
www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 15

SECURITY

The Road to Less Trusted Code
Lowering the Barrier to In-Process Sandboxing

T A L G A R F I N K E L , S H R A V A N N A R A Y A N , C R A I G D I S S E L K O E N , H O V A V S H A C H A M ,
A N D D E I A N S T E F A N

Firefox currently ships with a variety of third-party and in-house
libraries running sandboxed using a new framework called RLBox.
We explore how RLBox uses the C++ type system to simplify retro

fitting sandboxing in existing code bases, and consider how better tooling
and architecture support can enable a future where library sandboxing is a
standard part of how we secure applications.

Users expect featureful software, and features, it hardly needs saying, come from code. The
more features, the more code to implement them. And the more code, the more bugs—the
more security bugs, in particular.

Whether it’s the latest code rushed out before a marketing deadline, old code that hasn’t been
touched since the developer who wrote it retired, or a specialized module you licensed, attack-
ers will scour them for bugs to use for exploiting your software and targeting your users.

The problem is especially acute with third-party open source libraries. You might care about
one aspect of what the library does, but you ship the whole library, and bugs in any part of it
can create security problems in your product. That is, unless you fork the library to remove
the extraneous code, but who wants to maintain a fork forever? Worse, hackers who find a bug
in a popular library can try to deploy it against every product that embeds the library—includ-
ing yours.

Computer scientists have been thinking about software insecurity for 50 years, and they
have come up with approaches to mitigate it. Rewrite your program (or parts of it) in a safer
language! Refuse to ship new features and keep your program small! Formally verify the cor-
rectness of your software! “Privilege separate” your system by re-architecting it into multiple
mutually distrusting processes! It’s fair to say that none of these approaches has solved the
problem. Insecure software is all around.

We believe that there is a practical path to improving software security. You can take soft-
ware modules, including third-party libraries, and sandbox them to constrain what they
can do—with low programmer effort, reasonable runtime overhead, and without wholesale
rewriting or re-architecting—without even creating new OS processes. The sandboxed
module will still have bugs, but those bugs will not (in most cases; see below) create security
vulnerabilities in the enclosing program.

Consider an image decoding library like libjpeg. With sandboxing, we can restrict this
library so it has access to the image it decodes and the bitmap it produces, and that’s it. Or
consider a spell-checking library like Hunspell. With sandboxing, we can restrict this library
to just its dictionary and the text it checks. The application benefits from the library’s fea-
tures but doesn’t inherit its security flaws.

Over the past two years we have worked with a team at Mozilla to build a tool, called RLBox,
to support sandboxing and to migrate Firefox to a model where many third-party libraries
run sandboxed. This new approach is now shipping in Firefox. Our experience suggests that
once there is sufficient tooling support, then engineers can easily sandbox libraries, and they

Tal Garfinkel is an independent
researcher and consultant
whose work focuses on the
intersection of systems and
security. He received his PhD

from Stanford University in 2010 and is a
co-founder of the USENIX Workshop on
Offensive Technology. talg@cs.stanford.edu

Shravan Narayan is a fifth-year
PhD student at UC San Diego
working with Deian Stefan. His
research focuses on in-process
sandboxing, WebAssembly,

browser security, and verified programming.
He is the maintainer of the RLBox sandboxing
framework. srn002@cs.ucsd.edu

Craig Disselkoen is a fifth-year
PhD student at UC San Diego
under Deian Stefan and Dean
Tullsen. His research focuses
on securing software through

automatic vulnerability finding, program
transformations, and secure runtimes. He is
the author of the Haybale symbolic execution
engine, written in Rust. cdisselk@cs.ucsd.edu

Hovav Shacham is a Professor
of Computer Science at the
University of Texas at Austin.
His research interests are in
applied cryptography, systems

security, privacy-enhancing technologies,
and technology policy. His work has been
recognized with three “test of time” awards,
including one at ACM CCS 2017 for his
2007 paper that introduced return-oriented
programming.  hovav@cs.utexas.edu

16    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SECURITY
The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing

become increasingly comfortable with and excited by the opportunities this offers. For example,
while the initial target of our sandboxing collaboration was a third-party font-shaping library,
Graphite, now Firefox developers and security engineers are using RLBox to sandbox both
third-party libraries and legacy Mozilla code in domains like media decoding, spell check-
ing, and even speech synthesis.

