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Abstract—Using homomorphic encryption and secure mul-
tiparty computation, cloud servers may perform regularly
structured computation on encrypted data, without access to
decryption keys. However, prior approaches for programming
on encrypted data involve restrictive models such as boolean
circuits, or standard languages that do not guarantee secure
execution of all expressible programs. We present an expressive
core language for secure cloud computing, with primitive
types, conditionals, standard functional features, mutable state,
and a secrecy preserving form of general recursion. This
language, which uses an augmented information-flow type
system to prevent control-flow leakage, allows programs to be
developed and tested using conventional means, then exported
to a variety of secure cloud execution platforms, dramatically
reducing the amount of specialized knowledge needed to write
secure code. We present a Haskell-based implementation and
prove that cloud implementations based on secret sharing,
homomorphic encryption, or other alternatives satisfying our
general definition meet precise security requirements.

Keywords-information flow control; secure cloud computing;
domain-specific languages; homomorphic encryption; multi-
party computation

I. INTRODUCTION

Homomorphic encryption [1], [2], [3] and secure multi-

party computation [4], [5], [6], [7] open new opportunities

for secure cloud computing on encrypted data. For example,

cloud servers could examine encrypted email for spam,

without decrypting the email. A cloud server could also

potentially compute a route between two endpoints on a

public map, and return the encrypted path to a client. This

paradigm provides cryptographic confidentiality, because the

cloud server never has the keys needed to decrypt or recover

private data.

Our goal is to provide a language and programming

environment that would allow developers to produce secure

cloud applications, without sophisticated knowledge of the

cryptographic constructions used. Theoretical approaches for

programming on encrypted data involve restrictive mod-

els such as boolean circuits, which are not conventional

programming models. Programming using a conventional

language and a cryptographic library, on the other hand, may

allow programmers to write programs that cannot execute,

because control flow depends on encrypted values that are

not available to the cloud execution platform. Due to the

performance costs of computing on encrypted data, realistic

computation must involve mixtures of secret (encrypted) and

public data. Without information flow restrictions, programs

could inadvertently specify leakage of secret data into public

variables.

We present an expressive core language for secure cloud

computing, with primitive types, conditionals, standard func-

tional features, mutable state, and a secrecy preserving

form of general recursion. This language uses an aug-

mented information-flow type system to impose conven-

tional information-flow control and addresses a new prob-

lem for information-flow type systems: prevent control-flow

leakage to the cloud platform. The language allows programs

to be developed and tested using conventional means, then

exported to a variety of secure cloud execution platforms,

dramatically reducing the amount of specialized knowledge

needed to write secure code. Past efforts have produced

generally less expressive programming languages (SMC [8],

Fairplay [9], SIMAP [10], [11], VIFF [12]) with weaker

security proofs (see Section VII).

A core problem is that if an untrusted cloud server is given

a program to execute, the server can observe control flow

through the program. Therefore, if any conditional branch

depends on a secret (encrypted) value, the server must

execute both paths and combine results using operations

on encrypted data. For example, consider if x then y :=
4 else y := 5, where x : bool and y : int. If x is secret

and y is public, then this statement cannot be executed

because secret information flows to a public reference; we

use conventional information-flow control to prevent this. If

both x and y are secret, then this is executed by storing

the secretly computed value x · 4 + (1 − x) · 5 in y. While

computing both branches works for a simple if-then-else,

this cannot be done for recursive functions, because the set

of possible execution paths may be infinite. Therefore, we

augment our type system with additional information labels

to prevent unbounded recursion on secret values, without

restricting computation when control flow relies on public

data.

While homomorphic encryption and secure multiparty

computation are based on different cryptographic insights

and constructions, there is a surprising structural similarity

between them. This similarity is also shared by so-called

partially homomorphic encryption, in which the homomor-

phism property holds only for certain operations. We capture

this similarity in our definition of secure execution platform.
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Figure 1. Multiple deployment options using different runtime systems.
The EDSL (with the Template Haskell compiler) can be executed on various
Haskell-backends. The core language compiler can additionally be compiled
to other systems such as SMC and VIFF.

Figure 1 shows how our separation of programming envi-

ronment from cryptographically secure execution platforms

can be used to delay deployment decisions or run the

same code on different platforms. One advantage of this

approach is that a developer may write conventional code

and debug it using standard tools, without committing to

a specific form of execution platform security. Another

advantage is that as cryptographic constructions for various

forms of homomorphic encryption improve, the same code

can be retargeted because our language makes correctness

independent of choice of secure execution platform.

Our formal definition of secure execution platform allows

us to develop a single set of definitions, theorems, and

proofs that are applicable to many cryptographic systems.

The two main theoretical results are theorems that guarantee

the correctness and security of program execution. We

state correctness using a reference semantics that expresses

the standard meaning of programs, with encryption and

decryption as the identity function. The correctness theorem

states the cloud execution of a program on encrypted data

produces the same output as the conventional execution

without encryption. Our security theorem depends on the

threat model, because homomorphic encryption and secret

sharing are secure in different ways. The security theorem

states that no adversary learns the initial secret client values,

beyond what is revealed by the program output, because the

probability distributions of program behaviors (on different

secret inputs) are indistinguishable. We also show that

fully homomorphic encryption and a specific secret-sharing

scheme meet the definition of secure execution platform, as

do somewhat homomorphic schemes when they support the

operations actually used in the program.

We develop our results using the honest-but-curious ad-

versary model, commonly used in practical applications

(e.g., [13], [10]). However, there are established methods for

assuring integrity, using commitments and zero-knowledge

techniques [14], as well as for reducing communication

overhead [7]. In addition, while we focus on data confi-

dentiality, our current system can also protect confidential

algorithms, in principle, by considering code as input data

to an interpreter (or “universal Turing machine”).

In this article, we first give a motivating example and

provide some relevant background on Haskell, our host

language, and two representative examples of secure execu-

tion platforms: fully homomorphic encryption, and Shamir

secret sharing. We then give an overview of the definitions

and formal assumptions we require of any secure execution

platform (Section IV), followed by a presentation of our core

language and its properties (Section V), and a synopsis of

our implementation efforts (Section VI). Finally, we discuss

related work in Section VII and conclude in Section VIII.

II. IMPLEMENTATION AND MOTIVATING EXAMPLE

The core of our domain-specific language (DSL) is

implemented as a Haskell library, an embedded domain-

specific language (EDSL). Our implementation includes

Shamir secret sharing and fully homomorphic encryption;

both use SSL network communication between clients and

any number of servers. A preliminary design without re-

cursion, references, or conditionals, and with a different

implementation was described in [15].

As highlighted in Figure 1, we provide a Template Haskell

compiler, which translates a subset of Haskell syntax to our

EDSL, at compile-time. The Template Haskell extension

provides syntactic sugar for EDSL combinators, enabling

the programmer to use already-familiar syntax when writing

code that operates on secret data. We also provide a core-

language compiler front-end that directly implements the

information-flow type system of this paper; the front-end

exports abstract syntax trees (ASTs) of well-typed, labeled

expressions, facilitating code generation for various back-

ends, including our Haskell EDSL.

As a working example, we consider the case for email

filtering in a cloud setting. More specifically, we consider

RE: Reliable Email [16], as shown in Figure 2. With

Reliable Email, email from trustworthy senders (as deemed

by the receiver) is forwarded directly to the receiver’s inbox,

bypassing the spam filter. This guarantees that a message

from a trustworthy source, which may have been labeled

“spam” because of its content, will be received—hence,

making email a reliable communication medium between

trustworthy entities.

A key component of (a simplified) Reliable Email system

is a whitelist, containing the email addresses of all senders

considered trustworthy by the receiver. For every incoming

message, the authentication of the From address is verified1

and checked against the whitelist. If the address is in

1Messages must be signed by the sender since forging the From address
is trivial.
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Figure 2. RE: Reliable Email in a cloud setting. Incoming email is
forwarded by clients to cloud-based filters (steps 2 and 4). If email is
from a trustworthy source as determined by Reliable Email (step 4), it is
forwarded directly to the inbox (step 3), otherwise it takes the default path
through the spam filter (steps 3-5).

-- | Given two secret, hashed email addresses,
-- compute the Hamming distance between them.
hammingDist :: SHA1EmailAddr

→ SHA1EmailAddr → SecIO SecretInt
hammingDist e1 e2 = hammingDist’ e1 e2 0

-- | Number of bits in SHA1 digest
sha1DigestLen = 160

-- | Actual distance computation.
-- A SHA1EmailAddr is a list of bits.
hammingDist’ e1 e2 = $(compileTHtoEDSL [ |

fix ( λf λi →
-- Iterate over all bits of an email

let k = if i < sha1DigestLen -- done?
then f (i+1) -- no, next
else toSecret 0 -- yes

-- Compute difference between i’th bits
x = xor (e1 !! i) (e2 !! i)

in x + k -- Sum of all bit differences
)

|])
Figure 3. Recursively computing the Hamming distance of two SHA1-
hashed email addresses. Recursion with fix is used to iterate over all the
bits of the hashed email addresses, which are XORed.

the whitelist, the mail is forwarded directly to the inbox,

otherwise it is forwarded to the spam filter.

