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Abstract—Spectre vulnerabilities violate our fundamental as-
sumptions about architectural abstractions, allowing attackers
to steal sensitive data despite previously state-of-the-art counter-
measures. To defend against Spectre, developers of verification
tools and compiler-based mitigations are forced to reason about
microarchitectural details such as speculative execution. In order
to aid developers with these attacks in a principled way, the
research community has sought formal foundations for speculative
execution upon which to rebuild provable security guarantees.

This paper systematizes the community’s current knowledge
about software verification and mitigation for Spectre. We
study state-of-the-art software defenses, both with and without
associated formal models, and use a cohesive framework to
compare the security properties each defense provides. We
explore a wide variety of tradeoffs in the expressiveness of
formal frameworks, the complexity of defense tools, and the
resulting security guarantees. As a result of our analysis, we
suggest practical choices for developers of analysis and mitigation
tools, and we identify several open problems in this area to guide
future work on grounded software defenses.

I. INTRODUCTION

Spectre attacks have upended the foundations of computer
security [44]. With Spectre, attackers can steal secrets across
security boundaries—both hardware boundaries provided by
the process abstraction [84], and software boundaries provided
by memory safe languages and software-based fault isolation
(SFI) techniques [79]. In response, the security community has
been working on program analysis tools to both find Spectre
vulnerabilities and to guide mitigations (e.g., compiler passes)
that can be used to secure programs in the presence of this
class of attacks. But Spectre attacks—and speculative execution
in general—violate our typical assumptions and abstractions
and have proven particularly challenging to reason about and
defend against.

Many existing defense mechanisms against Spectre are either
incomplete (and thus miss possible attacks) or overly conser-
vative (and thus slow). For example, the MSVC compiler’s
/Qspectre pass—one of the first compiler-based defenses
against Spectre [55]—inserts mitigations by finding Spectre
gadgets (or patterns). Since these patterns are not based on any
rigorous analysis, the compiler misses similarly vulnerable code
patterns [60]. As another example, Google Chrome adopted
process isolation as its core defense mechanism against Spectre
attacks [64]. This is also unsound: Canella et al. [13], for
example, show that Spectre attacks can be performed across
the process boundary. On the other side of the spectrum,
inserting fences at every load or control flow point is sound
but prohibitively slow [59].

Language-based security can help us achieve—or at least
understand the trade-offs of giving up on—performance and
provable security guarantees. Historically, the security commu-
nity has turned to language-based security to solidify intricate
defense techniques—from SFI enforcement on x86 [58], to
information flow control enforcement [66], to eliminating
side-channel attacks with constant-time programming [6]. At
the core of language-based security are program semantics—
rigorous models of program behavior which serve as the basis
for formal security policies or foundations. These policies
help us carefully and explicitly spell out our assumptions
about the attacker’s strength and ensure that our tools are
sound with respect to this class of attackers—e.g., that Spectre
vulnerability-detection or -mitigation tools find and mitigate
the vulnerabilities they claim to find and mitigate.

Formal foundations are key to performance too. Without
formalizations, Spectre defenses are usually either overly
conservative (which leads to unnecessary and slow mitigations)
or crude (and thus vulnerable). For example, speculative
load hardening [14] is safe—it safely eliminates Spectre-PHT
attacks—but is overly conservative and slow: It assumes that all
array indexing operations must be hardened. In practice, this is
not the case [35, 77]. Crude techniques like oo7 [81] are both
inefficient and unsafe—they impose unnecessary restrictions
yet also miss vulnerable code patterns. Foundations allow us
to craft defenses that are minimal (e.g., they target the precise
array indexes that need hardening [29, 77]) and provably secure.

Alas, not all foundations are equally practical. Since spec-
ulative execution breaks common assumptions about pro-
gram semantics—the cornerstone of language-based methods—
existing Spectre foundations explore different design choices,
many of which have important ramifications on defense tools
and the software produced or analyzed by these tools (Figure 2).
For instance, one key choice is the leakage model of the
semantics, which determines what the attacker is allowed
to observe. Another choice is the execution model, which
simultaneously captures the attacker’s strength and which
Spectre variants the resulting analysis (or mitigation) tool can
reason about. These choices in turn determine which security
policies can be verified or enforced by these tools.

