Improved Linear Differential Attacks on
CubeHash

Shahram Khazaei', Simon Knellwolf?, Willi Meier?, and Deian Stefan®

! EPFL, Switzerland
2 FHNW, Switzerland
3 The Cooper Union, USA

Abstract. This paper presents improved collision attacks on round-
reduced variants of the hash function CubeHash, one of the SHA-3 second
round candidates. We apply two methods for finding linear differential
trails that lead to lower estimated attack complexities when used within
the framework introduced by Brier, Khazaei, Meier and Peyrin at ASIA-
CRYPT 2009. The first method yields trails that are relatively dense at
the beginning and sparse towards the end. In combination with the condi-
tion function concept, such trails lead to much faster collision attacks. We
demonstrate this by providing a real collision for CubeHash-5/96. The
second method randomizes the search for highly probable linear differen-
tial trails and leads to significantly better attacks for up to eight rounds.

Key words: hash function, differential attack, collision, linearization,
SHA-3, CubeHash

1 Introduction

Hash functions are important cryptographic primitives that transform arbitrary-
length input messages into fixed-length message digests. They are used in many
applications, notably in commitment schemes, digital signatures and message
authentication codes. To this end they are required to satisfy different security
properties, one of them is collision resistance. Informally, a hash function is
collision resistant if it is practically infeasible to find two distinct messages mq
and mo that produce the same message digest.

Chabaud and Joux [7] presented the first differential collision attack on
SHA-0. Using a linearized model of the hash function, they found message dif-
ferences that lead to a collision of the original hash function with a higher prob-
ability than the birthday bound. Similar strategies were later used by Rijmen
and Oswald [12] on SHA-1 and by Indesteege and Preneel [8] on EnRUPT.

Pramstaller et al. [11] related the problem of finding highly probable linear
differences to the problem of finding low weight codewords of a linear code. A
recent work of Brier et al. [4] more precisely analyzed this relation for hash
functions whose non-linear operations only consist in modular additions. They
reformulate the problem of finding message pairs that conform to a linear dif-
ferential trail to that of finding preimages of zero of a condition function. The

search for such preimages is accelerated by the implicit use of message modifi-
cation techniques. Given a linear differential trail, the concept further allows to
estimate the corresponding complexity of the collision attack.

The success of the attack essentially depends on finding appropriate linear
trails that lead to a low complexity of the attack. Such trails must not only
have low weight, but the distribution of the weights along the trail must also be
considered. A trail that is dense at the beginning and sparse towards the end
yields a lower attack complexity than an arbitrary trail of comparable weight.
This is due to freedom degrees use: initial conditions can be more easily satisfied
than those towards the end of the trail.

Contribution of this Paper. We apply two different methods for finding
appropriate trails for variants of the SHA-3 second round candidate CubeHash.
For several round parameters r and message block sizes b we present better
collision attacks on CubeHash-r/b than those presented so far. Specifically, we
find collisions of CubeHash-5/96 and give a theoretical attack of CubeHash-8/96
with estimated complexity of 289 compression function calls. This improves over
the generic attack with complexity of about 2'2® and is the first collision attack
on more than seven rounds.

Previous Results on CubeHash. We refer to part 2. B. 5 of [2] for a complete
survey of cryptanalytic results on CubeHash. The currently best collision attacks
on CubeHash-r/b for message block sizes b = 32,64 were presented in [4]. For
b = 32 they present attacks of complexity 2°41 and 2!82'1 for four and six rounds,
respectively. For b = 64 an attack of complexity 22°3 for seven rounds is given.
No collision attack for more than seven rounds was presented so far. Generic
attacks are discussed by Bernstein in the appendix of [1].

Organization. Section 2 reviews the linearization framework and the concept
of condition function presented in [4]. In Section 3 we describe the hash function
CubeHash and define an appropriate compression function. Section 4 details
how to find linear differential trails that, in combination with the concept of
condition function, lead to successful collision attacks. In Section 5 we analyze
CubeHash-5/96 and present a real collision. We conclude in Section 6.

2 Linearization Framework and Condition Function

In this section we fix notations and briefly review the general framework for
collision attacks presented in [4] (see [5] for an extended version).