We believe that the opportunities extend far beyond Firefox. After all, secure messaging apps
(e.g., Signal, WhatsApp, and iMessage), servers and runtimes (e.g., Apache and Node.js), and
enterprise tools (e.g., Zoom, Slack, and VS Code) also rely on third-party libraries for various
tasks—from media rendering, to parsing network protocols like HTTP, image processing (e.g.,
to blur faces), spell checking, and automated text completion. With RLBox, these systems’
developers are empowered to sandbox modules and limit the damage their bugs can cause.

Recent advances in compilers and processor architectures have made efficient in-process
isolation increasingly practical. As it turns out, though, preventing a module from reading or
writing memory outside its data region isn’t enough. Our initial efforts in manually sand-
boxing Firefox libraries are a case in point. Firefox had been written under the assumption
that the libraries were trustworthy. Even when isolated, they could return data values that
would cause the (unsandboxed) Firefox code to take unsafe actions, a scenario that security
researchers describe as a confused deputy attack. We tried to add code to manually check
return values for consistency, but repeatedly found that we had missed cases and left open
avenues for attack.

That’s where RLBox comes in. Using the C++ type system, RLBox automatically generates
the boilerplate code required for sandbox interaction, and identifies all places where the
programmer will have to add data-checking code. With RLBox, programmers have a frame-
work that makes it easy to sandbox libraries (1) securely, ensuring the interface between the
untrusted library and the application code is correct, and (2) with minimal engineering effort,
so that the cost of migrating libraries and applications to sandboxing is not prohibitive.

In the rest of this article we describe the experience that led to RLBox, how RLBox works,
how it leverages the C++ type system to make sandboxing practical, and how our type-driven
approach can be used in other domains (e.g., trusted execution environments). Then we outline
how this approach can translate to languages other than C/C++. Finally, we end with a vision
of what software development could look like with broader first-class support for sandboxing.

Before closing, we should note that sandboxing is not a panacea. Some components must be
correct, not just isolated, for the system as a whole to be secure. The JavaScript just-in-time
compilers used by Web browsers are a notorious example. With RLBox, you can sandbox
everything else, and focus developer time on getting these few critical modules right.

The Road to RLBox: Library Sandboxing in Firefox
Firefox, like other browsers, relies on dozens of third-party libraries to decode audio, images,
fonts, and other content. These libraries have been a significant source of vulnerabilities in
the browser (e.g., most of the vulnerabilities found by recent work using symbolic execution
were in third-party libraries [2]). With collaborators at Mozilla, we sought to minimize the
damage due to vulnerabilities in libraries by retrofitting Firefox to sandbox these libraries.

When we began this project roughly two years ago, we thought the hardest part would be
adapting Google’s Native Client (NaCl), a software-based isolation (SFI) toolkit, to sandbox
libraries. NaCl is designed for sandboxing programs, not libraries. This turned out to be the
easy part. Since then, WebAssembly (Wasm) toolkits—in particular the Lucet Wasm com-
piler—have made this even easier [5].

In fact, the hardest part was the last mile, retrofitting Firefox to account for the now-
untrusted libraries. Firefox was written assuming libraries are trusted. To add sandbox-

Deian Stefan is an Assistant
Professor of CSE at UC San
Diego, where he co-leads the
Security and Programming
Systems groups. He received

his PhD from Stanford University in 2016.
Deian was a cofounder of Intrinsic, a web
security start-up (acquired by VMware). His
current research lies at the intersection of
secure systems, programming languages, and
verification. deian@cs.ucsd.edu

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 17

SECURITY
The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing

ing, we had to change its threat model to assume sandboxed
libraries are untrusted, and harden the browser-library interface.
Hardening this interface in turn required sanitizing data and
regulating control flow between sandboxed libraries and the
browser, thus ensuring that malicious libraries could not break
out of their sandbox.

Our first attempt at sandboxing libraries in Firefox involved
manually hardening the library-application interface—this did
not go well.