While formal design decisions fundamentally impact the
soundness and precision of Spectre analysis and mitigation
tools, they have not been systematically explored by the security
community. For example, while there are many choices for a
leakage model, the constant-time [6] and sandbox isolation [29]
models are the most pragmatic; leakage models that only con-



sider the data cache trade off security for no clear benefits (e.g.,
scalability or precision). As another example, the most practical
execution models borrow (again) from work on constant-time:
They are detailed enough to capture practical attacks, but
abstract across different hardware—and are thus useful for
both software-based verification and mitigation techniques.
Models which capture microarchitectural details like cache
structures make the analysis unnecessarily complicated: They
do not fundamentally capture additional attacks and give up
on portability.
Contributions. In this paper, we systematize the community’s
knowledge on Spectre foundations and identify the different
design choices made by existing work and their tradeoffs. This
complements existing, excellent surveys [12, 13, 85] on the
low-level details of Spectre attacks and defenses which do
not consider foundations or, for example, high-level security
policies. Throughout, we discuss the limitations of existing
formal frameworks, the defense tools built on top of these
foundations, and future directions for research. In summary,
we make the following contributions:

• Study existing foundations for Spectre analysis in the form
of semantics, discuss the different design choices which
can be made in a semantics, and describe the tradeoffs of
each choice.

• Compare many proposed Spectre defenses—both with and
without formal foundations—using a unifying framework,
which allows us to understand differences in the security
guarantees they offer.

• Identify open research problems, both for foundations and
for Spectre software defenses in general.

• Provide recommendations both for developers and for
the research community that could result in tools with
stronger security guarantees.

Scope. In this systematization, we focus on software-only
defenses against Spectre attacks. We focus on Spectre because
most other transient attacks (e.g., Meltdown [48], LVI [76],
MDS [34], or Foreshadow [75]) can efficiently be addressed
in the hardware, through microcode updates or new hardware
designs. (This is also the reason existing software-based tools
against transient execution attacks focus solely on Spectre, as
we discuss in Section IV-D.) We focus on defenses because
prior work, notably Canella et al. [13], already give an excellent
overview of the types of Spectre vulnerabilities and the power-
ful capabilities they give attackers. And we focus on software-
only defenses—although proposals for hardware defenses are
extremely valuable, hardware design cycles (and hardware
upgrade cycles) are very long. Moreover, software foundations
are useful for understanding hardware and hardware-software
co-designs (e.g., they directly affect execution and leakage
models). Having secure software foundations allows us to
defend against today’s attacks on today’s hardware, and
tomorrow’s as well.

II. PRELIMINARIES

In this section, we first discuss Spectre attacks and how they
violate security in two particular application domains: high-

if (i < arrALen) { // mispredicted
int x = arrA[i]; // x is oob value
int y = arrB[x]; // leaked via address!
// ...

Fig. 1. Code snippet which an attacker can exploit using Spectre. If an
attacker can control i and cause the processor to transiently enter the branch,
the attacker can load an arbitrary value from memory into x, which is then
leaked via the following memory access.

assurance cryptography and isolation of untrusted code. Then,
we provide an introduction to formal semantics for security and
its relevance to secure speculation in these application domains.

A. Spectre vulnerabilities

Spectre [3, 5, 32, 42, 44, 45, 51, 88] is a recently discovered
family of vulnerabilities stemming from speculative execution
on modern processors. Spectre allows attackers to learn
sensitive information by causing the processor to mispredict the
targets of control flow (e.g., conditional jumps or indirect calls)
or data flow (e.g., aliasing or value forwarding). When the
processor realizes it has mispredicted, it rolls back execution,
erasing the programmer-visible effects of the speculation.
However, microarchitectural state—such as the state of the data
cache—is still modified during speculative execution; these
changes can be leaked during speculation and can persist even
after rollback. As a result, the attacker can recover sensitive
information from the microarchitectural state, even if the
sensitive information was only speculatively accessed.

Figure 1 gives an example of a vulnerable function: An
attacker can exploit branch misprediction to leak arbitrary
memory via the data cache. The attacker first primes the branch
to predict that the condition i < arrALen is true by causing
the code to repeatedly run with appropriate (small) values of
i. Then, the attacker provides an out-of-bounds value for i.
The processor (mis)predicts that the condition is still true and
speculatively loads out-of-bounds (potentially secret) data into
x; subsequently, it uses the value x as part of the address of a
memory read operation. This encodes the value of x into the
data cache state—depending on the value of x, different cache
lines will be accessed and cached. Once the processor resolves
the misprediction, it rolls back execution, but the data cache
state persists. The attacker can later interpret the data cache
state in order to infer the value of x.

B. Breaking cryptography with Spectre

High-assurance cryptography has long relied on constant-
time programming [6] in order to create software which
is secure from timing side-channel attacks. Constant-time
programming ensures that program execution does not depend
on secrets. It does this via three rules of thumb [6, 8]: control
flow (e.g., conditional branches) should not depend on secrets,
memory access patterns (e.g., offsets into arrays) should not
be influenced by secrets, and secrets should not be used as
operands to variable-latency instructions (e.g., floating-point
instructions or integer division on many processors). These
rules ensure that secrets remain safe from an attacker powerful



enough to perform cache attacks, exfiltrate data via branch
predictor state, or snoop data via port contention [10].