2.1 Fixed-input-length Compression Function

To any hash function we can attribute a fixed-input-length compression function
Compress : {0,1}™ — {0,1}", with m > h, such that a collision for the com-

pression function directly translates to a collision of the hash function® (e.g., we
can just restrict the domain of the hash function). We suppose that the only
non-linear operations of the compression function consist of modular additions
of w-bit words. For any input M to the compression function denote A (M)
and B(M) the concatenation of all left, and, respectively right addends that
are added in the course of the computation of Compress(M). Analogously define
C(M) as the concatenation of the corresponding carry words. Thus, if n, is the
number of additions effected in the course of one evaluation of the compression
function, each of A(M),B(M) and C(M) contains n,w bits.

2.2 Linearization and Raw Probability

Let Compressy;,, be the linear function obtained by replacing all modular additions
of Compress by XORs. For an input A to this linearized compression function
denote a(A) and B(A) the concatenation of the left, and, respectively right
addends that are XORed in the course of the computation of Compress;;,(A),
setting their most significant bits to zero®.

We say that a message M conforms to the trail of Aifforalli =0,...,n,—1
(Aoa)+ (B @p)@ (A +B)=ao"df,

where A%, B® o' and (3 respectively denote the ith w-bit word of A(M), B(M),
a(A) and B(A). According to Lemma 2 in [4], the probability that a randomly
chosen M conforms to the trail of A is given by
ppa = 27 WHe(A)VB(A)

where wt(-) denotes the Hamming weight. If A lies in the kernel of the linearized
compression function, pa is a lower bound for the probability that the message
pair (M, M @& A) is a collision of the compression function. We call pa the raw
probability of A and y = —logy(pa) the number of conditions imposed by A.

2.3 The Condition Function

Let A be in the kernel of the linearized compression function. The condition func-
tion Condition o has the same domain as the compression function, but outputs
Y of lengths y = wt(a(AQ) v B(A)). To shorten the notation we omit the argu-
ment M to A, B, C, and A to a, 3. Additionally, we use subscripts to denote bit
positions, e.g., A; is the ith bit of A. Let ig,...,7,_1 be the bit positions of the
y non-zero bits in & V B. Define the condition function Y = Condition (M) by

Y; = (au; ©06;,)Ci; ® a;;Biy; & B Ai; ® a3y, for j=0,...,y — 1.

4 Note that this notion of compression function does not coincide with the frequently
used compression function in the context of Merkle-Damgard and other iterated
constructions.

® The most significant bits of each addition are linear.

By Proposition 1 in [4], the problem of finding a message M that conforms to the
trail of A is equivalent to the problem of finding M such that Condition (M) = 0.
Suppose an ideal situation where we are given partitions Ule M; =H0,...,
m — 1} and Uf:o Y; ={0,...,y — 1} such that for j = 0,...,¢ the output bits
with position indices in); only depend on the input bits with position indices
in ngl M. Then we expect to find an M such that Condition (M) = 0 after

4

ca = 22%

=0

evaluations of the condition function, where ¢; = |V;| + max(0, ¢;+1 — |[M;i1|)
fori=¢—1,...,0 and gy = |Ve|- We call ca the theoretical complexity of A.

We refer to [5] for a method to approximately determine such partitions and
suitable probabilities 27P¢ to keep track of the non-ideality of these partitions.
Theoretical complexities in this paper are computed including the probabilities
27Pi, We further refer to [5] for instructions on implementing the search algo-
rithm with negligible memory requirement.

3 Description of CubeHash

CubeHash [2] is a second-round candidate of the SHA-3 competition [10] of the
National Institute of Standards and Technology. The function is designed with
parameters r, b, and h which are the number of rounds, the number of bytes per
message block, and the hash output length (in bits), respectively. We denote the
parametrized function as CubeHash-r/b. The initial proposal of CubeHash-8/1
was tweaked to CubeHash-16/32 which is about 16 times faster and is now
the official proposal for all digest lengths h = 224,256,384 or 512. Third-party
cryptanalysis with larger values of b and fewer number of rounds r is explicitly
encouraged.

3.1 Algorithm Specification

CubeHash operates on 32-bit words. It maintains a 1024-bit internal state X
which is composed of 32 words Xy, ..., X31. The algorithm is composed of five
steps:

1. Initialize the state X to a specified value that depends on (r, b, h).
2. Pad the message to a sequence of b-byte input blocks.
3. For every b-byte input block:
— XOR the block into the first b-bytes of the state.
— Transform the state through r identical rounds.
4. Finalize the state: XOR 1 into X3; and transform the state through 107
identical rounds.
5. Output the first A bits of the state.

A round consists of the following steps:

— Add Xz into Xi@lg, for 0 S) S 15.