Security challenges. To see how things can go wrong, let’s
consider updating the fill_input_buffer JPEG decoder func-
tion. libjpeg calls this function whenever it needs more bytes
from Firefox. As seen on line 16 of Listing 1, Firefox also saves
the unused input bytes held by libjpeg to an internal back buffer,
which it sends to libjpeg along with the new input bytes.

 1: void fill_input_buffer (j_decompress_ptr jd) {
 2: struct jpeg_source_mgr* src = jd->src;
 3: nsJPEGDecoder* decoder = jd->client_data;
 4: ...
 5: src->next_input_byte = new_buffer;
 6: ...
 7: if (/* buffer is too small */) {
 8: JOCTET* buf = (JOCTET*) realloc(...);
 9: if (!buf) {
10: decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;
11: ...
12: }
13: ...
14: }
15: ...
16: memmove(decoder->mBackBuffer + decoder->mBackBufferLen,
17: src->next_input_byte, src->bytes_in_buffer);
18: ...
19: }

Listing 1

When sandboxing libjpeg, we need to make the following
changes:

 3 Sanitize jd , otherwise the read of jd->src on line 2 could
become a read gadget.
 3 Sanitize src , otherwise the write to src->next_input_byte
on line 5 becomes a write gadget and the memmove() on line 16
becomes an arbitrary read gadget.
 3 Sanitize jd->client_data on line 3 to ensure it points to a valid
Firefox nsJPEGDecoder object; otherwise invoking a virtual
method on it will hijack control flow.
 3 Sanitize the nested pointer mInfo.err on line 10 prior to de
referencing, else it becomes a write gadget.
 3 Sanitize the pointer decoder->mBackBuffer + decoder
->mBackBufferLen used on the destination address to
memmove() on line 16 to prevent overflows of the unused byte
buffer.

 3 Adjust pointer representations for mInfo.err and decoder
->mBackBuffer—both NaCl and Wasm have different pointer
representations and we must translate (swizzle) these pointers
accordingly.
 3 Ensure that multiple threads can’t invoke the callback on the
same image; otherwise we have a data race that results in a use-
after-free vulnerability on line 8.

If we miss any of these checks—and these are only a limited
sample of the kind of checks required [4]—an attacker could
potentially bypass our sandbox through a confused deputy
attack. Adding these checks to the hundreds of Firefox functions
that use libjpeg was tedious. Worse, we frequently found checks
we had overlooked.

Engineering effort. The upfront engineering effort of modi-
fying the browser this way was huge. Beyond adding security
checks, we also had to retrofit all library calls, adjust data
structures to account for machine model (ABI) differences
between the application and sandbox (a common issue with SFI
toolchains), marshal data to and from the sandbox, etc. Only
then could we run tests to ensure our retrofitting didn’t break
the application. Finally, since Firefox runs on many platforms—
including platforms not yet supported by SFI toolkits like NaCl
and Wasm—we had to do this alongside the existing code that
uses the library unsandboxed, using the C preprocessor to select
between the old code and the new code. The patches to do all this
became so complicated and unwieldy that we couldn’t imagine
anybody maintaining our code, so we abandoned this manual
approach, built RLBox, and started anew.

The RLBox Framework
RLBox is a C++ library designed to make it easier for developers
to securely retrofit library sandboxing in existing applications.
It does this by making data and control flow at the application-
sandbox boundary explicit—using types—and by providing APIs
to both mediate these flows and enforce security checks across
the trust boundary.

RLBox mediates data flow using tainted types—it uses type
wrappers to demarcate data originating from the sandbox, and
ensure that application code cannot use this data unsafely. For
example, while application code can add two tainted<int>s (to
produce another tainted<int>), it cannot branch on such values
or use them as indexes into an array. Instead, the application
must validate tainted values before it can use them.

RLBox mediates control f low with explicit APIs for control
transfers. Calls into the sandbox must use sandbox_invoke
(sbx_fn, args...). Callbacks into the application can only use
functions registered with the sandbox_callback(app_fn) API.
These APIs also impose a strict data flow discipline by forcing
all sandbox function return values, and callback arguments, to
be tainted.

18    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SECURITY
The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing

As we show next, this tainted-type-driven approach addresses
both the security and engineering challenges we outline above.