In the face of Spectre, constant-time programming is not
sufficient. The snippet in Figure 1 is indeed constant-time if
arrA contains only public data (and i and arrALen are also
public). Yet, a Spectre attack can still abuse this code to leak
secrets from anywhere in memory.

Cache-based leaks are not the only way for an attacker
to learn cryptographic secrets: In the following example, an
attacker can again (speculatively) leak out-of-bounds data, but
this time the leak is via control flow.
if (i < arrALen) {
int x = arrA[i];
switch(x) { // leak via branching!
case 'A': /* ... */
case 'B': /* ... */
// ...

This code uses x as part of a branch condition (in a switch
statement). Just as before, the attacker can speculatively read
arbitrary memory into x. They can then leak the value of
x in several ways, including: (1) Based on the different
execution times of the various cases; (2) through the data
cache, based on differing (benign) memory accesses performed
in the various cases; (3) through the instruction cache or micro-
op cache [65], based on which instructions were (speculatively)
accessed; or (4) through port contention [10], branch predictor
state [38], or other microarchitectural resources that differ
among the branches.

C. Breaking software isolation with Spectre

Spectre attacks also break important guarantees in the domain
of software isolation. In this domain, a host application executes
untrusted code and wants to ensure that the untrusted code
cannot access any of the host’s data. Common examples
of software isolation include JavaScript or WebAssembly
runtimes, or even the Linux kernel, through eBPF [23]. Spectre
attacks can break the memory safety and isolation mechanisms
commonly used in these settings [39, 52, 59, 72].

We demonstrate with a small example:
int guest_func() {
get_host_val(1);
get_host_val(1);
// ... repeat ...
char c = get_host_val(99999);
// ... leak c

}

char get_host_val(int idx) {
if (idx < 100) { // check if within bounds
return host_arr[idx];

} else {
return 0;

} }

Here, an attacker-supplied guest function guest_func calls
the host function get_host_val to get values from an
array. Although get_host_val() implements a bounds check,
the attacker can still speculatively access out-of-bounds data
by mistraining the branch predictor—breaking any isolation

guarantees. Once the attacker (speculatively) obtains an out-of-
bounds value of their choosing, they can leak the value (e.g., via
data cache, etc.) and recover it after the speculative rollback.
In this setting, we need to ensure that, even speculatively,
untrusted code cannot break isolation.

D. Security properties and execution semantics

Formally, we will define safety from Spectre attacks as a
security property of a formal (operational) semantics. The
semantics abstractly captures how a processor executes a
program as a series of state transitions. The states, which
we will write as σ, include any information the developer will
need to track for their analysis, such as the current instruction
or command and the contents of memory and registers. The
developer then defines an execution model—a set of transition
rules that specify how state changes during execution. For
example, in a semantics for a low-level assembly, a rule for
a store instruction will update the resulting state’s memory
with a new value.

The rules in the execution model determine how and
when speculative effects happen. For example, in a sequential
semantics, a conditional branch will evaluate its condition then
step to the appropriate branch. A semantics that models branch
prediction will instead predict the condition result and step
to the predicted branch. We adapt notation from Guarnieri
et al. [29], writing J · Kseq to represent the execution model
for standard sequential execution. We notate other execution
models similarly; for example, J · Kpht models prediction for
Spectre-PHT attacks—i.e., conditional branch prediction. Other
execution models are listed in Figure 3.

Next, to precisely specify the attacker model, the developer
must define which leakage observations—information produced
during an execution step—are visible to an attacker. For
example, they may decide that rules with memory accesses leak
the addresses being accessed. The set of leakage observations
in a semantics’ rules is its leakage model. We again borrow
notation from Guarnieri et al. [29], which defines the leakage
models J · Kct and J · Karch. The J · Kct model exposes leakage
observations relevant to constant-time security: The sequence of
control flow (the execution trace) and the sequence of addresses
accessed in memory (the memory trace).1 The J · Karch model,
on the other hand, exposes all values loaded from memory in
addition to the addresses themselves (or equivalently, it exposes
the trace of register values) [29]. Under this model, an attacker
is allowed to observe all architectural computation; for a value
to remain unobserved, it cannot be accessed at all over the
course of execution, adversarial or otherwise. Since the leakage
observations in J · Karch are a strict superset of those in J · Kct,
we say that J · Karch is stronger than J · Kct (i.e., it models a
more powerful attacker). These properties make J · Karch most
useful for software isolation, as any out-of-bounds accesses
will immediately show up in an J · Karch leakage trace.

