH to (a) and (c) because ℓc ⊑ ℓ′1. Hence there exists ℓ
′
c such that ⟨Σ, ℓc | t1⟩ ⇓

⟨Σ′, ℓ′c | TIO t ′1⟩ (g), ℓ
′
c ⊑ ℓc ⊔ ℓ1 (h), and ϵ ⊢ t ′1 :: T1 (i) (using rule t-TIO).

From (d) and (i) by rule t-app, we get ϵ ⊢ t2 t ′1 :: TIO T2 ⟨ℓ2, ℓ′2⟩. Now we would like to apply
the IH to this and (b) with the current label ℓ′c , but we have to show that ℓ′c ⊑ ℓ′2. To this end, we
calculate:

ℓ′c
(h)
⊑ ℓc ⊔ ℓ1

(e)
⊑ ℓc ⊔ ℓ

′
2

(f)
⊑ ((ℓ′1 ⊓ ℓ

′
2) ⊔ ℓ

′
2) = ℓ′2

Applying the IH, we get a new current label ℓ′′c , such that: ⟨Σ′, ℓ′c | t2 t ′1⟩ ⇓ ⟨Σ
′′, ℓ′′c | v⟩ (j),

ℓ′′c ⊑ ℓ
′
c ⊔ ℓ2 (k), ϵ ⊢ v :: TIO T2 ⟨ℓ2, ℓ′2⟩ (l).

Let the new current label be ℓ′′c :
• By rule i-bind and (g), (j) we get: ⟨Σ, ℓc | bind t1 t2⟩ ⇓ ⟨Σ′′, ℓ′′c | v⟩, hence (1) holds.
• To show (2) we calculate:

ℓ′′c
(k)
⊑ ℓ′c ⊔ ℓ2

(h)
⊑ (ℓc ⊔ ℓ1) ⊔ ℓ2 = ℓc ⊔ (ℓ1 ⊔ ℓ2)

• (3) follows immediately by (l).
Case down:

down
⟨Σ | t1⟩ ↓ ⟨Σ | f ⟩ (a) ⟨Σ | t2⟩ ↓ ⟨Σ

′ | TIO t⟩ (b) ⟨Σ′ | t⟩ ↓ ⟨Σ′ | b⟩ (c)
⟨Σ | downgrade t1 t2⟩ ↓ ⟨Σ

′ | TIO b⟩

By well-typing premise, we have ϵ ⊢ downgrade t1 t2 :: TIO Bool ⟨ℓ, ℓ′⟩ and hence ϵ ⊢ t1 :: Field _ ⟨ℓ⟩
(d) and ϵ ⊢ t2 :: TIO {Bool | ν ⇒ r } ⟨ℓ ⊔ r , ℓ′⟩ (e). Note that for this type to be well-formed, by rule
wf-TIO r can mention neither ν nor υ (nor any other variable); since it is a closed Boolean-sorted
refinement term, we know that either r ⇔ true or r ⇔ false. Now pick some ℓc ⊑ ℓ′.
From (a) and (d) by pure simulation we get ⟨Σ, ℓc | t1⟩ ⇓ ⟨Σ, ℓc | f ⟩(f) and ϵ ⊢ f :: Field _ ⟨ℓ⟩,

so lab(f) = ℓ (g). We can apply the IH to (b) and (e) to obtain a label ℓ′c such that: ⟨Σ, ℓc | t2⟩ ⇓
⟨Σ′, ℓ′c | TIO t⟩ (h), ℓ′c ⊑ ℓc ⊔ ℓ ⊔ r (i), and ϵ ⊢ t :: {Bool | ν ⇒ r } (using t-TIO). From this and (c)
by pure simulation we get ⟨Σ′, ℓ′c | t⟩ ⇓ ⟨Σ′, ℓ′c | b⟩(j) and ϵ ⊢ b :: {Bool | ν ⇒ r }(k).
As the new current label we pick ℓ ⊔ ℓc .
• To prove that the downgrade steps to the same term under the instrumented semantics, we
consider two cases. First, if ℓ′c ⊑ ℓ ⊔ ℓc , then from (f), (g), (h), and (j) by rule i-down-1, we
have ⟨Σ, ℓc | downgrade t1 t2⟩ ⇓ ⟨Σ′, ℓ ⊔ ℓc | TIO b⟩, hence (1) holds trivially in this case.
Otherwise, by rule i-down-2, we have ⟨Σ, ℓc | downgrade t1 t2⟩ ⇓ ⟨Σ′, ℓ ⊔ ℓc | TIO False⟩. So
it suffices to show that b = False in this case, then (1) will follow. From (k) and typing rules