Rotate X; to the left by seven bits, for 0 < ¢ < 15.
Swap X; and X;gs, for 0 <7 < 7.

— XOR Xi@lﬁ into Xi, for 0 S 7 S 15.

— Swap X; and X,q2, for i € {16, 17,20, 21, 24, 25, 28, 29}.
Add Xz into XiEBlﬁ’ for 0 S) S 15.

Rotate X; to the left by eleven bits, for 0 < i < 15.
Swap X; and X;q4, for i € {0,1,2,3,8,9,10,11}.

— XOR Xi@lﬁ into Xi, for 0 < 1 < 15.

— Swap X; and X;q1, for ¢ € {16, 18,20, 22, 24, 26, 28, 30}.

In this paper we consider the variants CubeHash-r/b with b = 32,64 and 96,
always assuming h = 512.

3.2 Defining the Compression Function

Following [4] we define a fixed-input-length compression function Compress for
CubeHash. This compression function is parametrized by a 1024-bit initial value
V and compresses ¢ (t > 1) b-byte message blocks M = MO ---|[|[M'~1. The
output H = Compress(M, V') consists of the last 1024 — 8b bits of the internal
state after ¢r round transformations processing M.

A colliding message pair (M, M @ A) for Compress directly extends to a
collision of CubeHash by appending a pair of message blocks (M? Mt @ A?)
such that A! erases the difference in the first 8b bits of the internal state. The
difference A? is called erasing block difference.

When searching for collisions of Compress, the parameter V' is not restricted
to be the initial value of CubeHash. Specifically, V can be the state after pro-
cessing some message prefix MP™. Thus, a pair of colliding messages for the hash
function then has the general form

(MPT|| M| M| M, MP™(|M @ A M* @ A*| M)

for an arbitrary message suffix M5

4 Constructing Linear Differentials

We linearize the compression function of CubeHash to find message differences
that can be used for a collision attack as described in Section 2. Specifically, we
are interested in finding differences with low theoretical complexity. As a first
approach one can search for differences with a high raw probability.

4.1 Searching for High Raw Probability

Let Compress);, be the linearization of Compress obtained by replacing all modu-
lar additions in the round transformation with XORs and setting V' = 0. Using
the canonical bases, Compress;;,, can be written as a matrix H of dimension
(1024 — 8b) x 8bt. Let T be the dimension of its kernel. As noted in [4], the ma-
trix H does not have full rank for many parameters r/b and ¢, and one can find
differences with high a raw probability (imposing a small number of conditions)
in the set of linear combinations of at most A kernel basis vectors, where A > 1
is chosen such that the set can be searched exhaustively. The results heavily
depend on the choice of the kernel basis. Table 1 compares the minimal number
of conditions for A = 3 for two different choices of the kernel basis. The results
in the first three rows are obtained using the same algorithm as in [4] to deter-
mine the bases. The results in the last three rows are obtained using the more
standard procedure implemented for example in the Number Theory Library of
Shoup [13].

Table 1. Minimal number of conditions found for A = 3 using two different algorithms
to determine the kernel bases.

b/r] 4 5 6 7 8 16

32| 156 | 1244 | 400 | 1748 | 830 | 2150
64| 130 | 205 | 351 | 447 | 637 | 1728
96| 62 | 127 | 142 | 251 | 266 | 878
32| 189 | 1952 | 700 | 2428 | 830 | 2150
64| 189 | 1514 | 700 | 1864 | 637 | 1728
96| 67 | 128 | 165 | 652 | 329 | 928

The inverse raw probability is an upper bound of the theoretical complexity,
and as such, we expect that differences with a high raw probability have a low
theoretic complexity. However, a higher raw probability does not always imply
a lower theoretic complexity. There are differences with lower raw probability
that lead to a lower theoretic complexity than that of a difference with a higher
raw probability. Hence, when searching for minimal complexity of the collision
attack, simply considering the number of conditions imposed by a difference is
not sufficient.

4.2 Searching for Sparsity at the End

As previously observed in [3,7,9,11, 14], conditions in early steps of the com-
putation can be more easily satisfied than those in later steps. This is due to
message modifications, (probabilistic) neutral bits, submarine modifications and
other freedom degrees use. Similar techniques are used implicitly when using a
dependency table to find a preimage of the condition function (and thus a col-
lision for the compression function). This motivates the search for differences A

such that a(A) Vv B(A) is sparse at the end. In general, however, this is not the
case for trails found using the above method and, in contrast, most are sparse
in the beginning and dense at the end. This is due to diffusion of the linearized
compression function.