Surprisingly, the J · Kct and J · Karch leakage models generalize
well to speculative execution—for example, if we want to

1Like Guarnieri et al. [29], we omit variable-latency instructions from our
formal model for simplicity.



construct a semantics for Spectre-PHT attacks, we need only
modify a sequential constant-time semantics to account for
branch misprediction. Indeed, the execution model and leakage
model of a semantics are orthogonal; we call the combination of
the two the contract provided by the semantics—a sequential
constant-time semantics has the contract J · Kseq

ct , while our
hypothetical Spectre-PHT semantics would provide the contract
J · Kpht

ct . Formally, the contract governs the attacker-visible
information produced when executing a program: Given a
program p, a semantics with contract J · Kαℓ , and an initial state
σ, we write JpKαℓ (σ) for the sequence (or trace) of leakage
observations the semantics produces when executing p.

After determining a proper contract, the developer must
finally define the policy that their security property enforces:
Precisely which data can and cannot be leaked to the attacker.
Formally, a policy π is defined in terms of an equivalence
relation ≃π over states, where σ1 ≃π σ2 iff σ1 and σ2 agree
on all values that are public (but may differ on sensitive values).

Armed with these definitions, we can state security as a
non-interference property: A program satisfies non-interference
if, for any two π-equivalent initial states for a program p, an
attacker cannot distinguish the two resulting leakage traces
when executing p. A developer has several choices when
crafting a suitable semantics and security policy; these choices
greatly influence how easy or difficult it is to detect or mitigate
Spectre vulnerabilities. We cover these choices in detail in
Section III: Sections III-A and III-B discuss choices in leakage
models J · Kℓ and security policies π. Sections III-C and III-D
discuss tradeoffs for different execution models J · Kα and the
transition rules in a semantics. In Section III-E, we discuss
how the input language of the semantics affects analysis; and
finally, in Section III-F, we discuss which microarchitectural
features to include in formal models.

III. CHOICES IN SEMANTICS

The foundation of a well-designed Spectre analysis tool
is a carefully constructed formal semantics. Developers face
a wide variety of choices when designing their semantics—
choices which heavily depend on the attacker model (and
thus the intended application area) as well as specifics about
the tool they want to develop. Cryptographic code requires
different security properties, and therefore different semantics
and tools, than in-process isolation. Many of these choices
also look different for detection tools, focused only on finding
Spectre vulnerabilities, vs. mitigation tools, which transform
programs to be secure. In this section, we describe the important
choices about semantics that developers face, and explain those
choices’ consequences for Spectre analysis tools and for their
associated security guarantees. We also point out a number of
open problems to guide future work in this area.
What makes a practical semantics? A practical semantics
should make an appropriate tradeoff between detail and
abstraction: It should be detailed enough to capture the
microarchitectural behaviors which we’re interested in, but it
should also be abstract enough that it applies to all (reasonable)
hardware. For example, we do not want the security of our

code to be dependent on a specific cache replacement policy
or branch predictor implementation.

In the non-speculative world, formalisms for constant-time
have been successful: The principles of constant-time program-
ming (no secrets for branches, no secrets for addresses) create
secure code without introducing processor-specific abstractions.
Speculative semantics should follow this trend, producing
portable tools which can defend against powerful attackers
on today’s (and tomorrow’s) microarchitectures.

A. Leakage models

Any semantics intended to model side-channel attacks needs
to precisely define its attacker model. An important part of the
attacker model for a semantics is the leakage model—that is,
what information does the attacker get to observe? Leakage
models intended to support sound mitigation schemes should be
strong—modeling a powerful attacker—and hardware-agnostic,
so that security guarantees are portable. That said, the best
choice for a leakage model depends in large part on the intended
application domain.

Leakage models for cryptography. As we saw in Section II-B,
high-assurance cryptography implementations have long relied
on the constant-time programming model; thus, semantics
intended for cryptographic programs naturally choose the J · Kct
leakage model. Like the constant-time programming model in
the non-speculative world, the J · Kct leakage model is strong
and hardware-agnostic, making it a solid foundation for security
guarantees. The J · Kct leakage model is a popular choice among
existing formalizations: As we highlight in Figure 2, over half
of the formal semantics for Spectre use the J · Kct leakage
model (or an equivalent) [7, 15, 20, 27, 28, 61, 77]. Guarnieri
et al. [29] leave the leakage model abstract, allowing the
semantics to be used with several different leakage models,
including J · Kct.

Leakage models for isolation. Sections II-C and II-D describe
the J · Karch leakage model, which is a better fit for modeling
speculative isolation, e.g., for a WebAssembly runtime execut-
ing untrusted code [59] or a kernel defending against memory
region probing [26]. Under J · Karch, all values in the program
are observable—this is what lets it easily model properties for
software isolation: If we define a policy π where all values
and memory regions outside the isolation boundary are secret,
then software isolation security (or speculative memory safety)
is simply non-interference with respect to J · Karch (and this π).