Using Tainted Types to Eliminate Confused Deputy
Attacks
RLBox eliminates confused deputy attacks by turning unsafe
control- and data-flows into type errors and, where possible,
by performing automatic security checks. Concretely, RLBox
automatically sanitizes sandbox-supplied (tainted) pointers to
ensure they point to sandbox memory, swizzles pointers that
cross the trust boundary, and statically identifies locations
where tainted data must be validated before use.

Consider, for example, the JPEG decoder callback from before.
RLBox type errors would guide us to (1) mark values from the
sandbox as tainted (e.g., the jd argument and src variable on line
2, Listing 2) and (2) copy and verify (otherwise tainted) values we
need to use (e.g., jd->client_data on line 3, Listing 2).

 1: void fill_input_buffer (rlbox_sandbox& sandbox,
	 tainted<j_decompress_ptr> jd) {
 2: tainted<jpeg_source_mgr*> src = jd->src;
 3: nsJPEGDecoder* decoder =
	 jd->client_data.copy_and_verify(...);
 4: ...
 5: src->next_input_byte = new_buffer;
 6: ...
 7: if (/* buffer is too small */) {
 8: JOCTET* buf = (JOCTET*) realloc(...);
 9: if (!buf) {
10: decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;
11: ...
12: }
13: ...
14: }
15: ...
16: size_t nr = src->bytes_in_buffer.copy_and_verify(...));
17: memmove(decoder->mBackBuffer + decoder->mBackBufferLen,
18: src->next_input_byte.copy_and_verify(...), nr);
19: ...
20: }

Listing 2

In Listing 2, we need to write validators as C++ lambdas to the
copy_and_verify method used on lines 3, 16, and 18. As we
describe in [4], validators fall into one of two categories: pre-
serving application invariants (e.g., memory safety) or enforcing
library invariants. On line 3, for example, we must ensure that
decoder points to a valid nsJPEGDecoder object not used by a con-
current thread, while on line 16 we need to ensure that copying nr
bytes won’t read past the mBackBuffer bounds.

We must get validators right—a bug in a validator is often a
security bug. In practice, though, validators are rare and short.
The six libraries we sandboxed in [4] required 2–14 validators
each, and these validators averaged only 2–4 lines of code. Most

importantly, by making these validators explicit, RLBox makes
code reviews easier: security engineers only need to review these
validators.

What’s missing in Listing 2 is almost as important: we don’t write
any security checks on lines 2, 5, and 10, for example. Instead,
RLBox uses runtime checks to automatically swizzle and sani-
tize the src, src->next_input_byte, and decoder->mInfo.err
pointers to point to sandbox memory.

Using Tainted Types to Minimize Engineering Effort
Manually migrating an application to use library sandboxing is
labor intensive and demands a great deal of specific knowledge
about the isolation mechanism. RLBox abstracts away many
of these specifics, making migration relatively simple and
mechanical.

Incremental migration. While RLBox automates many tasks,
we still need to change application code to use RLBox. In par-
ticular, we need to add a trust boundary at the library interface
by turning all control transfers (i.e., library function calls and
callbacks) into RLBox calls, and we need to write validators to
sanitize data from the library, as we saw above. Making these
changes all at once is frustrating, error-prone—overlooking a
single change might suddenly result in crashes or more subtle
malfunctions—and hard to debug.

RLBox addresses these challenges with incremental migration,
allowing developers to modify application code to use the RLBox
API one line at a time. A full migration involves multiple steps
and is explained further in our paper [4]. However, the key idea
is that RLBox provides escape hatches which let developers tem-
porarily disable some checks while migrating their application
code. Thus, at each step, the application can be compiled, run,
and tested.

RLBox provides two escape hatches:

1. The UNSAFE_unverified API allows developers to tempo-
rarily remove the tainted type wrapper (e.g., to run and test their
code). As the application is ported, calls to UNSAFE_unverified
APIs are removed or replaced with validator functions that cor-
rectly sanitize tainted data.

2. The RLBox noop sandbox provides a pass-through sandbox
that redirects function calls back to the unsandboxed version of
the library, while still wrapping data as if it were received from
a sandboxed library. This allows developers to use the RLBox
APIs and test data validation separately from the actual isolation
mechanism.