It is important that the sender’s whitelist, which is essen-

tially an address book, remain confidential if Reliable Email

and the spam filter are executed in the cloud. Hence, in our

setting, the hashed email addresses are encrypted (or split

into shares, in the case of secret sharing) and the check

against the whitelist is done homomorphically. Figure 3

shows a component of the whitelist check in our Haskell

DSL: computing the Hamming distance between the hashes

of two email addresses. A Hamming distance of zero denotes

a match, i.e., the email address is that of a trustworthy entity.

This example highlights several key aspects of our Haskell

EDSL. First, our language provides various primitives such

as fix and toSecret, that are respectively used for im-

plementing (safe) recursion, and lifting public values to

their secret equivalents. Second, the DSL embedding allows

the programmer to use existing Haskell features including

higher-order functions, abstract data types, lists, etc. Third,

the Template Haskell compiler (compileTHtoEDSL) allows

the programmer to use standard Haskell syntax. Finally,

compared to languages with similar goals (e.g., SMCL [11]),

where a programmer is required to write separate client and

server code, using our EDSL, a programmer needs to only

write a single program; we eliminate the client/server code

separation by providing a simple runtime system that directs

all parties.

Developers who write in the EDSL can take advantage

of existing, carefully-engineered Haskell development tools,

compilers, and runtime systems. Programmers also have the

benefit of sophisticated type-checking and general program-

ming features of Haskell; we use the Haskell type and

module system to enforce the correct usage of our secure

execution platform. Because our EDSL and compilers are

packaged in the form of Haskell libraries, other researchers

could use our libraries to implement different programming

paradigms over the same forms of cryptographic primitives,

or compile our core language to other runtime systems.

III. BACKGROUND

A. Haskell and EDSLs

Haskell is a purely functional language that is widely used

for DSL embedding. Haskell’s type system, lazy evaluation

strategy (expressions are evaluated only when their values

are needed), and support for monads makes it easy to

define new data structures, syntactic extensions, and control

structures—features commonly desired when embedding

languages.

Haskell also supports compile-time meta-programming

with Template Haskell [17]. Template Haskell provides a

method for reifying Haskell source: converting concrete

Haskell syntax to a Haskell data type representing the source

abstract syntax tree (AST); and, dually, a method for splicing

an AST into Haskell source. Figure 3 shows an example

use case of compile-time meta-programming with Template

Haskell. The recursive function is reified by enclosing it in

‘[|’ brackets: [| fix ( λf λi →... ) |]. We use the func-

tion compileTHtoEDSL to analyze the corresponding AST and

generate a new AST composed of EDSL primitives. Finally,

the generated AST is spliced in as Haskell source by enclos-

ing it with $(...), providing a definition for hammingDist’.

Our use of Template Haskell is limited to adding syntactic

sugar to our EDSL, so that programmers can work with

familiar constructs. An alternative extension, QuasiQuotes,

can be used to reify arbitrary syntax; in conjunction with
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Template Haskell, we can use QuasiQuotes to compile from

the core language to our EDSL.

B. Homomorphic encryption

A homomorphic encryption scheme 〈KeyGen,Enc,
Dec,Eval〉 consists of a key generation algorithm, encryp-

tion and decryption algorithms, and an evaluation function

that evaluates a function f ∈ F on encrypted data. More

specifically, for a public/secret key pair 〈pk, sk〉 generated

by KeyGen, and a plaintext m, if c = Enc(pk,m), then

Dec(sk,Eval(pk, c, f)) = f(m) for every f ∈ F , where

F is some set of functions on plaintexts. We say that the

encryption scheme is homomorphic with respect to the set
F of functions.

While some homomorphic encryption schemes [18], [19],

[20] are partially homomorphic – i.e., homomorphic with

respect to a restricted class of functions, such as the set

of quadratic multivariate polynomials or the set of shallow

branching programs – recent research has produced con-

structions that are fully homomorphic, i.e., homomorphic

with respect to all functions of polynomial complexity [1],

[2], [21], [3]. Since this work has generated substantial

interest, there is a rapidly growing set of fully homomorphic

constructions. However, for efficiency reasons we remain

interested in partially homomorphic schemes as well.

C. Secure multiparty computation

Another approach to computing on ciphertexts makes use

of generic two-party or multi-party secure computation [22],

[23], [4], [24], [6], [7], [25], [26], [27], in which the client,

who has the plaintext m, communicates with the server(s),

who have the function f to be computed on m. The standard

conditions for secure multiparty computation guarantee that

the client learns f(m), while the server (or an adversary

compromising some restricted set of servers) learns nothing

about m.

In this work, we specifically consider Shamir secret

sharing, and the multiparty computation protocol based on

it [5]. According to this protocol, a client C shares a

secret value a0 from a prime-order finite field Fp among

N servers. In an (N, k) secret sharing scheme, N servers

can jointly perform computations on m and other shared

secrets, such that at least k of the N servers must collude

to learn anything about m. Letting a0 = m, in Shamir

secret sharing, the client C shares a0 by choosing values

a1, . . . , ak−1 uniformly at random from F , and forms the

polynomial p(x) =
∑k−1

i=0 aix
i. Then, C computes and

distributes the shares s1 = p(1), . . . , sN = p(N) to servers

S1, . . . , SN , respectively. The servers can easily execute ad-

ditions on the values, by adding their shares. Multiplication

is more complicated, because multiplication of polynomials

increases their degree. The solution involves computing and

communicating a new sharing among the servers.

IV. DEFINITIONS AND ASSUMPTIONS

Before presenting our language design, we summarize

the semantic structure used in our analysis; for full details,

we refer to reader to Appendix A. As shown below,

our semantic structure is sufficient to prove correctness

and security theorems for the language we develop, and

general enough to encompass secret sharing, homomorphic

encryption, and other platforms.

A. Primitive operations

We assume some given sets Y of primitive values, includ-

ing at least booleans (Y = {true, false}) and the singleton

set, “unit” (Y = {()}). We also assume primitive operations

op1, . . . , opr on these values, where each operation has its

own type: i.e., opi : dom(opi) → cod(opi). (For instance,

if op1 is addition modulo p, then dom(op1) = (int, int),
and cod(op1) = int.) To provide additional flexibility for

richer language features, we also assume that for each prim-

itive type Y , we have a primitive branching operator: i.e.,

there is some opBr(Y ) such that opBr(Y )(true, y1, y2) =
y1 and opBr(Y )(false, y1, y2) = y2. (In platforms with

addition and multiplication, for instance, we might have

opBr(int)(b, z1, z2) = b · z1 + (1 − b) · z2.) In reality, some

platforms might only support branching operators for a

subset of primitive types, or none at all (e.g., cryptosystems

that are only additively or multiplicatively, rather than fully,

homomorphic). However, to simplify the formalism, we

assume branching operators for all primitive types; the devel-

opment proceeds in a similar fashion for simpler platforms,

and only requires that additional restrictions be imposed on

branching constructs (if-then-else).

B. Distributed computing infrastructure

We assume N servers, S1, . . . , SN , execute the secure

computation on behalf of one client, C.2 (In many natural

cases, such as homomorphic encryption, N = 1). The

(N + 1) parties will communicate by sending messages

via secure party-to-party channels in discrete communication
rounds. A communication trace T ∈ T is a sequence of

communication rounds. Each round is a tuple (S,R,m) ∈ T
of the sender S, receiver R, and value m. We assume a

projection operator, ΠA, that gives the view of a trace for

any subset A of the servers, i.e., the messages that those

servers see; intuitively, this will represent the view of the

protocol by any set of compromised servers that fall under

the protocol’s threat model.

General form of cryptographic primitives: We work

with a two-element security lattice, P � S, representing

(respectively) “public” values, which are transmitted in the

clear and may be revealed to any party; and “secret” values,

2 The restriction to a single client is for clarity of presentation. The
generalization to multiple clients is straightforward, and, indeed, it is
common in practice to have N parties in total executing a multiparty
computation, each one serving as both a client and a server.
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which are encrypted or otherwise hidden, and must remain

completely unknown to the adversary. For each primitive

type Y , we assume a set ES(Y ), holding “secret equivalents”

of base values in Y ; for notational uniformity, we also define

EP(Y ) = Y , signifying that the “public equivalent” of a

value is just the value itself. We recall that for any two

elements (or labels) of a lattice, we have a well-defined join
(�), which corresponds to the least upper bound of the two

elements (e.g., P � S = S).
We also assume a few standard cryptographic primitives,

expressed as protocol operations that may operate on initial

parameters ι ∈ I, generate communication traces among the

parties, and/or consume bits from a source of randomness.