The J · Karch leakage model appears less frequently than
J · Kct in formal models: Only two of the semantics in Fig-
ure 2 ([17, 29]) use the J · Karch leakage model. On the
other hand, Spectre sandbox isolation frameworks such as
Swivel [59], Venkman [72], and ELFbac [39] implicitly use
the J · Karch model, as do the detection tools SpecFuzz [60],
ASTCVW [43], SpecTaint [63], and the “weak” and “v1.1”
modes of oo7 [81]. The three isolation frameworks all explicitly
prevent memory reads or writes to any locations outside of
the isolation boundary—i.e., enforcing non-interference under
J · Karch. The detection tools, meanwhile, look for gadgets



Semantics or tool name Level Leakage Variants Nondet. Fence OOO Win. Hij. Tool Impl.

Cauligi et al. [15] (Pitchfork) Low J · Kct P,B,M P,B,R,S Directives ✓ ✓ ✓ ✓ Det* Taint

Cheang et al. [17] Low J · Karch P,M,S,R P Oracle ✓ × ✓ × Det/Mit SelfC+

Daniel et al. [20] (Binsec/Haunted) Low J · Kct P,M P,S Mispredict × × ✓ × Det SelfC

Guanciale et al. [27] (InSpectre) Low J · Kct P,M P,B,R,S — ✓ ✓ × ✓ — —

Guarnieri et al. [28] (Spectector) Low J · Kct P,B,M P Oracle ✓ × ✓ → Det SelfC+

Guarnieri et al. [29] Low (parametrized) P1 Oracle ✓ ✓ ✓ × Det SelfC+

Mcilroy et al. [54] Low J · Kcache T P2 Oracle ∽ × ✓ → Mit* Manual

Barthe et al. [7] (Jasmin) Medium J · Kct P,B,M P,S Directives ✓ × × × Det Safety

Patrignani and Guarnieri [61] Medium J · Kct P,B,M,L3 P1 Mispredict ✓ × ✓ × — —

Vassena et al. [77] (Blade) Medium J · Kct B,M P Directives ✓ ✓ × × Mit Flow

Colvin and Winter [18] High J · Kmem M P Weak-mem ✓ ✓ × × Val Model

Disselkoen et al. [21] High J · Kmem M P Weak-mem ✓ ✓ × × — —

P. de León and Kinder [62] (Kaibyo) High J · Kmem M P,S Weak-mem ✓ ✓ ✓ × Det Model

AISE [83] — J · Kcache C P Mispredict × × ✓ × Det Cache+

ASTCVW [43] — J · Karch L P4 — × × × × Det Taint

ELFbac [39] — J · Karch L P — ×5 × × ✓ Mit Struct

KLEESpectre [80]
(w/ cache) — J · Kcache C P Mispredict ✓ × ✓ × Det Cache

(w/o cache) — J · Kmem M P Mispredict ✓ × ✓ × Det Taint

oo7 [81]
(v1 pattern) — J · Kmem M P — ∽ × ✓ × Det/Mit Flow

(“weak” and v1.1 patterns) — J · Karch L P — ∽ × ✓ ∽ Det/Mit Flow

Specfuscator [71] — —6 — P,B,R — ×5 × × ✓ Mit Struct

SpecFuzz [60] — J · Karch L P Mispredict — — — ✓ Det Fuzz

SpecTaint [63] — J · Kmem
7 M P Mispredict ✓ × ✓ ∽ Det Taint

SpecuSym [30] — J · Kcache C P Mispredict × × ✓ × Det SelfC+

Swivel [59]
(poisoning protection) — J · Kmem M P,B,R — ∽8 × × ✓ Mit Struct

(breakout protection) — J · Karch L P,B,R — ∽8 × × ✓ Mit Struct

Venkman [72] — J · Karch L P,B,R — ∽ × × ✓ Mit Struct

Level – How abstract is the semantics? (Section III-E) Leakage – What can the attacker observe? (Section III-A) Variants (Section III-C)

Low Assembly-style, with branch instructions P – Path / instructions executed L – Values loaded from memory P – Spectre-PHT
Medium Structured control flow such as if-then-else B – Speculation rollbacks R – Values in registers B – Spectre-BTB
High In the style of weak memory models M – Addresses of memory operations S – Branch predictor state R – Spectre-RSB
— The work has no associated formal semantics C – Cache lines / cache state T – Step counter / timer S – Spectre-STL

Fence – Does it reason about speculation fences? Hijack – Can it model or mitigate speculative hijack?