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:36 N. Polikarpova et al.

we know that b is necessarily either True or False; so let us assume b = True and arrive
at a contradiction. If b = True, then by rule t-True, ϵ ⊢ b :: {Bool | ν }; then from (k) and
subtyping we get ϵ ⊢ {Bool | ν } <: {Bool | ν ⇒ r }, and hence ϵ � ν ⇒ r . Recall, however,
that r is a closed term, so the only way this implication can be valid is if r ⇔ true, in which
case r = ⊥ and so ℓc ⊔ ℓ ⊔ r = ℓc ⊔ ℓ. Hence from (i) we get ℓ′c ⊑ ℓc ⊔ ℓ, which directly
contradicts our assumption.
• ℓ ⊔ ℓc ⊑ ℓ ⊔ ℓc , hence (2) holds.
• From (k) by rule t-TIO and subtyping: ϵ ⊢ TIO b :: TIO Bool ⟨⊥,⊤⟩, hence (3) holds.

Case val:

val
⟨Σ | v⟩ ↓ ⟨Σ | v⟩

Trivial by keeping the current label unchanged.
Case app:

app
⟨Σ | t1⟩ ↓ ⟨Σ | λx . t

′
1⟩ (a) ⟨Σ | [x 7→ t2]t

′
1⟩ ↓ ⟨Σ

′ | v⟩ (b)

⟨Σ | t1 t2⟩ ↓ ⟨Σ
′ | v⟩

By the well-typing premise we get ϵ ⊢ t1 t2 :: TIO T ⟨ℓi , ℓo⟩ and hence ϵ ⊢ t1 :: T2 → TIO T ⟨ℓi , ℓo⟩
(c) and ϵ ⊢ t2 :: T2 (d). Let us pick some ℓc ⊑ ℓo . From (a) and (c) by Lemma 6, we get ⟨Σ, ℓc | t1⟩ ⇓
⟨Σ, ℓc | λx . t

′
1⟩ (e) and ϵ ⊢ λx . t

′
1 :: T2 → TIO T ⟨ℓi , ℓo⟩ (f).

From (f) and (d), by substitution lemma for refinement types, we get ϵ ⊢ [x 7→ t2]t
′
1 :: TIOT ⟨ℓi , ℓo⟩.

We can apply the IH to this fact and (b) with current label ℓc to obtain a new current label ℓ′c , which
we adopt as the new label for the whole application. IH gives us:
• ⟨Σ, ℓc | [x 7→ t2]t

′
1⟩ ⇓ ⟨Σ

′, ℓ′c | v⟩, which together with (e) by rule i-app implies (1);
• ℓ′c ⊑ ℓc ⊔ ℓi , which proves (2);
• ϵ ⊢ v :: TIO T ⟨ℓi , ℓo⟩, which proves (3).

�

Noninterference. Putting is all together, we obtain the following noninterference theorem:

Theorem 3 (Noninterference for λL). Take two ℓ-equivalent stores Σ1 ≈ℓ Σ2. Then for any term
t such that ϵ ⊢ t :: TIO T ⟨ℓ, _⟩, ⟨Σ1 | t⟩ ↓ ⟨Σ

′
1 | v1⟩, and ⟨Σ2 | t⟩ ↓ ⟨Σ

′
2 | v2⟩, we have v1 = v2 and

Σ′1 ≈ℓ Σ′2.

Proof. Since ⟨Σ1 | t⟩ ↓ ⟨Σ
′
1 | v1⟩ and ϵ ⊢ t :: TIO T ⟨ℓ, _⟩, then by Lemma 7 we have ⟨Σ1,⊥ |

t⟩ ⇓ ⟨Σ′1, ℓ
1
c | v1⟩ and ℓ1c ⊑ ℓ. Similarly for the other store we get: ⟨Σ2,⊥ | t⟩ ⇓ ⟨Σ

′
2, ℓ

2
c | v2⟩ and

ℓ2c ⊑ ℓ. Because ⟨Σ1,⊥ | t⟩ ≈ℓ ⟨Σ2,⊥ | t⟩, then by Lemma 5 we get: ⟨Σ′1, ℓ
1
c | v1⟩ ≈ℓ ⟨Σ

′
2, ℓ

2
c | v2⟩.