For clarity, we leave this randomness source implicit, instead

considering each operation to produce a distribution over

the values in its range (and implicitly lifting the operations

to act on distributions over their domains). We regard

predicates over these distributions to be true if they hold

with probability 1.
The operations we assume are as follows (overloaded for

all primitive types Y ):

• EncS : Y × I → ES(Y )× T , “hiding” y ∈ Y .

• DecS : ES(Y )× I → Y × T , “unhiding” ỹ ∈ ES(Y ).
• Enc�1,...,�r (opi) :

∏
j E�j (dom(opi)j) × I →

E⊔
j �j (cod(opi)) × T (when at least one �j is S),

evaluating a primitive operation.

We also assume that Init describes the generation of initial

parameters according to some distribution I (for example,

public and secret keys in the case of homomorphic encryp-

tion). For notational uniformity, as above, we also define the

corresponding operations in the degenerate case of “hiding”

public values (operating as the identity on the plaintext

values, and yielding empty traces). In addition, we assume

a projection operator from the initial parameters onto any

subset A of the servers, writing ΠA(ι) to mean, intuitively,

the portion of the initial parameters ι that servers in A should

receive.
Cryptographic correctness assumptions: We assume

the usual encryption and homomorphism conditions, aug-

mented for cryptographic primitives that depend on random-

ness and that may communicate among servers to produce

their result. For every element y of a primitive type Y , and

every choice of initial parameters ι ∈ I, we assume a fam-

ily of safe distributions Êι�(y): intuitively, any distribution

l ∈ Ê ι�(y) can safely serve as the “hiding” of y under the

initial parameters ι (at secrecy level � ∈ {P, S}). We require

that “hiding” a base value must yield a safe distribution;

that unhiding (“decryption”) is the left-inverse of hiding

(“encryption”); and that hiding commutes homomorphically

with the primitive operations.
Indistinguishability conditions: In general, the dis-

tributed threat model may involve any set of possible combi-

nations of colluding servers. We formalize this by assuming

a family A of sets that we refer to as valid sets of untrusted

servers. Intuitively, for any set of servers A ∈ A, we assume

the cryptographic primitives are intended to provide security

even if an adversary has access to all information possessed

by all servers in A.

Different platforms may provide different security guar-

antees of their primitives. For example, protocols may spec-

ify that distributions are computationally indistinguishable
(i.e., indistinguishable to a probabilistic polynomial-time

adversary), or information-theoretically indistinguishable
(i.e., identical). For the purposes of this development, we

will use the term indistinguishable to refer to whichever

of the above notions is specified by the secure execution

platform. Using this terminology, we require that any two

sequences of partial traces are indistinguishable if each pair

of corresponding partial traces describes either 1.) a “hiding”

operation; 2.) a primitive operation whose public arguments

agree (and whose hidden arguments are safely-distributed);

or 3.) an “unhiding” operation on values that turn out to be

equal.

Definition 1. We say that a system is a secure execution
platform for the primitive operations (opi) if it satisfies the

conditions summarized above (and detailed in Appendix A).

V. LANGUAGE DESIGN

We present a functional core language, λ→P,S, whose

definition is parameterized by a set of given operations over

primitive types. This language is an extension of the simply-

typed lambda calculus, with labeled types as used in infor-

mation flow languages (see, e.g., [28]). Our language design

and analysis are valid for any secure execution platform,

and are thus parameterized over implementation details such

as the number of servers, the form of cryptography used,

and the form and extent of communication in the system.

From the programmer’s standpoint, different cryptographic

backends that support the same operations provide the same

programming experience.

In order to prove desired correctness and security proper-

ties, we formulate both a standard reference semantics for

λ→P,S and a distributed semantics that allows an arbitrary

number of servers to communicate with the client and with

each other in order to complete a computation. Correctness

of the distributed semantics is then proved by showing an

equivalence with the reference semantics, while security

properties are proved by analyzing the information available

to the servers throughout the program execution.

A. Syntax

Our core language, λ→P,S, extends the simply-typed lambda

calculus with primitive values, conditionals, mutable stores,

and a fixpoint operator. Figure 4 describes the language

syntax. Throughout this section, we assume primitive op-

erations (opi) and a secure execution platform, as specified

in Section IV.
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Figure 4 λ→P,S syntax.

Types t ::= Y | (τ → τ) | Y � ref

Labeled types τ ::= t�

Values v ::= y | a | λx.e | fix f.λx.e

Expressions e ::= v | x | X | e e

| if e then e else e

| opti(e, . . . , e) | ref e | !e | e := e

| reveal e

Programs p ::= read(X1 : Y1, . . . , Xn : Yn); e

In addition to standard constructs, expressions in λ→P,S

may include variables bound at the program level by the

read construct, representing secret values input by the

clients before the body of the program is evaluated; these in-

put variables are represented by capital letters X (in contrast

to lambda-bound variables, which use lowercase letters x),

to emphasize the phase distinction between input processing

and evaluation of the program body3. Programs in λ→P,S may

also include reveal operations, which specify that the value

in question need not be kept secret during the remainder of

the computation. In addition to decrypting final result values

(if they are intended to be public), the reveal construct

also enables declassification of intermediate results, giving

programmers fine-grained control over the tradeoff between

performance and total secrecy. We note that references in

λ→P,S are limited to primitive types, since we later depend

on some restricted termination results (and termination need

not hold if references of arbitrary type are permitted).

Figure 5 λ→P,S syntax (extended).

ṽ ::= v | ỹ | λx.ẽ | fix f.λx.ẽ | a | ϕ(ṽ1, ṽ2, ṽ3)
ẽ ::= e | ṽ | x | X | ẽ ẽ | if ẽ then ẽ else ẽ

| opti(ẽ, . . . ẽ) | ref ẽ | !ẽ | ẽ := ẽ

| reveal ẽ

In order to reason about the evaluation of programs we

extend the language syntax as shown in Figure 5. The pre-

vious syntax (Figure 4), is a subset of the extended syntax,

and encompasses all expressions that the programmer can

write (which we refer to as the “surface syntax”), as well

as values a, which range over a countably infinite set of

abstract memory locations (as in standard presentations of

lambda calculus with mutable references). However, the

extensions are necessary to describe values that may result

3While we enforce this phase distinction to simplify the formalism, it is
a straightforward extension to allow input and output operations throughout
the program, rather than restricting inputs to the beginning and outputs to
the final value.

from evaluations in the distributed semantics (described

below), despite not being present at the surface level.

In particular, we have a case for possibly-hidden primitive

values ỹ ∈ E�(Y ). As described in Section IV, ỹ ∈ ES(Y )
is a hidden value, while ỹ ∈ EP(Y ) = Y is a publicly-

visible value but, for notational uniformity, may be regarded

as hidden at the public confidentiality level. The value

ϕ(b̃, ṽ2, ṽ3), where b̃ ∈ ES(bool), and ṽ2, ṽ3 are (extended)

values intuitively represents a “deferred decision”. Because

the boolean value b̃ was secret, the system could not de-

cide which of two values was the result of a conditional

expression, and thus had to propagate both. For example,

the following expression:

ϕ(b̃, λx.0, λx.1)

might be the result of a conditional in which the condition

evaluates to the secret boolean b̃. Note, however, that a value

such as ϕ(b̃, 17, 42) would never occur, since (as detailed

below) the system would be able to evaluate the condition

homomorphically on hidden primitive values and produce a

hidden primitive value.

B. Static semantics

We include a few representative rules of the static seman-

tics in Figure 6. For the full presentation, we refer the reader

to the extended version of this work, available at [29].

Figure 6 Static semantics (selected rules).