Compile-time type errors guide the developer by pointing to the
next required code change—e.g., data that needs to be validated
before use, or control transfer code that needs to change to use the
RLBox APIs. By the end of the process, the application is still fully

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 19

SECURITY
The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing

functional, all the escape hatches have been removed, and the appli-
cation-library interface has fully migrated to using tainted types.

We found that incremental migration greatly simplified the code
review process. In Firefox, we could commit and get reviews for
partial migrations to the RLBox API, since the Firefox browser
continued to build and run as before. Additionally, we could
explicitly include security reviews when writing the data valida-
tors for tainted data.

Beyond migration, we also found the noop sandbox to be useful
for selectively enabling library sandboxing in conditional builds.
For example, while Firefox on Linux and OS X uses Wasm for
isolation, the Lucet Wasm compiler’s support for Windows is
incomplete and thus Firefox uses the noop sandbox on Windows
builds; once Windows support is complete, a single line change
will allow us to take advantage of the sandbox. This is useful
beyond Firefox too: developers of the Tor Browser (a downstream
project of Firefox for anonymous web browsing) are interested
in sandboxing more libraries than mainline Firefox, since Tor
users typically have a higher security-performance threshold.
Using the noop sandbox will allow Tor developers to contribute
upstream changes to sandbox libraries in mainline Firefox, using
the noop sandbox to avoid noticeable overhead. Tor developers
can then selectively enable additional sandboxing (again) with a
one-line change, rather than having to maintain a major fork.

ABI translations. Isolation mechanisms can have different
machine models and ABIs from the rest of the application. For
example, Wasm uses a 32-bit machine model meaning that
pointers, ints, and longs are 32 bits. However, this is a different
machine model from that used by the host application. Handling
such differences manually is laborious and error-prone.

Consider line 10 from the previous fill_input_buffer example
in Listing 2:

// mInfo is an object of type jpeg_decompress_struct
decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;

If we port this manually, the resulting code would be:

auto err_field = adjust_for_abi_get_minfo_field(decoder
	 ->minfo, "err");
auto err_field_swizzled = adjust_for_abi_convert_pointer
	 (err_field);
auto msg_field = adjust_for_abi_get_err_field
	 (*err_field_swizzled, "msg_code");
assert(in_sandbox_memory(msg_field));
	 // Ensure pointer is in sandbox memory
auto msg_field_swizzled = adjust_for_abi_convert_pointer
	 (msg_field); // Assign the value
*msg_field_swizzled = adjust_for_abi(JERR_OUT_OF_MEMORY);

In contrast, RLBox requires no changes other than marking
mInfo as tainted. RLBox automatically transforms pointers, and
accounts for the difference in the size of long and pointers:

// mInfo is an object of type tainted<jpeg_decompress_struct>
decoder->mInfo.err->msg_code = JERR_OUT_OF_MEMORY;

RLBox is able to abstract and automatically reconcile ABI differ-
ences since all control and data flow goes through its APIs and
tainted types.

Using Tainted Types Outside of Library Sandboxing
The security challenges we face when sandboxing libraries are
not unique to library sandboxing. Developers have to handle
untrusted data and control flow in many other domains—and
our tainted-type approach can help. We give three examples:

TEE runtimes. Applications running in trusted execution
environments (TEEs), like Intel’s SGX and ARM’s TrustZone,
interface with untrusted code by design—TEEs even consider the
OS untrusted. Getting this code right is hard. And, indeed, TEE
runtimes contain similar bugs: Van Bulck et al. [1], for example,
found that most frameworks, across several TEEs, were vulner-
able to bugs RLBox addresses by construction.

OS kernels. Operating system kernels handle untrusted data
from userspace. Bugfinding tools—from MECA at the start of the
century [10] to Sys this year [2]—have found many vulnerabilities
in kernels due to unchecked (or improperly checked) userspace
data (notably, pointers). Frameworks like RLBox could automati-
cally identify where userspace data needs to be checked and even
perform certain checks automatically (e.g., much like we ensure
that sandbox pointers point to sandbox memory, we can ensure
that userspace pointers point to userspace memory). Indeed,
Johnson and Wagner’s bugfinding tool [3] even used type infer-
ence to find such kernel bugs.