We note that the linearized round transformation of CubeHash is invertible
and let Compress, be defined in the same way as Compress;,, but with inverse
linearized round transformations. Suppose that A’ = A°|| .- [|A"! lies in the
kernel of Com pressﬁn and A’ equals the (discarded) first 8b bits of the state after
the tr linear inverse round transformations processing A’ as shown in Fig. 1.
Then, the difference A = Af||---||A! lies in the kernel of Compress;, and A®
is the corresponding erasing block difference. As for the linearized compression

Atfl Al AO
r-r-=-=------\- - - - - - - - --|1"=- - - --=-=-= - - =
| |
| |
| At +— 7 linear | G\: r linear |..... -4—@-4— r linear 4—@% |
I inverse inverse inverse 0 I

T rounds | rounds | | rounds | I
| (1024—8b |
| |
| |
b e o o o o e e e e e e e e o e e e e e e e e e e e e e e em = - o

Fig. 1. Computation of Compressl, on input A" = A°||...||A*"L If A’ lies in the
kernel, H = 0 and A = A’||--- || A" lies in the kernel of Compressy;,.

function we determine a basis of the kernel of Com pressﬁn and exhaustively search
for linear combinations of at most A kernel basis vectors of high raw probability.
Due to the diffusion of the inverse transformation, these trails tend to be dense
at the beginning and sparse at the end.

4.3 Randomizing the Search

The kernel of H contains 27 different elements. The above method finds the best
difference out of a subset of Z?:l (:) elements. We may find better results by
increasing A or by repeating the search for another choice of the basis. Using
ideas from [11] we propose an alternative search algorithm, that works well for
many variants of CubeHash and does not decisively depend on the choice of the
kernel basis.

Let Agp,...,A;_1 be a kernel basis of Compress;,, and denote G the matrix
whose 7 rows consist of the binary vectors A;|la(A;)||8(4;) fori=0,...,7—1.
Elementary row operations on G preserve this structure, that is, the rows always
have the form A|la(A)|B(A) where A lies in the kernel of Compress;;, and its raw
probability is given by the Hamming weight of a(A) Vv B(A). For convenience,
we call this the raw probability of the row (instead of the raw probability of the

first |A| bits of the row). Determine ipax, the index of the row with the highest
raw probability. Then iterate the following steps:

1. Randomly choose a column index j and let ¢ be the smallest row index such
that G; ; = 1 (choose a new j if no such 7 exists).
2. For all row indices k =i+ 1,...,7 — 1 such that G ; = 1:
— add row i to row k,
— set imax = k if row k has higher raw probability than row i, -
3. Move row i to the bottom of G, shifting up rows i + 1,...,7 — 1 by one.

Remark. A more specific choice of the column index j in the first step does not
lead to better results. In particular, we tried to prioritize choosing columns
towards the end, or for every chosen column in a(A) to also eliminate the
corresponding column in B(A).

Table 2. Minimal number of conditions found with the randomized search. Values in
boldface improve over the values in Table 1.

b/r] 4 5 6 7 8 16

32| 156 | 1244 | 394 | 1748 | 830 | 2150
64| 130 | 205 | 309 | 447 | 637 | 1728
96| 38 | 127 | 90 | 251 | 151 | 709

Table 2 shows the best found raw probabilities after 200 trials of 600 it-
erations. Estimating the corresponding theoretic complexities as described in
Section 2.3 yields the improved collision attacks presented in Table 3.

Table 3. Logarithmic theoretical complexities of improved collision attacks.

b/r| 4 5 6 7 8 16
32 180

64 132

96| 7 51 80

For CubeHash-r /b there is a generic collision attack with complexity of about
2512=4b For b > 64 this is faster than the generic birthday attack on hash
functions with output length h = 512. For b = 96, specifically, the generic attack
has a complexity of about 2'28. Our attacks clearly improve over this bound.

5 Collision for CubeHash-5/96

This section illustrates the findings of Section 4.2 and provides a collision for
CubeHash-5/96.