Γ[x �→ τ1],Σ, C
′ 	 e : τ

Γ,Σ, C 	 λx.ẽ : (τ1
C′
→ τ)�

Γ[f �→ (τ1
P→ τ)�, x �→ τ1],Σ, C

′ 	 ẽ : τ

Γ,Σ, C 	 fix f.λx.ẽ : (τ1
P→ τ)�

Γ,Σ, C 	 ẽ : (τ1
C′
→ t�

′
)�

Γ,Σ, C 	 ẽ1 : τ1 � � C ′ C � C ′ � � �′ � �′′

Γ,Σ, C 	 ẽ ẽ1 : t
�′′

Γ,Σ, C 	 ẽ1 : bool
�′ Γ,Σ, C � �′ 	 ẽ2 : t

�′′

Γ,Σ, C � �′ 	 ẽ3 : t
�′′ �′ � �′′ � �

Γ,Σ, C 	 if ẽ1 then ẽ2 else ẽ3 : t
�

Γ,Σ, C 	 ẽ1 : (t
�′ ref)�

Γ,Σ, C 	 ẽ2 : t
�′ C � �′ � � �′

Γ,Σ, C 	 ẽ1 := ẽ2 : unit
�′′

Γ,Σ, C 	 ẽ : Y S

Γ,Σ,P 	 reveal ẽ : Y �

In the typing judgment, Γ, as usual, represents the typing

context for lambda-bound variables, while Σ represents

the store typing (i.e., if Σ(a) = Y �, then the (extended)
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expression ẽ should be evaluated in a store that maps a to

an element of type Y �).

The key feature of the static semantics is the presence

of value labels, � ∈ {P, S}, as well as the context label,

C ∈ {P, S}. The intuitive meaning of these labels is similar

to their meaning in standard information flow systems [28],

[30]. A value labeled t� is a value of type t at confidentiality

level �. Our reveal operator, like traditional declassification

operators, indicates that a particular value is allowed to

be leaked; statically, it acts as a cast from S to P. A

context label C signifies that an expression can be typed

in a context in which control flow may depend on values

of confidentiality level C. In our language, as in standard

information flow systems, this context restriction is used to

prevent implicit flows, such as an update to a public memory

location inside a secret conditional. However, in our model,

we must also regard any deviation in control flow as a pub-

licly visible effect. Thus, not only updates to public memory

locations, but also side-effects such as reveal, as well as

unbounded iteration (or potential nontermination), must be

independent of secret values. This makes our system, by

necessity, strictly more restrictive than standard termination-

insensitive information-flow systems such as JFlow/Jif [31].

One can view these additional restrictions as specifying

that the control flow of the program is visible to the

adversary, as in an oblivious memory model [32]; but,

while intuitively helpful, this analogy does not present a

complete picture. In a sense, the purpose of information

flow control in our system is dual to its purpose in traditional

language-based security: in a traditional system, the machine

model permits the implementation of arbitrary operations,

and the information flow system must statically rule out

code that would leak information; while in our system, the

machine model permits only operations that would not leak

information (since secret values are encrypted or otherwise

hidden), and thus our system must statically rule out code

that would not be implementable in such a model.

In light of these objectives, we include additional re-

strictions in the static semantics, similar in flavor to some

type-and-effect systems [33], [34], in addition to standard

information flow control constructs. For example, in the

conditional rule, we require that each branch is well-typed at

a confidentiality level at least as high as that of the condition.

As in other information flow systems, this restriction rules

out the canonical example of implicit flow (where s is a

secret boolean, and p is a reference to a public integer):

if s then p := 0 else p := 1

Since s is secret, the branches must type-check in a secret

context; but the rule for assignment specifies that the label

of the reference receiving the assignment is at least as high

as that of the surrounding context, which cannot be satisfied

by this expression. Our system also rules out the following

expression:

if s1 then (reveal s2) else 17

The reveal operation would cause a publicly-observable

side-effect (namely, causing a value to be “unhidden”), and

thus it cannot be typed in a secret context. Similarly, our

restrictions also rule out the following expression, although

the reasoning is more involved:

fix f . λs . (if s ≤ 0 then 1 else s ∗ f(s− 1))

Notably, in the rules for lambda abstraction and recursive

function definition, we add a context label above the arrow

(τ1
C′
→ τ), signifying that the resulting function, when

applied, may generate effects that must be confined to a

context C ′ (independent of the context C in which the term

itself is evaluated).4 In the case of general recursion, this

effect label is assumed to be P, since we conservatively

assume that any application of a function defined by general

recursion (either within its own definition, or as a standalone

expression) may generate unpredictable, publicly-observable

control flow behavior, including divergence. It is also worth

noting that a function’s effect context label, C ′, is only taken

into account when the function is applied; for instance, the

following expression is well-typed:

if s then (fix f . λx . f x) else (λx . x)

The dependence of confidentiality on control flow also raises

more subtle issues that necessitate additional typing restric-

tions. For instance, the following expression clearly does not

preserve confidentiality (and thus cannot be implemented on

a secure execution platform):

(if s then p1 else p2) := 42

The underlying principle in this example is that values

escaping a secret context may carry secret information with

them, and thus computations that depend on them must

be well-typed in a secret context. Indeed, this restriction

is reflected in the static semantics. In the assignment rule,

the restriction � � �′ expresses that information could flow

from the confidentiality label of the reference itself to the

label of its contents: i.e., one can never write to a secret

reference cell (a memory location whose identity is secret)

if its contents may be public. A similar situation arises with

lambda abstractions, as in the following (ill-typed) example:

(if s1 then (λx . reveal s2) else (λx . 17)) ()

In the application rule, as above, the restriction � � C ′

expresses that information could flow from the identity of

4For simplicity of presentation, lambda abstractions in our syntax do
not carry the traditional type annotations, λ(x : t).e. In any concrete
implementation, we assume that terms are appropriately annotated with
(unlabeled) types, so that type-checking becomes tractable while preserving
label subtype polymorphism. Since such restrictions permit the typing of
strictly fewer terms, our theoretical results still hold.
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the function to the context in which it executes: i.e., one can

never apply a function whose identity is secret if it might

have publicly-observable effects.

C. Dynamic semantics

We now give a standard dynamic semantics for λ→P,S, the

“reference semantics” (Figure 7), extending the evaluation

rules for the simply-typed lambda calculus. As described

above, the reference semantics gives a precise specification

for the evaluation of a program, against which the actual

secure implementation (the “distributed semantics”) can be

compared for correctness.

Figure 7 Reference semantics (selected rules).

(e0, μ) ↓ (λx.e′0, μ0,O0)
(e1, μ0) ↓ (v1, μ1,O1) (e[v1/x], μ1) ↓ (v′, μ′,O2)

(e0 e1, μ) ↓ (v′, μ′,O0‖O1‖O2)

(e1, μ) ↓ (true, μ1,O1) (e2, μ1) ↓ (v′, μ′,O2)

(if e1 then e2 else e3, μ) ↓ (v′, μ′,O1‖O2)

(e1, μ) ↓ (a, μ1,O1) (e2, μ1) ↓ (v2, μ2,O2)

(e1 := e2, μ) ↓ ((), μ2[a �→ v2],O1‖O2)

(e, μ) ↓ (y, μ′,O)
(reveal e, μ) ↓ (y, μ′,O‖y)

(e[κ(X1)/X1 . . . κ(Xn)/Xn], ∅) ↓ (v, μ,O)
(κ, read(X1 : Y1, . . . , Xn : Yn); e) ↓ (v, μ,O)

In the reference semantics, the mutable store μ maps

addresses (generated by ref) to the values they contain,

while the environment κ represents the initial (secret) values

supplied by the client. The judgment (μ, e) ↓ (v, μ′,O)
indicates that the expression e, when evaluated in an initial

store μ, produces a value v, a final store μ′, and a se-

quence O of “observations”, holding all values ever supplied

to reveal throughout the evaluation (where the operator

‖ indicates concatenation of observation sequences). The

observation sequences are important in proving security

properties (Theorem 2, below), as we will show that an

appropriately constrained adversary learns nothing except

what is logically entailed by these observations. The read

construct only serves to bind the initial client-input variables,

and is essentially a no-op; for clarity, however, we retain it

in the syntax, since in the distributed semantics (Figure 8),

it will represent the initial “hiding” operation (potentially

including communication between the client and servers).

We give an additional dynamic semantics, the “distributed

semantics” (Figure 8), that reflects the actual steps taken by

an implementation in terms of a secure execution platform.

Values in the distributed semantics may be “hidden” from

the server(s) computing on them – shared or otherwise en-

crypted, according to the primitives of the secure execution

platform. Thus, the distributed semantics makes central use

of the lifted, or homomorphic, operations of the platform.