✓ Fully reasons about fences in the target/input code ✓ Models/mitigates speculative hijack attacks

∽
The mitigation tool inserts fences, but the analysis does not reason about fences → Models/mitigates forward-edge (ijmp) hijack only
in the target/input code (and thus cannot verify the mitigated code as secure) ∽ Models/mitigates hijack only via speculative stores

× Does not reason about, or insert, fences × Does not model/mitigate speculative hijack attacks

Nondet. – How is nondeterminism handled? (Section III-D)
OOO – Models out-of-order execution? (Section III-F)
Win. – Can reason about speculation windows? (Section III-C)

Tool – Does the paper include a tool? Implementation – How does the tool detect or mitigate vulnerabilities? (Section III-D)

Det Tool detects insecure programs or verifies secure programs Taint Taint tracking (abstract execution) Manual Manual effort
Mit Tool modifies programs to ensure they are secure Safety Memory safety (abstract execution) Fuzz Fuzzing

Val Tool is only used to validate the semantics, does not SelfC Self composition (abstract execution) Flow Data flow analysis
automatically perform any security analysis Cache Cache must-hit analysis (abstract execution) Struct Structured compilation

— Does not include a tool Model Model checking over the whole program

* Tool’s connection to the semantics is incomplete or unclear (e.g., tool
does not implement the full semantics) + Includes additional work or constraints to remove sequential trace (Section III-B)

Fig. 2. Comparison of various semantics and tools. Semantics are sorted by Level, then alphabetically; works without semantics are ordered last. 1Extension
to other variants is discussed, but not performed. 2Semantics includes indirect jumps and rules to update the indirect branch predictor state, but cannot
mispredict indirect jump targets. 3“Weak” variants of semantics leak loaded values during non-speculative execution. 4Detects only “speculative type confusion
vulnerabilities”, a specific subset of Spectre-PHT. 5Mitigates Spectre-PHT without inserting fences. 6Defends by effectively preventing speculation, so leakage
model is irrelevant. 7Effectively J · Kmem for loads, but detects any speculative store to an attacker-controlled address, which is more similar to J · Karch for stores.
8Swivel operates on WebAssembly, which does not have fences. However, Swivel can insert fences in its assembly backend.



that can speculatively access arbitrary (or attacker-controlled)
memory locations—i.e., breaking speculative memory safety.
Unfortunately, these tools are not formalized, so their leakage
models are not made explicit (nor clear).

Weaker leakage models. The remaining semantics and tools
in Figure 2 consider only the memory trace of a program,
but not its execution trace. The J · Kmem leakage model, like
J · Kct, allows an attacker to observe the sequence of memory
accesses during the execution of the program; the J · Kcache
leakage model instead only tracks (an abstraction of) cache state.
The attacker in this model can only observe cached addresses
at the granularity of cache lines. A few tools have even weaker
leakage models—for instance, oo7 only emits leakages that
can be influenced by malicious input (see Section III-C) and
KLEESpectre (with cache modeling enabled) only allows the
attacker to observe the final state of the cache upon termination.

All of these models, including J · Kmem and J · Kcache, are
weaker than J · Kct—they model less powerful attackers who
cannot observe control flow. As a result, they miss attacks which
leak via the instruction cache or which otherwise exploit timing
differences in the execution of the program. They even miss
some attacks that exploit the data cache: If a sensitive value
influences a branch, an attacker could infer the sensitive value
through the data cache based on differing (benign) memory
access patterns on the two sides of the branch, even if no
sensitive value directly influences a memory address. For
instance, in the following code, even though cond is not used
to calculate the memory address, an attacker can infer the value
of cond based on whether arr[a] gets cached or not:
if (cond)
b = arr[a];

else
b = 0;

Because the J · Kmem and J · Kcache leakage models miss these
attacks, they cannot provide the strong guarantees necessary
for secure cryptography or software isolation. Tools which
want to provide sound verification or mitigation should instead
choose a strong leakage model appropriate for their application
domain, such as J · Kct or J · Karch.

That said, weaker leakage models are still useful in certain
settings: Tools which are interested in only certain vulnerability
classes can use these weaker models to reduce the number of
false positives in their analysis or reduce the complexity of
their mitigation. Even though these models may miss some
Spectre attacks, detection tools can still use the J · Kcache or
J · Kmem models to find Spectre vulnerabilities in real codebases.
Using a leakage model which ignores control flow leakage
may help the detection tool scale to larger codebases.