Browser IPC layers. Modern browser architectures privilege
separate different parts of the browser into sandboxed pro-
cesses. Almost all separate the renderer parts—the portion of
the browser that handles untrusted user content from HTML
parsing, to JavaScript execution, to image decoding and render-
ing—from the chrome parts—the trusted portion of the browser
that can access the file system, network, etc.—and restrict com-
munication to a well-typed inter-process communication (IPC)
layer. Like OS kernels, the browser chrome must validate all
values coming from untrusted renderer processes; like kernels,
browsers have been exploited because of unchecked (and improp-
erly checked) untrusted data. Here, again, tainted types can
help—and as a step in this direction, Mozilla started integrating
tainted types into the Firefox IPC layer, as part of the IPDL (IPC
protocol definition language) used to generate boilerplate code
for sending and receiving well-typed IPC messages [7].

This list is by no means exhaustive; others have similarly
observed that tainting can be used to catch and prevent bugs
when handling untrusted data (e.g., see [9]).

20    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SECURITY
The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing

Beyond RLBox
We have thus far discussed RLBox in its current form—a frame-
work that uses the C++ type system, template metaprogramming,
and SFI toolkits like Wasm to securely sandbox libraries typi-
cally written in C. In the future, we hope to see extensions to
other languages, support for sandboxing libraries written in
arbitrary languages, and the adoption of processor features that
can further lower in-process sandboxing overheads.

Beyond C++
We implemented RLBox in C++ because Firefox is predominantly
written in C++. To extend RLBox to other languages, we need to
understand how to implement RLBox’s tainted type system.

Our C++ implementation uses templates to implement the
generic tainted<T> type and takes advantage of function and
operator overloading to make most of the tainted type interface
transparent. For example, RLBox overloads pointer dereferenc-
ing—the -> and * operators—to allow dereferencing tainted<T*>
values safely by automatically sanitizing the underlying pointer
to point to sandbox memory (line 10 in Listing 2). We also use
template metaprogramming to enforce a custom type discipline.

Many languages have features that are expressive enough to
implement our tainted type system directly or as part of the
language toolchain, for example, with compiler plugins.

Statically typed languages. RLBox is a natural fit for lan-
guages that already enforce type safety statically. Statically
typed languages typically offer some form of generics or tem-
plates that can be used to implement tainted types. Many also
allow function and operator overloading which, like C++, would
allow us to provide safe operations on tainted types while pre-
serving the original syntax of the language.

Rust is a particularly compelling language. First, Rust’s raison
d’être is safety—indeed, the language is used in many settings
where assurance is paramount—and RLBox can complement
Rust’s safety by, for example, making it easy for Rust program-
mers to safely integrate C/C++ code into their projects, which
today is considered unsafe. Second, Rust’s macro system and
support for generics and operator overloading via traits allows
tainted types to be implemented directly in the language. Finally,
Rust’s affine types can even simplify certain RLBox validators,
like the validators used to prevent time-of-check to time-of-use
and double fetch attacks [4].

Dynamically typed languages. In dynamically typed lan-
guages like JavaScript and Python, we can enforce tainted types
dynamically. This, of course, makes the incremental porting loop
longer since type errors will only manifest at runtime. Luckily,
many dynamically typed languages have typed extensions to pre-
cisely address this limitation. For example, TypeScript and Flow
extend JavaScript with static type annotations.

Compiler plugins and toolkits. For languages not f lexible
enough to implement the RLBox tainted type system statically,
we envision implementing the type system as part of language
toolchains. For example, for C, we can implement RLBox as a
Clang plugin (both to enforce the type system and to gener-
ate runtime checks). Alternatively, we can implement tainted
types as part of interface description language (IDL) compilers.
As mentioned above, for example, the Mozilla security team is
integrating tainted types into the Firefox IPDL inter-process
communication protocol IDL [7].

Beyond Software-Based Isolation
We designed RLBox to make it easy for developers to plug in
different isolation mechanisms. This makes it easy to migrate
code (e.g., by using the noop sandbox), as we have described. It
also allows developers to use different isolation mechanisms that
have different tradeoffs. For example, while in production we use
Wasm for isolation, in [4] we evaluate two other isolation mecha-
nisms: NaCl and traditional process-based isolation. These
isolation mechanisms have different tradeoffs. Process isolation
is simple but scales poorly—protection boundary crossing costs
become prohibitive as the number of sandboxes exceed the num-
ber of available cores. Wasm and NaCl, on the other hand, scale to
a large number of sandboxes and have cheap boundary crossings,
but they impose an overhead on the sandboxed code.