Now since ℓ1c ⊑ ℓ and ℓ2c ⊑ ℓ, then by definition of configuration erasure we get that Σ′1 ≈ℓ Σ′2 and
v1 = v2. �

B SCALABILITY

Fig. 20 shows the dependency of verification and patch generation times on the number of leaky
input actions to patch.

C MICROBENCHMARKS

Below you can find the code for all our microbenchmarks with Lifty-generated patches in gray.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:37

2 4 6 8 10 12 14 16
0

10

20

Ti
m
e
(s
)

Localize
Generate
Total

N

Fig. 20. Scalability—N leaky input actions in a single function.

Benchmark 1 (EDAS) : Show data for paper p to client.
1 -- | Conference phase (public)

2 predicate phase : : Store → Phase

3 getPhase : : ds: Store → TIO {Phase | ν = phase ds} <{True}> <{False}>

4 -- | Paper title (public)

5 getPaperTitle : : ds: Store → p: PaperId → TIO String <{True}> <{False}>

6 -- | Paper status (only visible when phase is done)

7 getPaperDecision : : ds: Store → p: PaperId → TIO Decision <{phase ds = Done}> <{False}>

8 -- | Paper session (public)

9 getPaperSession : : ds: Store → p: PaperId → TIO String <{True}> <{False}>

10 redact {NoDecision}

11

12 showSession : : Store → User → PaperId → TIO Unit <False> <True>

13 showSession = λ ds . λ client . λ p .

14 do

15 t ← getPaperTitle ds p

16 dec ← do

17 g0 ← downgrade (do

18 x5 ← getPhase ds

19 return (eq Done x5))

20 if g0

21 then getPaperDecision ds p

22 else return NoDecision

23 if dec = Accepted

24 then do

25 ses ← getPaperSession ds p

26 print client (unwords [t, ses])

27 else print client (unwords [t, emptyString])

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:38 N. Polikarpova et al.

Benchmark 2 (EDAS-Multiple) : Same as (EDAS), but multiple terms need to be patched.
1 . . . -- as in EDAS

2 -- | Paper authors (only visible when phase is done)

3 getPaperAuthors : : ds: Store → p: PaperId → TIO [User] <{phase ds = Done}> <{False}>

4

5 showSession : : Store → User → PaperId → TIO Unit <False> <True>

6 showSession = λ ds . λ client . λ p .

7 do

8 t ← getPaperTitle ds p

9 auts ← do

10 g0 ← downgrade (do

11 x5 ← getPhase ds

12 return (eq Done x5))

13 if g0

14 then getPaperAuthors ds p

15 else return Nil

16 dec ← do

17 g1 ← downgrade (do

18 x11 ← getPhase ds

19 return (eq Done x11))

20 if g1

21 then getPaperDecision ds p

22 else return NoDecision

23 if dec = Accepted

24 then do

25 ses ← getPaperSession ds p

26 print client (unwords [t, show auts, ses])

27 else print client (unwords [t, show auts, emptyString])

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:39

Benchmark 3 (EDAS-Self-Ref) : Same as (EDAS-Multiple), but with a self-referential policy on authors.

1 . . . -- as in EDAS

2 -- | Paper authors (only visible to themselves or when phase is done)

3 predicate paperAuthors : : Store → Map PaperId (Set User)

4 getPaperAuthors : : ds: Store → p: PaperId →

5 TIO {List {User | ν in (paperAuthors ds)[[p]]} | elems ν = (paperAuthors ds)[[p]]}

6 <{_0 in (paperAuthors ds)[[p]] ∨ phase ds = Done}> <{False}>

7

8 showSession : : Store → User → PaperId → TIO Unit <False> <True>

9 showSession = λ ds . λ client . λ p .