Some tools [30, 80] also provide the ability to reason about
what attacks are possible with particular cache configurations—
e.g., with a particular associativity, cache size, or line size. This
is a valuable capability for a detection tool: It helps an attacker
zero in on vulnerabilities which are more easily exploitable
on a particular target machine. However, security guarantees
based on this kind of analysis are not portable, as executing a
program on a different machine with a different cache model

invalidates the security analysis. Tools that instead want to
make guarantees for all possible architectures, such as verifiers
or compilers, will need more conservative leakage models—
models that assume the entire memory trace (and execution
trace) is always leaked.
Open problems: Leakage models for weak-memory-style
semantics. We have described leakage models only in terms of
observations of execution traces; this is a natural way to define
leakage for operational semantics, where execution is modeled
simply as a set of program traces. However, the weak-memory-
style speculative semantics proposed by Colvin and Winter [18],
Disselkoen et al. [21], and Ponce de León and Kinder [62]
have a more structured view of program execution (for instance,
using dependency analysis or pomsets [25]). These semantics
define leakage equivalent to the J · Kmem leakage model; it
remains an open problem to explore how to define J · Kct or
J · Karch leakage in this more structured execution model—in
particular, what it means for such a semantics to allow an
attacker to observe control-flow.
Open problems: Leakage models for language-based isolation.
As with most work on Spectre foundations, we focus on
cryptography and software-based isolation. Spectre, though, can
be used to break most other software abstractions as well—from
module systems [31] and object capabilities [50] to language-
based isolation techniques like information flow control [66].
How do we adopt these abstractions in the presence of
speculative execution? What formal security property should
we prove? And what leakage model should be used?

B. Non-interference and policies

After the leakage model, we must determine what secrecy
policy we consider for our attacker model—i.e., which values
can and cannot be leaked. Domains such as cryptography and
isolation already have defined policies for sequential security
properties: For cryptography, memory that contains secret
data (e.g., encryption keys) is considered sensitive; isolation
simply declares that all memory outside the program’s assigned
sandbox region should not be leaked.

The straightforward extension of sequential non-interference
to speculative execution is to enforce the same leakage model
(e.g., J · Kct) with the same security policy—no secrets should
be leaked whether in normal or speculative execution. We refer
to this simple extension as a direct non-interference property,
or direct NI.

Definition 1 (Direct non-interference). Program p satisfies
direct non-interference with respect to a given contract J · K
and policy π if, for all pairs of π-equivalent initial states σ
and σ′, executing p with each initial state produces the same
trace. That is, p ⊢ NI (π, J · K) is defined as

∀σ, σ′ : σ ≃π σ′ ⇒ JpK(σ) = JpK(σ′).

We elide writing π for brevity—e.g., NI (J · Kpht
ct ) expresses

constant-time security under Spectre-PHT semantics.
Alternatively, we may instead want to assert that the

speculative trace of a program has no new sensitive leaks



as compared to its sequential trace. This is a useful property
for compilers and mitigation tools that may not know the
secrecy policy of an input program, but want to ensure the
resulting program does not leak any additional information.
We term this a relative non-interference property, or relative
NI; a program that satisfies relative NI is no less secure than
its sequential execution.

Definition 2 (Relative non-interference). Program p satisfies
relative non-interference from contract J · Kseq

a to J · Kβb and
with policy π if: For all pairs of π-equivalent initial states
σ and σ′, if executing p under J · Kseq

a produces equal traces,
then executing p under J · Kβb produces equal traces. That is,
p ⊢ NI (π, J · Kseq

a ⇒ J · Kβb ) is defined as

∀σ, σ′ : σ ≃π σ′ ∧ JpKseq
a (σ) = JpKseq

a (σ′)

=⇒ JpKβb (σ) = JpKβb (σ
′).

For non-terminating programs, we can compare finite prefixes
of JpKβ against their sequential projections to JpKseq—since
speculative execution must preserve sequential semantics, there
will always be a valid sequential projection. As before, we
may elide π for brevity.

Interestingly, any relative non-interference property
NI(π, J · Kseq

a ⇒ J · Kβb ) for a program p can be expressed
equivalently as a direct property NI(π′, J · Kβb ), where
π′ = π \ canLeak(p, J · Kseq

a ). That is, we treat anything that
could possibly leak under contract J · Kseq

a as public. Relative
NI is thus a (semantically) weaker property than direct NI,
as it implicitly declassifies anything that might leak during
sequential execution.

However, relative NI is still a stronger property than a con-
ventional implication. For example, the property NI (J · Kseq

ct ) ⇒
NI (J · Kpht

ct ) makes no guarantees at all about a program that
is not sequentially constant-time. Conversely, the relative NI
property NI (J · Kseq

ct ⇒ J · Kpht
ct ) guarantees that even if a program

is not sequentially constant-time, the sensitive information an
attacker can learn during the program’s speculative execution
is limited to what it already might leak sequentially.