5.1 Linear Differentials

We consider two linear differences found by the methods of Section 4.1 and 4.2
respectively. Both consist of two 96-byte blocks, a first block that lies in the kernel
of the linearized compression function and a second one that is the corresponding
erasing block difference. They are given by

432:2 40000000 00000000 40000000 00000000 00000000 00000000
00000000 00000000 00200000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000040
00000000 00000040 00000000 00020000 00000000 00000000,

‘Aézz 01000111 01000111 00000000 00000000 8008002A 00000000
08000022 00000000 00000000 00000000 00000000 00000000
00000000 00000000 11040000 00000000 40000101 01000111
00000000 00000000 00002208 00000000 08002000 00000000

and

‘42:: 08000208 08000208 00000000 00000000 40000100 00000000
00400110 00000000 00000000 00000000 00000000 00000000
00000000 00000000 0800A000 00000000 08000888 08000208
00000000 00000000 40011000 00000000 00451040 00000000,

‘A;:: 80000000 00000000 80000000 00000000 00000000 00000000
00000000 00000000 00400000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000080
00000000 00000080 00000000 00040000 00000000 00000000.

The number of conditions imposed by A, and A are 127 and 134, respec-
tively. Despite its lower raw probability, A, has a theoretical complexity of 239
compression function calls, which is much less than 2687 for A,. As discussed
above, this is due to the different structure of o vV 3. We recall that y denotes
the Hamming weight of & vV 3 and let

32(i+1)

Yi = Z wt(a® v g%).

k=321

That is, y; is the number of conditions imposed by a difference at round i. Table 4
compares the values y; for A, and Ap. The conditions imposed in the first two
rounds can easily be satisfied by appropriate message modifications, and thus,
do not significantly increase the complexity of the attack — contrary to the
conditions imposed in the last two rounds.

Due to its low theoretical complexity, we can use 4A; to find a collision and
to confirm empirically the estimated theoretical complexity.

Table 4. Number of conditions per round theoretical complexities.

Y Y2 Y3 Ya Ys Y log,(ca)
a 14 17 23 30 43 127 68.7
b 44 36 25 17 12 134 31.9

5.2 Finding the Collision

According to Section 3.2, we construct a collision for the hash function out of a
collision for the compression function. Using a dependency table at byte-level,
we obtained a partition of the condition function attributed to A (see Table 5).
Then, using the tree-based backtracking algorithm proposed in [4], we found
several collisions after 2224! to 23225 condition function calls. One of them,
found after 229! condition function calls, is given by

MP™ = F06BB068 487C5FE1 CCCABA70 0A989262 801EDC3A 69292196
8848F445 B8608777 C037795A 10D5D799 FD16C037 A52DOB51
63A74C97 FDS858EEF 7809480F 43EB264C D6631863 2A8CCFE2
EA22B139 D99E4888 8CA844FB ECCE3295 150CA98E B16B0B92,

M° = 3DB4D4EE 02958F57 S8EFF307A 5BE9975B 4D0A669E E6025663
8DDB6421 BADS8F1E4 384FE128 4EBB7E2A 72E16587 1E44C51B
DA607FD9 1DDAD41F 4180297A 1607F902 2463D259 2B73F829
C79E766D OF672ECC 084E841B FC700F05 3095E865 S8EEBS85DS5.

For M' = 0, the messages MP™||[M°||M* and MP™||M° & AY||M* & A} collide
to the same digest

H = C2E51517 C503746E 46ECD6AD 5936EC9B
FFO9B74F9 2CEA4506 624F2BOB FE584D2C
56CD3EOE 18853BA8 4A9D6D38 F1F8E4SF
2129C678 CB3636D4 D865DE13 410E966C

under CubeHash-5/96. Instead of M' = 0, any other M! can be chosen and,
moreover, the colliding messages can be extended by an arbitrary message suffix
MsufE

6 Conclusion

In this paper we used two methods for finding improved linear differential trails
for CubeHash. The method of backward computation lead to the first practical
collision attack on CubeHash-5/96. The randomized search yielded new highly

Table 5. Partition sets corresponding to the trail A, for CubeHash-5/96. Numbers in
M, are byte indices, whereas numbers in)); are bit indices.