At present, Wasm toolchains offer a practical and portable path
to isolation. But this software-based isolation approach will
inevitably be slower than running native code.

Hardware support for in-process isolation can offer solutions
that are simple and more performant. Today, for example, Intel’s
Memory Protection Key (MPK) features incur roughly 1% over-
head when used for in-process isolation [8], but this doesn’t scale
beyond 16 sandboxes. In the future, the CHERI capability-based
system will similarly make in-process isolation—and memory
safety more generally—cheap on ARM processors [6]. By making
it easy to use these features transparently (e.g., for CHERI it can
automatically adjust for ABI differences introduced by capabili-
ties), RLBox could lower the barrier to adopting new hardware
isolation features—and, we hope, this will encourage new hard-
ware design for in-process isolation.

Bringing Sandboxing to the Developer Ecosystem
While RLBox has been a boon for our work in Firefox, it’s just a
starting point. Our hope is that library sandboxing will become
a first-class activity in future development environments,
and that RLBox’s capabilities will ultimately be subsumed by
standard parts of tomorrow’s languages, toolchains, and package
managers. We believe in many cases such support could allow
the use of sandboxed libraries with a level of ease comparable to
the use of unsandboxed libraries today.

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 21

SECURITY
The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing

FFIs and native code. Many popular safe languages such as
Python, Ruby, and JavaScript make extensive use of native
(typically C) code in their standard libraries and package eco-
systems via foreign function interfaces (FFIs). Unfortunately,
bugs in native code can completely break all high-level safety
guarantees. Extending FFI interfaces and interface generation
tools with first-class support for sandboxing native code is very
natural—both because the FFI boundary is explicit and because
developers are used to writing code that spans trust boundaries.

Package managers. In the ecology of package ecosystems there
is constant competition between package authors to provide the
best package for a given task. Security is among the ways that
package authors have recently started differentiating their pack-
age from others. We have seen this clearly in the Rust ecosystem,
where the presence (or absence) of unsafe code is one way that
packages are compared.

Sandboxing is another way that package authors can provide
differentiated value, by integrating sandboxing support into
their library. This could look like authors distributing their
packages with most or all of the work required to sandbox that
package done upfront by the package author. Developers could
then choose whether or not to enable sandboxing with minimal
additional fanfare.

To facilitate this, the package author could specify a system level
sandboxing policy (e.g., as a manifest file requesting access to
parts of the file system or network), and developers could then

choose if and how to grant these privileges when importing a
package. Much of the work of writing validators for tainted types
could also be mitigated by distributing validators as part of a
sandboxed library. We even envision an ecosystem of sandbox
interface declarations for existing packages, much like Type-
Script type declarations for JavaScript packages, which will
allow to developers to pull sandboxed interfaces much like they
consume type declarations today.

Conclusion
Decades of attempts to detect and mitigate software vulnerabili-
ties have yielded lackluster results. Even browsers, some of the
most heavily targeted and scrutinized software, seem to provide
an inexhaustible stream of exploitable vulnerabilities. In-process
sandboxing can offer developers and security engineers another
choice—moving code, especially legacy and third-party code, out
of their trusted computing base by sandboxing it, thus mitigating
the impact of a compromise.

We developed RLBox to make sandboxing practical. It is cur-
rently being used to sandbox third-party and in-house libraries
in Firefox, and we hope that other C++ projects will choose to
adopt it. Looking further, we hope to collaborate with developers
of programming languages (and their toolchains and standard
libraries), package managers, and processor architects to provide
first-class support for in-process sandboxing. Small changes to
make in-process sandboxing first-class can result in huge bene
fits for developers and security engineers.