10 do

11 t ← getPaperTitle ds p

12 auts ← do

13 g0 ← downgrade (do

14 x5 ← getPhase ds

15 return (eq Done x5))

16 g1 ← downgrade (do

17 x10 ← getPaperAuthors ds p

18 return (elem client x10))

19 if g0 ∨ g1

20 then getPaperAuthors ds p

21 else return Nil

22 dec ← do

23 g2 ← downgrade (do

24 x16 ← getPhase ds

25 return (eq Done x16))

26 if g2

27 then getPaperDecision ds p

28 else return NoDecision

29 if dec = Accepted

30 then do

31 ses ← getPaperSession ds p

32 print client (unwords [t, show auts, ses])

33 else print client (unwords [t, show auts, emptyString])

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:40 N. Polikarpova et al.

Benchmark 4 (Search) : Show client all their accepted papers. Repairs a leak through a filter.

1 . . . -- as in EDAS-Self-Ref

2

3 showMyAcceptedPapers : : Store → User → TIO Unit <False> <True>

4 showMyAcceptedPapers = λ ds . λ client .

5 let isMyAccepted = λ p .

6 downgrade (do

7 auts ← getPaperAuthors ds p

8 dec ← do

9 g0 ← downgrade (do

10 x5 ← getPhase ds

11 return (eq Done x5))

12 if g0

13 then getPaperDecision ds p

14 else return NoDecision

15 return ((elem client auts) ∧

16 (dec = Accepted))) in

17 do

18 allPaperIDs ← getAllPaperIds ds

19 paperIDs ← filterM isMyAccepted

20 allPaperIDs

21 titles ← mapM (λ p . getPaperTitle ds p) paperIDs

22 print client (unlines titles)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:41

Benchmark 5 (Sort) Sort papers by their score, which is hidden from conflicted reviewers. Repairs a leak
through the order of sorted submission. Contains a negative self-referential policy.

1 -- | Paper title (public)

2 getPaperTitle : : ds: Store → p: PaperId → TIO String <{True}> <{False}>

3 -- | Paper conflicts (public)

4 predicate paperConflicts : : Store → Map PaperId (Set User)

5 getPaperConflicts : : ds: Store → pid: PaperId

6 → TIO {List User | elems ν = (paperConflicts ds)[[pid]]}

7 <{¬(_0 in (paperConflicts ds)[[pid]])}> <{False}>

8 -- | Paper score (only visible if not in conflict)

9 getPaperScore : : ds: Store → pid: PaperId → TIO Int

10 <{¬(_0 in (paperConflicts ds)[[pid]])}> <{False}>

11 -- | All papers in the conference

12 getAllPaperIds : : ds: Store → TIO [PaperId] <{True}> <{False}>

13

14 sortPapersByScore : : Store → User → TIO Unit <False> <True>

15 sortPapersByScore = λ ds . λ client .

16 let cmpScore = λ pid1 . λ pid2 .

17 do

18 x1 ← do

19 g0 ← downgrade (do

20 x7 ← getPaperConflicts ds pid1

21 return (not (elem client x7)))

22 if g0

23 then getPaperScore ds pid1

24 else return zero

25 x2 ← do

26 g1 ← downgrade (do

27 x15 ← getPaperConflicts ds pid2

28 return (not (elem client x15)))

29 if g1

30 then getPaperScore ds pid2

31 else return zero

32 return (x1 ≤ x2) in

33 do

34 pids ← getAllPaperIds ds

35 sortedPids ← sortByM cmpScore

36 pids

37 titles ← mapM (getPaperTitle ds) sortedPids

38 print client (unlines titles)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:42 N. Polikarpova et al.

Benchmark 6 (Broadcast) : Send status notification to authors. Sending message to multiple viewers, viewers
are sensitive.

1 -- | Conference phase (public)

2 predicate phase : : Store → Phase

3 getPhase : : ds: Store → TIO {Phase | ν = phase ds} <{True}> <{False}>

4 -- | Paper title (public)

5 getPaperTitle : : ds: Store → p: PaperId → TIO String <{True}> <{False}>

6 -- | Paper authors (only visible to themselves or when phase is done)

7 predicate paperAuthors : : Store → Map PaperId (Set User)

8 getPaperAuthors : : ds: Store → p: PaperId →

9 TIO {List {User | ν in (paperAuthors ds)[[p]]} | elems ν = (paperAuthors ds)[[p]]}

10 <{_0 in (paperAuthors ds)[[p]] ∨ phase ds = Done}> <{False}>

11 -- | Paper status (only visible when phase is done)

12 getPaperDecision : : ds: Store → p: PaperId → TIO Decision <{phase ds = Done}> <{False}>

13 -- | Paper session (public)

14 getPaperSession : : ds: Store → p: PaperId → TIO String <{True}> <{False}>

15 redact {NoDecision}

16

17 notifyAuthors : : ds: Store → p: PaperId → TIO Unit <False> <True>

18 notifyAuthors = λ ds . λ p .