In particular, we use the lifted primitives, Enc�1,...,�r (opi),
to match the execution of the ordinary primitive operations

opi in the reference semantics. It is also worth noting

that the distributed semantics implicitly act on probability

distributions. As described above, the output of an operation

in the secure execution platform is a distribution, and thus,

when an operation f(x̃) appears in a semantic rule, it

should be considered lifted to act on distributions (i.e., f(x̃)
represents the sum of distributions

∑
x∈dom x̃ px̃(x)f(x),

where px̃ is a probability mass function of the distribution x̃).
The distributed semantics uses the extended form of

the expression syntax (ẽ), signifying that expressions may

contain possibly-hidden primitive values ỹ ∈ E�(Y ), as

well as ϕ symbols ϕ(b̃, ṽ2, ṽ3) (discussed below). The

evaluation judgment (ẽ, μ̃, ι) ⇓ (ṽ′, μ̃′, T,O) signifies that

an expression ẽ, when evaluated in an initial store μ̃ and

initialized with platform parameters ι, evaluates to the value

ṽ′, producing a final store μ̃′, a communication trace T , and

observations O (again containing all values ever supplied to

the reveal operator). In contrast to the reference semantics,

the distributed semantics specifies that reveal and read

operations result in communication between the parties

according to the parameters of the secure execution platform:

the reveal rule specifies that the parties execute an “unhid-

ing”, or decryption, DecS, of a secret value, while the read

rule specifies that the client initializes the secure execution

platform, distributes to each server its view of the initial

parameters (Π{Si}(ι)), and executes the “hiding”, EncS, of

the secret values in the client’s initial environment κ.
For most of the other rules, we can intuitively regard eval-

uation in the distributed semantics as proceeding in lock-step

with the reference semantics, executing the corresponding

operations as provided by the secure execution platform,

as long as control flow proceeds independently of secret

values. For example, the distributed semantics provides

two distinct rules for conditionals (if-then-else). When

the condition evaluates to a public boolean (i.e., an element

of EP(bool) = bool), the evaluation precisely mirrors the

reference semantics; observations and communication traces

are propagated unchanged.
When control flow does depend on a secret value, how-

ever, the distributed semantics yields different behavior. For

instance, when a condition evaluates to a secret boolean

b̃, the distributed semantics specifies that both branches

should be evaluated in the same store μ̃1, each generating

its own value and resulting store (ṽ2, μ̃2) and (ṽ3, μ̃3).
5 The

distributed semantics then merges these values and stores,

5For technical reasons, we need to specify that dom μ̃2 ∩ dom μ̃3 =
dom μ̃1 to prevent incidental collisions in names of fresh memory loca-
tions.
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Figure 8 Distributed semantics (selected rules).

∀j ∈ {1, . . . , r} . (ej , μ̃j−1, ι) ⇓ (ỹj , μ̃j , Tj ,Oj)
∀j ∈ {1, . . . , r} . ỹj ∈ E�j (Yj)

Enc�1,...,�r (opi)(ỹ1, . . . , ỹr, ι) = (ỹ′, T )
T ′ = T1‖ · · · ‖Tr‖T O′ = O1‖ · · · ‖Or

(opi(e1, . . . , er), μ̃0, ι) ⇓ (ỹ′, μ̃r, T
′,O′)

(ẽ0, μ̃, ι) ⇓ (ϕ(b̃, ṽ2, ṽ3), μ̃0, T0,O0)

b̃ ∈ ES(bool) (ẽ1, μ̃0, ι) ⇓ (ṽ1, μ̃1, T1,O1)
(ṽ2 ṽ1, μ̃1, ι) ⇓ (ṽ′2, μ̃2, T2,O2)
(ṽ3 ṽ1, μ̃1, ι) ⇓ (ṽ′3, μ̃3, T3,O3)

(ṽ′, T4) = Φι(b̃, ṽ′2, ṽ
′
3) (μ̃′, T5) = Φι(b̃, μ̃2, μ̃3)

(ẽ0 ẽ1, μ̃, ι) ⇓ (ṽ′, μ̃′, T0‖ · · · ‖T5,O0‖ · · · ‖O3)

(ẽ, μ̃, ι) ⇓ (ỹ, μ̃′, T1,O) (ỹ′, T2) = DecS(ỹ, ι)

(reveal ẽ, μ̃, ι) ⇓ (ỹ′, μ̃′, T1‖T2,O‖ỹ′)

(ẽ1, μ̃, ι) ⇓ (true, μ̃1, T1,O1)
(ẽ2, μ̃1, ι) ⇓ (ṽ′, μ̃′, T2,O2)
T = T1‖T2 O = O1‖O2

(if ẽ1 then ẽ2 else ẽ3, μ̃, ι) ⇓ (ṽ′, μ̃′, T,O)

b̃ ∈ E ιS(bool)
(ẽ1, μ̃, ι) ⇓ (b̃, μ̃1, T1,O1)
(ẽ2, μ̃1, ι) ⇓ (ṽ2, μ̃2, T2,O2)
(ẽ3, μ̃1, ι) ⇓ (ṽ3, μ̃3, T3,O3)
dom μ̃2 ∩ dom μ̃3 = dom μ̃1

(ṽ′, T4) = Φι(b̃, ṽ2, ṽ3) (μ̃′, T5) = Φι(b̃, μ̃2, μ̃3)
T = T1‖ · · · ‖T5 O = O1‖O2‖O3

(if ẽ1 then ẽ2 else ẽ3, μ̃, ι) ⇓ (ṽ′, μ̃′, T,O)

(ẽ1, μ̃, ι) ⇓ (ṽ1, μ̃1, T1,O1)
(ẽ2, μ̃1, ι) ⇓ (ṽ, μ̃2, T2,O2)

(μ̃′, T ′) = updateι(μ̃2, ṽ1, ṽ2)

(ẽ1 := ẽ2, μ̃, ι) ⇓ ((), μ̃′, T1‖T2‖T ′,O1‖O2)

ι = Init()
T0 = {(C, Si,Π{Si}(ι)) : 1 ≤ i ≤ N}

∀j ∈ {1, . . . , r}.(ṽj , T ′j) = EncS(κ(Xj), ι)
(e[ṽ1/X1 . . . ṽr/Xr], ∅, ι) ⇓ (ṽ′, μ̃′, T ′,O)

T = T0‖T ′1‖ . . . ‖T ′r‖T ′
(κ, read(X1 : Y1, . . . Xr : Yr); e) ⇓ (ṽ′, μ̃′, T,O)

according to the secret boolean b̃, using the Φι function

(Figure 9). For example, if ṽ2 and ṽ3 are (hidden) primitive

values representing, respectively, 17 and 42, and the boolean

b̃ is a (hidden) representation of true, then the result:

Φι(b̃, ṽ2, ṽ3) = EncS,S,S(opBr(int))(b̃, ṽ2, ṽ3, ι)

will be a hidden representation of 17, along with whatever

traces were produced by the execution of the protocol

Figure 9 Definition of the merge function Φι (for values).

Φι(b̃, ṽ2, ṽ3) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(ṽ2, ε) if ṽ2 ∈ EP(Y ) and ṽ2 = ṽ3

Enc�1,�2,�3(opBr(Y ))(b̃, ṽ2, ṽ3, ι)

if b̃ ∈ E�1(bool),
ṽ2 ∈ E�2(Y ), ṽ3 ∈ E�3(Y )

(ϕ(b̃, ṽ2, ṽ3), ε) otherwise

operation EncS,S,S(opBr(int)). On the other hand, if ṽ2 and

ṽ3 are non-primitive values – e.g., lambda abstractions –

then the join function, Φι, is unable to arithmetize the branch

immediately, since the arguments to which the abstractions

will be applied are not available. Thus, Φι wraps these

operands in the special “deferred decision” symbol ϕ:

Φι(b̃, ṽ2, ṽ3) = ϕ(b̃, ṽ2, ṽ3)

The contents of each memory address in the pair of stores

are merged by Φι in the same fashion (arithmetization,

for primitive values; and wrapping by ϕ symbols, for non-

primitive values). It is worth noting that since stores contain

only primitive values, this process can never cause a memory

location to contain a ϕ symbol.

Conversely, when values wrapped in ϕ symbols appear

as results of evaluated subexpressions (e.g., in the rule

for application of a ϕ symbol), the distributed semantics

takes the value from each branch, uses it to evaluate the

entire expression (inductively), and merges the results (again

using the Φι function). For example, if ẽ1 evaluates to

ϕ(b̃, λx.0, λx.1), and ẽ2 evaluates to 17, then the application

ẽ1 ẽ2 causes the subexpressions (λx.0) 17 and (λx.1) 17 to

be evaluated (returning 0 and 1), and finally executes the

merge Φι(b̃, 0, 1) (which, if b̃ is a hidden representation of

true, will produce a hidden primitive value representing 0).

The case of assignment to a secret reference is similar.

Since it is secret, the reference might evaluate to a tree of

nested ϕ symbols (e.g., ϕ(b̃1, ϕ(b̃2, a1, a2), a3)), rather than

a single address. In this case, using the update operator,

we perform the update recursively on the references from

the left and right branches of the ϕ symbol, then join the

resulting (updated) stores as above.

D. Theoretical results

We now present the two main results of our system: the-

orems that guarantee the correctness and security of an

execution. For clarity, we omit the proofs here, since they

depend on additional notation and lemmas not presented

in this article. We refer the reader to the extended version

of this work (available at [29]) for the full definitions and

proofs.