22    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

SECURITY
The Road to Less Trusted Code: Lowering the Barrier to In-Process Sandboxing

References
[1] J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia,
and F. Piessens, “A Tale of Two Worlds: Assessing the Vulner-
ability of Enclave Shielding Runtimes,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications
Security (CCS ‘19), pp. 1741–1758: https://people.cs.kuleuven​
.be/~jo.vanbulck/ccs19-tale.pdf.

[2] F. Brown, D. Stefan, and D. Engler, “Sys: A Static/Symbolic
Tool for Finding Good Bugs in Good (Browser) Code,” in Pro-
ceedings of the 29th USENIX Security Symposium (USENIX
Security ’20), pp. 199–216: https://www.usenix.org/conference​
/usenixsecurity20/presentation/brown.

[3] R. Johnson and D. Wagner, “Finding User/Kernel Pointer
Bugs with Type Inference,” in Proceedings of the 13th USENIX
Security Symposium (USENIX Security ’04): https://www​
.usenix.org/event/sec04/tech/full_papers/johnson/johnson​
_html/.

[4] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm,
S. Lerner, H. Shacham, and D. Stefan, “Retrofitting Fine Grain
Isolation in the Firefox Renderer,” in Proceedings of the 29th
USENIX Security Symposium (USENIX Security ’20), pp. 699–
716: https://www.usenix.org/conference/usenixsecurity20​
/presentation/narayan.

[5] S. Narayan, T. Garfinkel, S. Lerner, H. Shacham, and D.
Stefan, “Gobi: WebAssembly as a Practical Path to Library
Sandboxing,” arXiv, December 4, 2019: https://arxiv.org/abs​
/1912.02285.

[6] R. Grisenthwaite, “A Safer Digital Future, by Design,” ARM
Blueprint, October 18, 2019: https://www.arm.com/blogs​
/blueprint/digital-security-by-design.

[7] T. Ritter, “Support Tainting Data Received from IPC,”
Mozilla Bug 1610005, January 2020: https://bugzilla.mozilla​
.org/show_bug.cgi?id=1610005.

[8] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M.
Sammler, P. Druschel, and D. Garg, “ERIM: Secure, Efficient
In-Process Isolation with Protection Keys (MPK),” in Proceed-
ings of the 28th USENIX Security Symposium (USENIX
Security ’19), pp. 1221–1238: https://www.usenix.org​
/conference/usenixsecurity19/presentation/vahldiek​
-oberwagner.

[9] W. Xu, S. Bhatkar, and R. Sekar, “Taint-Enhanced Policy
Enforcement: A Practical Approach to Defeat a Wide Range of
Attacks,” in Proceedings of the 15th USENIX Security Sympo-
sium (USENIX Security ’06), pp. 121–136: https://www.usenix​
.org/legacy/event/sec06/tech/full_papers/xu/xu_html/.

[10] J. Yang, T. Kremenek, Y. Xie, and D. Engler, “MECA: An
Extensible, Expressive System and Language for Statically
Checking Security Properties,” in Proceedings of the 10th ACM
Conference on Computer and Communications Security (CCS
’03), pp. 321–334: https://web.stanford.edu/~engler/ccs03​
-meca.pdf.

https://people.cs.kuleuven.be/~jo.vanbulck/ccs19-tale.pdf
https://people.cs.kuleuven.be/~jo.vanbulck/ccs19-tale.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/brown
https://www.usenix.org/conference/usenixsecurity20/presentation/brown
https://www.usenix.org/event/sec04/tech/full_papers/johnson/johnson_html/
https://www.usenix.org/event/sec04/tech/full_papers/johnson/johnson_html/
https://www.usenix.org/event/sec04/tech/full_papers/johnson/johnson_html/
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://arxiv.org/abs/1912.02285
https://arxiv.org/abs/1912.02285
https://www.arm.com/blogs/blueprint/digital-security-by-design
https://www.arm.com/blogs/blueprint/digital-security-by-design
https://bugzilla.mozilla.org/show_bug.cgi?id=1610005
https://bugzilla.mozilla.org/show_bug.cgi?id=1610005
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/legacy/event/sec06/tech/full_papers/xu/xu_html/
https://www.usenix.org/legacy/event/sec06/tech/full_papers/xu/xu_html/
https://web.stanford.edu/~engler/ccs03-meca.pdf
https://web.stanford.edu/~engler/ccs03-meca.pdf