19 do

20 status ← do

21 g0 ← downgrade (do

22 x5 ← getPhase ds

23 return (eq Done x5))

24

25 if g0

26 then getPaperDecision ds p

27 else return NoDecision

28 authors ← getPaperAuthors ds p

29 printAll authors (show status)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:43

Benchmark 7 (HotCRP) : HotCRP password leak: chair could see other people’s passwords in message preview.

1 -- | Mask a password

2 mask : : TIO Password <{False}> <{False}>→ TIO Password <{True}> <{False}>

3 -- | User name (public)

4 getUserName : : ds: Store → u: User → TIO String <{True}> <{False}>

5 -- | User password (only visible to the user)

6 getUserPassword : : ds: Store → u: User → TIO Password <{_0 = u}> <{False}>

7 -- | PC chair (public)

8 predicate chair : : Store → User

9 getChair : : ds: Store → TIO {User | ν = chair ds} <{True}> <{False}>

10 redact {mask}

11

12 sendPasswordReminder : : Store → User → TIO Unit <False> <True>

13 sendPasswordReminder = λ ds . λ u .

14 do

15 ch ← getChair ds

16 preview ← liftM2 strcat

17 (getUserName ds u) (liftM show

18 (do

19 g0 ← downgrade (return (eq ch

20 u))

21

22 if g0

23 then getUserPassword ds u

24 else mask (getUserPassword ds u)))

25 print ch preview

26 message ← liftM2 strcat

27 (getUserName ds u) (liftM show (getUserPassword ds u))

28 print u message

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:44 N. Polikarpova et al.

Benchmark 8 (AirBnB) AirBnB bug: they scrape phone numbers from user messages, but forgot to do so
in the preview. This example features a custom redaction function that makes a message text visible to the
recipient, but not completely public. It also showcases expressive functional reasoning with higher-order
functions, since correctness depends on the argument of filterM.

1 getAllMessageIDs : : ds: Store → [MessageId]

2 -- | AirBnB admin

3 predicate admin : : Store → User

4 getAdmin : : ds: Store → TIO {User | ν = admin ds} <{True}> <{False}>

5 -- | Message sender

6 predicate sender : : Store → Map MessageId User

7 getSender : : ds: Store → m: MessageId

8 → TIO {User | ν = (sender ds)[[m]] ∧ ν , (recipient ds)[[m]]} <{True}> <{False}>

9 -- | Message recipient

10 predicate recipient : : Store → Map MessageId User

11 getRecipient : : ds: Store → m: MessageId

12 → TIO {User | ν = (recipient ds)[[m]] ∧ ν , (sender ds)[[m]]} <{True}> <{False}>

13 -- | Message text (only visible to the admin and the sender)

14 getText : : ds: Store → m: MessageId → TIO String <{_0 = admin ds ∨ _0 = (sender ds)[[m]]}> <{False}>

15 -- | Scrape phone numbers from the message, making it visible to the recipient

16 scrapePhoneNumbers : : ds: Store → m: MessageId

17 → TIO String <{_0 = admin ds ∨ _0 = (sender ds)[[m]]}> <{False}>

18 → TIO String <{_0 = admin ds ∨ _0 = (sender ds)[[m]] ∨ _0 = (recipient ds)[[m]]}> <{False}>

19 redact {scrapePhoneNumbers}

20

21 viewInbox : : Store → User → TIO Unit <False> <True>

22 viewInbox = λ ds . λ client .