Theorem 1 (Correctness). For any program p and initial
input value environment κ, if 	 p : τ and (κ, p) ↓ (y, μ′,O)
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for some y ∈ Y , then for some mutable store μ̃′ and com-
munication trace T , (κ, p) ⇓ (ỹ, μ̃′, T,O), with ỹ ∈ Ê ι�(y)
for some �.

The correctness theorem expresses that any well-typed

source program, when it evaluates according to the reference

semantics to some primitive value, will also evaluate accord-

ing to the distributed semantics to the same primitive value

(possibly hidden), yielding identical observations. Since the

reference semantics expresses the standard meaning of pro-

grams in λ→P,S, this theorem guarantees that the distributed

semantics give a correct implementation for any well-typed

source program.

The proof of this theorem involves a few key lemmas:

• Conditional purity for the distributed semantics: if an

(extended) expression is well-typed in a secret context,

then its evaluation terminates, yields no observations,

and produces no publicly-observable effects on the

mutable store. The proof of this lemma makes exten-

sive use of the control flow restrictions of the static

semantics.

• Type preservation for the distributed semantics: if an

(extended) expression has type τ , and it evaluates

to some value v, then v also has type τ (including

preservation of confidentiality labels).

• Correctness for arbitrary expressions, i.e., the main

correctness theorem, generalized in a standard fashion

to appropriately “related”, rather than identical, expres-

sions, stores, and values.

Theorem 2 (Security). If (κa, p) ⇓ (ṽ′a, μ̃
′
a, Ta,O) and

(κb, p) ⇓ (ṽ′b, μ̃
′
b, Tb,O), then for all valid adversarial

views A ∈ A, the distributions ΠA(Ta) and ΠA(Tb) are
indistinguishable6.

The security theorem expresses that if two executions of

the same program, each with its own secret initial inputs,

yield the same observations, then their communication traces

(as distributions) are indistinguishable to any adversary that

receives only the information available to servers in A.

In other words, the theorem guarantees that any suitably

constrained adversary learns nothing about the initial secret

client values that was not already logically entailed by

the observations from reveal. It is impossible for the

programmer to unintentionally leak information due to the

distributed implementation.

The security theorem is proved by instantiation of the

following, more general lemma:

Safety of traces: If two expression/store pairs are

“equivalent to a public observer”, i.e., they are identical

except for secret primitive values, and evaluate to two

corresponding traces and observation sequences, then

neither observation sequence is a proper prefix of the

6In the sense specified by the secure execution platform in Section IV.

other; and, if the observation sequences are identical,

then the resulting value/store pairs are equivalent, and

the pair of traces is “safe” (in the sense of the secure

execution platform).

Intuitively, as long as two evaluations continue to produce

matching observations, then their control flow must match,

and the expressions and traces must remain indistinguishable

to the adversary. In a sense, this is the best generic result

one could expect, since evaluation can depend arbitrarily

on public values (and thus can differ arbitrarily once any

differing values are declassified).

E. Examples of secure execution platforms

Since we have defined our language in terms of the

assumptions of a secure execution platform, it is also

important to note that the examples we describe (Shamir

secret sharing and fully homomorphic encryption) indeed

satisfy these assumptions. We now give an overview of the

arguments that establish these facts. Since the arguments

proceed from known properties of Shamir secret sharing and

fully homomorphic encryption, and are not central to our

presentation, we refer the reader to the extended version of

this work (available at [29]) for a more detailed treatment.

In Shamir secret sharing, N servers execute the com-

putation in a distributed manner, using an (N, k) sharing

scheme. The primitive values are expressed as elements of a

finite field Fp. “Hidden” values are represented by N -tuples

of field elements, representing each server’s share of the

value, and the primitive arithmetic and logical operations

(including branching), as well as the initial sharing and

decryptions. Intermediate values and communication traces

are produced according to the rules of Shamir secret sharing.

Against a valid adversarial set of fewer than k servers, the

primitives of Shamir secret sharing provide information-

theoretic security.

On the other hand, in fully homomorphic encryption, the

execution proceeds on a single server, N = 1. Except for the

initial “hiding” (encryption and sending to the server), and

“unhiding” (returning values to the client for decryption)

upon reveal operations, the operations of the platform

are executed on the server according to the definition of

the cryptosystem, and produce no communication traces.

In this case, the trace for the entire evaluation consists

of the encrypted values and the revealed plaintexts, and

computational indistinguishability (up to revealed values)

follows from the security of the cryptosystem.

VI. IMPLEMENTATION

Our implementation consists of three parts. First, we im-

plemented the constructs of the secure execution platform as

an embedded domain-specific language in Haskell. Specif-

ically, our EDSL framework consists of a module defining

these constructs as a set of combinators, as well as secure

multi-party computation (SMC) and fully homomorphic
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encryption (FHE) libraries implementing the combinators.

Second, we implemented a lightweight compiler in Template

Haskell, which removes syntactic sugar and translates a

subset of Haskell to our EDSL.7 Finally, we implemented a

compiler front-end for λ→P,S, producing both type and label

information for core language programs. In this section, we

present these implementations, evaluate their performance,

and describe our experience in writing applications.

A. A Haskell EDSL for secure execution platforms

Our EDSL is composed of several type classes [35], which

define primitives of a secure execution platform (e.g., (.+)

for addition) in terms of actions in a secure I/O monad. In

a debug setting, this “secure” monad is simply Haskell’s IO

monad. However, the secure monad used in implementing

a real secure execution platform is more complex. We use

monad transformers [36] to stack additional functionalities,

in a modular fashion, on top of Haskell’s IO. Specifically,

we implement the following functionalities:

• RNG: used for implementing random number gener-

ation. Specifically, the transformer provides access to

the cryptographically strong, deterministic random bit

generator (DRBG) of the Haskell crypto-api library.

• State: used for threading library-specific state through

computations (including the initial parameters ι). For

example, the FHE library uses this state to store the

public and private keys used in the secure computation.

• MPI/RPC (message passing interface and remote pro-

cedure calls): used to enable communication among the

client and servers. We use the SSL protocol to provide

secure, authenticated party-to-party channels.

The constructs for both of our examples of secure execu-

tion platforms, SMC and FHE, can be built using this secure

monad. For example, the SMC multiplication combinator

(.*) uses the RNG and MPI functionalities to generate and

communicate a new secret sharing among the servers. On

the other hand, the FHE multiplication combinator relies

on the State functionality to store the key needed by the

homomorphic evaluation function (from the Gentry-Halevi

implementation of FHE [37], [38]) that performs the ac-

tual multiplication. Furthermore, we note that although our

implementation currently treats only SMC and FHE, the

secure monad can easily be extended with other monad

transformers to add features required by other platforms. The

flexibility and modularity of monads makes this embedding

approach especially attractive.

For both secure execution platforms, SMC and FHE,

our EDSL implements secure addition (.+), subtraction

7Notably, the implementation adds constructs for arrays of public length,
product and sum types, and bounded iteration primitives. While these
features are very useful in practice, we omit them in our present theoretical
analysis, as they would further complicate the formalism without providing
additional insight.

(.-) and multiplication (.*), bitwise and logical opera-

tors (and, or, and exclusive-or), and comparison opera-

tions (equality (.==) and inequality (./=) testing, less-than

(.<), greater-than (.>), and so on). We also implement

branching operators, sif-sthen-selse, in terms of arith-

metization, as described above: sif b sthen x selse y be-

comes b .* x + (1 .- b) .* y.

For Shamir secret sharing, our implementation of the

above primitives is essentially a direct translation of the

protocol into a Haskell implementation. In the case of fully

homomorphic encryption, our library extends the Gentry-

Halevi implementation, presented in [37], [38]. Their C++

implementation provides several functions, including a pub-

lic/private key pair generation function, encryption/decryp-

tion functions, a recrypt (ciphertext refreshing) function,

and simple single-bit homomorphic arithmetic operators. We

extend their implementation by providing support for k-

bit homomorphic addition, multiplication, comparison and

equality testing functions. In integrating the extended C++

FHE library with our Haskell framework, we implemented

C wrappers for the basic FHE operations, and various library

functions. The EDSL primitives are implemented as foreign

calls to the corresponding C functions, using Haskell’s

Foreign Function Interface (FFI). Our design hides the low-

level C details from the programmer, in addition to adding

garbage collection support to the underlying FHE library.

B. Extending the EDSL with Template Haskell

Our Template Haskell compiler takes a Haskell AST,

enclosed in Template Haskell quotes [| ... |], and outputs

a transformed AST, which is spliced into the surrounding

code using Template Haskell’s $(...). The compiler re-

moves syntactic sugar, performs label inference and static

label checks, and translates Haskell library operators, such

as <=, to our EDSL operators (.<=), in addition to inserting

type annotations and explicit conversions from public to

secret values. An example use of this compiler is shown in

Figure 3. In our implementation efforts, this compiler serves

as an intermediate step between the EDSL (i.e., using the

secure execution platform primitives directly) and the full

core language λ→P,S.