7 M; Vi qi

0 0 0 0.00
1 {2,6,66} {1,2} 2.00
2 [{10,1,9,14,74,5,13,65,17,70} {5} 1.35
3{73,7,16,19,18,78,25,37,41} {23,24} 2.00
4 {69,77,24,33} {21, 22} 2.00
5 {50,89} {12,13} 2.00
6 {20,27,45,88} {11} 1.15
7 {57,4} {38} 1.00
8 {80} {7,8} 2.00
9 {38, 40, 81, 3, 28, 32} {34} 1.24
10 {49} {41} 1.00
11 {58} {19, 20, 42, 43} 4.00
12 {91} {16, 17} 2.00
13 {23, 34,44, 83} {29,30} 2.07
14 {90} {14} 1.07
15 {15,26} {15} 1.07
16 {36} {37,55} 2.31
17 {42, 46,48} {25,26} 2.12
18 {56} {18, 31,40} 3.01
19 {59} {48,79} 2.00
20 {84,92,0} {35} 1.00
21 {82} {9, 10, 27,28, 32,33} 6.04
22 {31,51} {44,56,64} 3.03
23 {71} {6} 1.00
24 {11,54,67} {3} 1.00
25 {75} {78} 1.00
26 {21,55} {46,59} 2.00
27 {63} {50} 1.00
28 {79} {45,49, 65,70} 4.00
29 {12} {71} 1.06
30 {22} {58,67,81,82,83} 5.00
31 {29,62} {63} 1.03
32 {87,95} {53,54,74,76,85} 5.01
33 {39,47} {39} 1.01
34 {53, 8} {69, 88,89} 3.30
35 {30} {77,86,94, 98} 5.04
36 {60,61} {62,91,101,102} 4.35
37 {35,52} {61,90, 103} 4.22
38 {43} {36,57,60,104,111} 5.77
39 {64} {0} 1.33
40 {68} {4} 2.03
41 {72} {97,100, 121} 8.79
42 {76} {66, 80, 92,93} 13.39
43 {85} {47,112} 16.92
44 {93} {51,52,68,72,75,87,95} 22.91
45 {86,94} {73,84,96,99,105,...,110,113,...,132,133}|31.87

probable differential trails which lead to improved collision attacks for up to
eight rounds. Both methods may also apply to collision attacks on other hash
functions.

Our analysis did not lead to an attack on the official CubeHash-16/32.

7 Acknowledgements

This work was partially supported by European Commission through the ICT
programme under contract ICT-2007-216676 ECRYPT II. The second author is
supported by the Hasler Foundation www.haslerfoundation.ch under project
number 08065. The third author is supported by GEBERT RUF STIFTUNG
under project number GRS-069/07.

References

1. Daniel J. Bernstein. Cubehash. Submission to NIST, 2008.

Daniel J. Bernstein. Cubehash. Submission to NIST (Round 2), 2009.

3. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Advances in Cryptology —
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 290-305.
Springer, 2004.

4. Eric Brier, Shahram Khazaei, Willi Meier, and Thomas Peyrin. Linearization
Framework for Collision Attacks: Application to CubeHash and MD6. In Advances
in Cryptology — ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer
Science, pages 560-577. Springer, 2009.

5. Eric Brier, Shahram Khazaei, Willi Meier, and Thomas Peyrin. Lineariza-
tion Framework for Collision Attacks: Application to CubeHash and MDG6
(extended version). Cryptology ePrint Archive, Report 2009/382, 2009.
http://eprint.iacr.org.

6. Eric Brier and Thomas Peyrin. Cryptanalysis of CubeHash. In ACNS 2009, volume
5536 of Lecture Notes in Computer Science, pages 354-368, 2009.

7. Florent Chabaud and Antoine Joux. Differential collisions in SHA-0. In Advances
in Cryptology — CRYPTO 98, volume 1462 of Lecture Notes in Computer Science,
pages 56—71. Springer, 1998.

8. Sebastiaan Indesteege and Bart Preneel. Practical Collisions for EnRUPT. In FSE
2009, volume 5665 of Lecture Notes in Computer Science, pages 246-259. Springer,
2009.

9. Yusuke Naito, Yu Sasaki, Takeshi Shimoyama, Jun Yajima, Noboru Kunihiro, and
Kazuo Ohta. Improved Collision Search for SHA-0. In Advances in Cryptology
- ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages
21-36. Springer, 2006.

10. National Institute of Standards and Techonolgy. Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithms (SHA-3)
Family. Federal Register, 72, 2007.

11. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting coding
theory for collision attacks on SHA-1. In Cryptography and Coding, IMA Int. Conf.
2005, volume 3796 of Lecture Notes in Computer Science, pages 78-95. Springer,
2005.

o

12. Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Topics in Cryptology
- CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages 58-T71.
Springer, 2005.

13. Victor Shoup. NTL: A Library for doing Number Theory. Version 5.5.2.
http://www.shoup.net/ntl.

14. Xjaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.
In Advances in Cryptology — EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science, pages 19-35. Springer, 2005.