23 let isMyMessage = λ m . do

24 to ← getRecipient ds m

25 return (to = client) in

26 do

27 myMIDs ← filterM isMyMessage

28 (getAllMessageIDs ds)

29 messages ← mapM (λ m . do

30 g0 ← downgrade (do

31 x37 ← getAdmin ds

32 return (eq client x37))

33

34 if g0

35 then getText ds m

36 else scrapePhoneNumbers ds m (getText ds m)) myMIDs

37 print client (unlines messages)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Liquid Information Flow Control 1:45

Benchmark 9 (Instagram) : The James Comey Instagram leak: the follow-relationships of private accounts
leak through recommendation algorithms.

1 getAllUsers : : ds: Store → [User]

2 -- | User name (visible to all)

3 predicate name : : Store → Map User String

4 getName : : ds: Store → u: User → TIO {String | ν = (name ds)[[u]]} <{True}> <{False}>

5 -- | Is user's account private? (visible to all)

6 predicate isPrivate : : Store → Map User Bool

7 getIsPrivate : : ds: Store → u: User → TIO {Bool | ν = (isPrivate ds)[[u]]} <{True}> <{False}>

8 -- | Who this user follows (for private accounts: only visible to followers)

9 predicate following : : Store → Map User (Set User)

10 getIsFollowing : : ds: Store → who: User → whom: User →

11 TIO {Bool | ν = (whom in (following ds)[[who]])}

12 <{canSee ds _0 who ∧ canSee ds _0 whom}> <{False}>

13 setIsFollowing : : ds: Store → who: User → whom: User → val: Bool →

14 TIO {Store | (whom in (following ν)[[who]]) = val ∧ name ν = name ds ∧ isPrivate ν = isPrivate ds}

15 <{True}> <{canSee ds _0 who ∧ canSee ds _0 whom}>

16 -- | Is account u public? Yes if it's not private

17 inline isPublic ds u = ¬(isPrivate ds)[[u]]

18 -- | Can x see y? Yes if they are the same, y is public, or x is following y

19 inline canSee ds x y = x = y ∨ isPublic ds y ∨ y in (following ds)[[x]]

20

21 showRecommendations : : ds: Store → client: User
22 → newFriend: {User | isPublic ds ν ∧ ν in (following ds)[[client]]} → TIO Unit <False> <True>

23 showRecommendations = λ ds . λ client . λ newFriend .

24 do

25 uids ←

26 let shouldRecommend = λ u1 .

27 do

28 alreadyFollowing ← downgrade (getIsFollowing ds client u1)

29 if (u1 = client) ∨ alreadyFollowing

30 then return false

31 else do

32 g0 ← downgrade

33 (do

34 x5 ← getIsPrivate ds u1

35 return (not x5))

36 g1 ← downgrade (getIsFollowing ds client u1)

37 if g0 ∨ g1

38 then getIsFollowing ds newFriend u1

39 else return false

40 in filterM (λ u . shouldRecommend u) (getAllUsers ds)

41 names ← mapM (λ u . getName ds u) uids

42 print client (unlines names)

43

44 follow : : ds: Store → client: User → newFriend: {User | isPublic ds ν} → TIO Unit <False> <True>

45 follow = λ ds . λ client . λ newFriend .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:46 N. Polikarpova et al.

46 do

47 ds' ← setIsFollowing ds client newFriend true

48 showRecommendations ds' client newFriend

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 The EDAS Leak
	2.2 Programming with Lifty

	3 Overview
	3.1 Static IFC with [language=lifty,basicstyle=,columns=fixed]TIO
	3.2 Encoding Policies in Data-Centric Applications
	3.3 Patching the Leaks
	3.4 Advanced Policies

	4 The Core Calculus
	4.1 Syntax of L
	4.2 Dynamic Semantics of L
	4.3 Static Semantics of L
	4.4 Noninterference in L

	5 Leak Repair in L
	5.1 Leak Localization
	5.2 Patch Generation
	5.3 Guarantees and Limitations

	6 Evaluation
	6.1 Microbenchmarks
	6.2 Case Studies
	6.3 Performance Statistics
	6.4 Quality of Patches
	6.5 Discussion and Limitations

	7 Related Work
	7.1 Information Flow Control
	7.2 Program Synthesis and Repair
	7.3 Type Coercions and Type Error Localization

	Acknowledgments
	References
	A The Language L
	A.1 Operational Semantics of L
	A.2 The L Type System
	A.3 Noninterference

	B Scalability
	C Microbenchmarks