C. Core language

We also implement a compiler front-end for our core lan-

guage, λ→P,S, adapting standard approaches [39] to perform

type inference and type checking according to the rules of

Section V. In ongoing work, we are continuing to improve

the compiler front-end, and extending our development

to a full λ→P,S compiler using the Template Haskell and

QuasiQuotes extensions.

D. Evaluation

Our experimental setup consists of 6 machines, inter-

connected on a local Gig-E network, with each machine
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Addition Multiplication Comparison Assignment

Public 0.003 sec 0.006 sec 0.004 sec 0.003 sec
Secret 0.006 sec 1.71 sec 406.8 sec 3.28 sec

Table I
MICRO-BENCHMARKS FOR SMC (N = 5, k = 2). WE MEASURE 1000

OPERATIONS ON RANDOMLY GENERATED VALUES.

containing two Intel Xeon E5620 (2.4GHz) processors, and

48GB of RAM. Our SMC implementation uses arithmetic

modulo the largest 32-bit prime.

We measured the performance of several SMC core

primitives. In particular, we measure the cost of addition

(.+), multiplication (.*), and comparison (.>=) of two secret

integers and compare them to the corresponding public

operations. Similarly, we compare the cost of assignment to

a memory location in secret and public conditionals. Table I

summarizes these results. We observe that SMC additions,

multiplications, and comparisons on secret operands are

roughly 1.8×, 300× and 91000× slower than the corre-

sponding operation on public values8. We note that the time

difference in the additions of public and secret values (since

addition does not involve network communication) serves

as a measurement for the performance overhead incurred by

our secret monad, i.e., our library imposes a 1.8× overhead.

Assignments are roughly 1000× slower, reflecting the fact

that each assignment in a secret context consists of an

application of a branching operator opBr(int) (which, in the

case of SMC, consists of two multiplications, a subtraction,

and an addition).

We also measure the cost of using our framework to

implement a portion of Reliable Email. Specifically, we

measure the cost of checking if an email address is present

in a whitelist of 100 random entries. Our results indicate

that the average time of checking such a secret list is about

2.4 minutes.

Although the overhead for secret computations seems

formidable, we note that our prototype implementation

uses a very simple multi-party computation protocol, which

incurs a round of communication for each multiplication

operation. There exist more efficient protocols that use a

constant number of rounds to execute an arbitrary (though

pre-specified) sequence of operations [40]. Since the over-

head from network latency is significant, the efficiency of

our system should improve substantially upon adapting our

implementation to use a more round-efficient scheme for

sub-computations whose operations are known in advance

(i.e., do not depend on values from reveal operations).

Likewise, we anticipate a significant speedup when in-

dependent computations (such as the 100 email address

comparisons above) are performed in parallel. Moreover,

8We omit performance evaluations for fully homomorphic encryption,
as past results have shown that the time complexity of existing schemes
renders experimental results of limited value [15].

given the wide interest in secure cloud computing, we expect

the performance of the underlying cryptographic primitives,

and thereby our EDSL, to improve in the near future.

VII. RELATED WORK

Our static semantics is similar to many standard type

systems for information flow control (for example, the

system described in the work of Pottier and Simonet [30]).

However, as described in Section V-B, our system is de-

signed for a dual purpose: rather than ensuring that any

expressible program is free of information leaks, our system

ensures that any expressible program (which, by definition,

cannot leak information on a secure execution platform)

is nevertheless implementable in our model. In addition,

we need substantially different restrictions to deal with the

problem of control flow leakage.

Li and Zdancewic’s seminal work [41], [42] presents the

first implementation of information flow control as a library,

in Haskell. They enforce information flow dynamically, and

consider only pure computations; our system relies on strong

static guarantees, and addresses a language with side effects.

Subsequently [43], Tsai et al. addressed the issue of internal

timing for a multi-threaded language; since in our model

the servers can only observe their own execution, timing

attacks are not relevant. More closely related, Russo et

al. [44] present a static information flow library, SecIO, that

is statically enforced using Haskell type classes. They prove

termination-insensitive non-interference for a call-by-name

λ-calculus. Our type system enforces substantially stricter

requirements on control flow. Nevertheless, their system

is complementary to ours, and SecIO could be used to

implement some of our static restrictions.

Vaughan presents an extension to Aura, called Aura-

Conf [45], which provides an information flow language

with cryptographic support. AuraConf allows programmers

with knowledge of access control to implement general de-

centralized information flow control. The AuraConf system

also builds on earlier work by Vaughan and Zdancewic,

in which they develop a decentralized label model for

cryptographic operations [46]. In addition, Fournet et al.,

in work on the CFlow system [47], analyze information

flow annotations on cryptographic code. In contrast to these

approaches, our system abstracts away the cryptography

primitives from the language, allowing programmers without

specialized knowledge to write secure applications for the

cloud.

Systems for secure computations include SCET [48], with

focus on economic applications and secure double auctions;

FairplayMP [49], a specification language SFDL that is

converted to primitive operations on bits; Sharemind [50],

for multiparty computations on large datasets; VIFF [12],

a basic language embedded in Python and API to crypto-

graphic primitives. These systems implement cryptographic
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protocols, without proving the more comprehensive correct-

ness and security properties.

The closest work to ours is SMCL [11], an imperative-

style DSL with similar goals (notably, SMCL aims to enable

programmers to use secure multiparty computation without

detailed knowledge of the underlying protocol), as well as

some similar constructs (notably, the behavior of SMCL’s

open construct is very similar to our reveal). However, our

work improves on existing efforts in several respects. While

the papers on SMCL do exhibit correctness and security

properties, but they do not formally define some crucial as-

pects: notably, the execution model of the platform, and the

security properties required of its primitives so that security

for the entire system can be guaranteed. Unlike SMCL, our

system also generalizes to other platforms beyond SMC. In

addition, our system provides significantly richer language

constructs (encompassing both imperative and functional

features).

In a previous paper [15], we described a restricted lan-

guage without recursion, mutable stores, and conditionals.

As in this paper, we proved correctness and security for

programs written in the language executing on a secure

execution platform. Drawing on our experience of working

with the EDSL in our previous work, we implemented the

Template Haskell compiler and the compiler frontend for

our core language. As far as we know, we are the first

to formalize and prove correctness and security properties

for a unified language framework, providing rich language

features such as recursion, mutable stores, and conditionals,

and encompassing a wide range of cryptographic schemes

for computation on encrypted data.

VIII. CONCLUSIONS

We present an expressive core language for secure cloud

computing, with primitive types, conditionals, standard func-

tional features, mutable state, and a secrecy preserving

form of general recursion. This language uses an aug-

mented information-flow type system to impose conven-

tional information-flow control and prevent previously unex-

plored forms of control-flow leakage that may occur when

the execution platform is untrusted. The language allows

programs to be developed and tested using conventional

means, then exported to a variety of secure cloud execution

platforms, dramatically reducing the amount of special-

ized knowledge needed to write secure code. We prove

correctness and confidentiality for any platform meeting

our definitions, and note two examples of such platforms:

fully homomorphic encryption, as well as a multi-party

computation protocol based on Shamir secret sharing.

The implementation of our language as a Haskell library

allows developers to use standard Haskell software devel-

opment environments. Programmers also have the benefit

of sophisticated type-checking and general programming

features of Haskell. On the other hand, implementation in

Haskell is not an inherent feature of our core language;

other languages with functional features, such as Scala

or F# (or even object-oriented languages such as Java,

with some additional implementation effort) would also be

reasonable choices. Our core language could also be used

to develop secure libraries that can be safely called from

other languages, providing the strong security guarantees

of our DSL in an unrestricted multi-language programming

environment.

In future work, we plan to extend our theoretical frame-

work to other secure execution platforms that can provide

stronger guarantees, such as security against active adver-

saries. We will also explore the possibility of mechanically

verifying that a particular implementation realizes our dis-

tributed semantics. Finally, we plan to develop more so-

phisticated implementation techniques, possibly leveraging

Template Haskell meta-programming, such as automatically

producing code that is optimized for particular forms of

more efficient partially homomorphic encryption schemes.
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APPENDIX

A. Semantic structure and assumptions

In this appendix, we elaborate on the the definitions

and assumptions that constitute a secure execution platform

(omitted above for brevity).

1) Distributed computing infrastructure: We assume N
servers, S1, . . . , SN , execute the secure computation on

behalf of one client, C. (In many natural cases, such as

homomorphic encryption, N = 1). The (N + 1) parties

will communicate by sending messages via secure party-

to-party channels; we denote by M the set of possible

message values that may be sent. A communication round is

a set {(P (i)
1 , P

(i)
2 ,m(i))}1≤i≤r of triples, each indicating a

sending party, a receiving party, and a message m ∈ M .

A communication trace is a sequence of communication

rounds, possibly empty, and T is the set of communication

traces.

If A ⊆ {S1, . . . , SN} is any subset of the servers, the

projection of trace T onto A, written ΠA(T ), is the portion

of the trace visible to the servers in A, i.e., ΠA(ε) = ε and:

ΠA({(S(i)
1 , S

(i)
2 ,m(i))}‖T ) =

{(S(i)
1 , S

(i)
2 ,m(i)) | {S(i)

1 , S
(i)
2 } ∩A �= ∅}‖ΠA(T )

General form of cryptographic primitives: We work

with a two-element security lattice, P � S, representing

(respectively) “public” values, which are transmitted in the

clear and may be revealed to any party; and “secret” values,

which are encrypted or otherwise hidden, and must remain

completely unknown to the adversary. For each primitive

type Y ∈ Y , we assume a set ES(Y ), holding “secret

equivalents” of base values in Y ; for notational uniformity,

we also define EP(Y ) = Y , signifying that the “public

equivalent” of a value is just the value itself. Similarly, we

assume, for any y ∈ Y , a set ES(y) ⊂ ES(Y ), holding the

“secret equivalents” of y (with EP(y) = {y}); we assume

that the sets {Eα(y) : y ∈ Y } form a partition of Eα(Y ).
We recall that for any two elements (or labels) of a lattice,

we have a well-defined join (�), which corresponds to the

least upper bound of the two elements (e.g., P � S = S).

We also assume a few standard cryptographic primitives,

expressed as protocol operations that may operate on initial

parameters ι ∈ I, generate communication traces among the

parties, and/or consume bits from a source of randomness.

For clarity, we leave this randomness source implicit, instead

considering each operation to produce a distribution over

the values in its range (and implicitly lifting the operations

to act on distributions over their domains). We regard

predicates over these distributions to be true if they hold

with probability 1.

The operations we assume are as follows (overloaded for

all primitive types Y ):

• EncS : Y × I → ES(Y )× T , “hiding” y ∈ Y .

• DecS : ES(Y )× I → Y × T , “unhiding” ỹ ∈ ES(Y ).
• Enc�1,...,�r (opi) :

∏
j E�j (dom(opi)j) × I →

E⊔
j �j (cod(opi)) × T (when at least one �j is S),

evaluating a primitive operation.

We also assume that Init describes the generation of initial

parameters according to some distribution I (for example,

public and secret keys in the case of homomorphic encryp-

tion). For notational uniformity, as above, we also define the

corresponding operations in the degenerate case of “hiding”

public values (operating as the identity on the plaintext

values, and yielding empty traces):

• EncP,...,P(opi)(y1, . . . , yr, ι) = (opi(y1, . . . , yr), ε)
• EncP(y, ι) = (y, ε)
• DecP(y, ι) = (y, ε)

We also write Dec as shorthand for DecP or DecS, as

appropriate based on the domain (i.e., Dec acts as DecP
on Y , and acts as DecS on ES(Y )). In addition, we assume

a projection operator from the initial parameters onto any

server or set of servers, writing:

ΠA(ι) = (Π{Sa1
}(ι), . . . ,Π{Sak

}(ι))

(where A = {Sa1 , . . . , Sak
}) to mean, intuitively, the portion

of the initial parameters ι ∈ I that servers in A should

receive.

In addition, we assume that equality is efficiently de-

cidable on any universe Y of primitive values; that the

label � and universe Y of a value in E�(Y ) are efficiently

computable from the value itself (e.g., by tagging, when

the underlying sets are the same); and that there is some

canonical ordering on the universes.
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Cryptographic correctness assumptions: We assume

the usual encryption and homomorphism conditions, aug-

mented for cryptographic primitives that depend on random-

ness and that may communicate among servers to produce

their result. For every element y of a primitive type Y ,

and every choice of initial parameters ι ∈ I, we assume a

family of safe distributions Ê ι�(y) over E�(y): intuitively, any

distribution l ∈ Ê ι�(y) can safely serve as the “hiding” of y
under the initial parameters ι (at secrecy level � ∈ {P, S}).
We require that “hiding” a base value must yield a safe

distribution:

• π1(Enc�(y, ι)) ∈ Ê ι�(y)
We also require that unhiding (“decryption”) is the left-

inverse of hiding (“encryption”), and hiding commutes ho-

momorphically with the primitive operations:

• π1(Dec�(π1(Enc�(y, ι)), ι)) = y
• π1(Enc�1,...,�r (opi)(l1, . . . , lr, ι)) ∈
Ê⊔

j �j (opi(y1, . . . , yr), ι) whenever lj ∈ Ê ι�j (yj)
Indistinguishability conditions: In general, the dis-

tributed threat model may involve any set of possible combi-

nations of colluding servers. We formalize this by assuming

a family A of sets that we refer to as valid sets of untrusted

servers. Intuitively, for any set of servers A ∈ A, we assume

the cryptographic primitives are intended to provide security

even if an adversary has access to all information possessed

by all servers in A.
Different platforms may provide different security guar-

antees of their primitives. For example, protocols may spec-

ify that distributions are computationally indistinguishable
(i.e., indistinguishable to a probabilistic polynomial-time

adversary), or information-theoretically indistinguishable
(i.e., identical). For the purposes of this development, we

will use the term indistinguishable to refer to whichever

of the above notions is specified by the secure execution

platform. Using this terminology, we require that any two

sequences of partial traces are indistinguishable if each pair

of corresponding partial traces describes either 1.) a “hiding”

operation; 2.) a primitive operation whose public arguments

agree (and whose hidden arguments are safely-distributed);

or 3.) an “unhiding” operation on values that turn out to be

equal. More precisely, we say that the pair of communication

rounds Tj(ι), T
′
j(ι) is safe, denoted SAFE(ι, Tj(ι), T

′
j(ι)), if

it satisfies any of the following conditions:

1) Tj(ι) = π2(EncS(yj , ι)), and T ′j(ι) = π2(EncS(y
′
j , ι))

(for some Y , and yj , y
′
j ∈ Y ). In this case, we say

that Tj(ι), T
′
j(ι) constitute a “safe hiding” (denoted

SAFEENC(ι, Tj(ι), T
′
j(ι))).

2) Tj(ι) = π2(Enc�1,...,�r (opi)(ỹ1, . . . , ỹr, ι)) and

T ′j(ι) = π2(Enc�1,...,�r (opi)(ỹ
′
1, . . . , ỹ

′
r, ι)) where for

each k, either:

• �k = S, and for some Yk, we have ỹk ∈ Ê ιS(yk)
and ỹ′k ∈ Ê ιS(y′k), with yk, y

′
k ∈ Yk.

• �k = P, and for some Yk, we have ỹk, ỹ
′
k ∈ Yk,

and ỹk = ỹ′k.

(and the analogous conditions for T ′j(ι)). In this case,

we say that Tj(ι), T
′
j(ι) constitute a “safe primitive

operation” (denoted SAFEOP(ι, Tj(ι), T
′
j(ι))).

3) Tj(ι) = π2(DecS(cj , ι)), T
′
j(ι) = π2(DecS(c

′
j , ι)) and

π1(DecS(cj , ι)) = π1(DecS(c
′
j , ι)). In this case, we say

that Tj(ι), T
′
j(ι) constitute a “safe unhiding” (denoted

SAFEDEC(ι, Tj(ι), T
′
j(ι))).

We extend the predicate SAFE to pairs of entire traces if

each component is safe: i.e., SAFE(ι, T1, T2) if |T1| = |T2|
and SAFE(ι, T1(j), T2(j)) for all j. Finally, we consider

partial traces T (ι) = (T1(ι), . . . , Tm(ι)) and T ′(ι) =
(T ′1(ι), . . . , T

′
m(ι)), and the corresponding adversarial views:

• O(ι) = (ΠA(ι),ΠA(T1(ι)), . . . ,ΠA(Tk(ι)))
• O′(ι) = (ΠA(ι), ΠA(T

′
1(ι)), . . . ,ΠA(T

′
k(ι)))

We require the following indistinguishability condition: if

SAFE(ι, Tj(ι), T
′
j(ι)) for every j, then the distributions

O(Init()) and O′(Init()) are indistinguishable.

Definition 1. We say that the system

(N, I, Init, E , Ê ,M,Enc,Dec,A) is a secure execution
platform for (opi) if it satisfies all of the conditions

specified above.
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