In Figure 3, we classify security properties of different works
by which direct or relative NI properties they verify or enforce.
We find that tools focused on verifying cryptography or memory
isolation verify direct NI properties, whereas frameworks
concerned with compilation or inserting Spectre mitigations
for general programs tend towards relative NI.

Verifying programs. Direct NI unconditionally guarantees that
sensitive data is not leaked, whether executing sequentially
or speculatively. This makes it ideal for domains that already
have clear policies about what data is sensitive, such as cryp-
tography (e.g., secret keys) or software isolation (e.g., memory
outside the sandbox). Indeed, tools that target cryptographic
applications ([7, 15, 20, 77]) all verify that programs satisfy
the direct speculative constant-time (SCT) property.

Additionally, we find that current tools that verify relative
NI [17, 28] are indeed capable of verifying direct NI, but
intentionally add constraints to their respective checkers

to “remove” sequential leaks from their speculative traces.
Although this is just as precise, it is an open problem whether
tools can verify relative NI for programs without relying on a
direct NI analysis.

Verifying compilers. On the other hand, compilers and miti-
gation tools are better suited to verify or enforce relative NI
properties: The compiler guarantees that its output program
contains no new leakages as compared to its input program.
This way, developers can reason about their programs assuming
a sequential model, and the compiler will mitigate any
speculative effects. For instance, if a program p is already
sequentially constant-time NI (J · Kseq

ct ), then a compiler that
enforces NI (J · Kseq

ct ⇒ J · Kpht
ct ) will compile p to a program

that is speculatively constant-time NI (J · Kpht
ct ). Similarly, if

a program is properly sandboxed under sequential execution
NI (J · Kseq

arch) and is compiled with a compiler that introduces no
new arch leakage, the resulting program will remain sandboxed
even under speculative execution [29].

Similarly, Patrignani and Guarnieri [61] explore whether
compilers preserve robust non-interference properties. A secu-
rity property is robust if a program remains secure even when
linked against adversarial code (i.e., if the program is called
with arbitrary or adversarial inputs). A compiler preserves a
non-interference property if, after compilation from a source
to a target language, the property still holds. In Patrignani
and Guarnieri’s framework, the source language describes
sequential execution while the target language has speculative
semantics, making their notion of compiler preservation very
similar to enforcing relative NI.

C. Execution models

To reason about Spectre attacks, a semantics must be able to
reason about the leakage of sensitive data in a speculative
execution model. A speculative execution model is what
differentiates a speculative semantics from standard sequential
analysis, and determines what speculation the abstract processor
can perform. For developers, choosing a proper execution model
is a tradeoff: On the one hand, the choice of behaviors their
model allows—i.e., which microarchitectural predictors they
include—determines which Spectre variants their tools can
capture. On the other hand, considering additional kinds of
mispredictions inevitably makes their analysis more complex.

Spectre variants and predictors. Most semantics and tools
in Figure 2 only consider the conditional branch predictor,
and thus only Spectre-PHT attacks. (Mis)predictions from
the conditional branch predictor are constrained—there are
only two possible choices for every decision—so the analysis
remains fairly tractable. Jasmin [7], Binsec/Haunted [20],
Pitchfork [15], and Kaibyo [62] all additionally model store-
to-load (STL) predictions, where a processor forwards data to
a memory load from a prior store to the same address. If there
are multiple pending stores to that address, the processor may
choose the wrong store to forward the data—this is the root
of a Spectre-STL attack. STL predictions are less constrained
than predictions from the conditional branch predictor: In the



Property or tool name Non-interference prop. Precision

Mcilroy et al. [54] ≈NI (J · Kpht
ct ) hyper

oo7 [81] Φspectre ≈NI (J · Kpht
mem) taint1

Φweak
spectre, Φv1.1

spectre ≈NI (J · Kpht
arch)

Cache analysis [30, 83]
NI (J · Kpht

cache)
hyper

[80] taint

Weak memory modeling [18, 21] NI (J · Kpht
mem) hyper

[62] NI (J · Kpht-stl
mem )

[77] NI (J · Kpht
ct ) taint

Speculative constant-time (SCT)2 [7, 20] NI (J · Kpht-stl
ct ) hyper

[15] NI (J · Kpbrs
ct )3 hyper, taint

Speculative non-interference (SNI) [28, 29] NI (J · Kseq
ct ⇒ J · Kpht

— )4 hyper

Robust speculative non-interference (RSNI) [61]
NI (J · Kseq

ct ⇒ J · Kpht
ct )

hyper
Robust speculative safety (RSS) [61] taint

Conditional noninterference [27] NI (J · Kseq
ct ⇒ J · Kpbrs

ct ) hyper

Weak speculative non-interference (wSNI) [29] NI (J · Kseq
arch ⇒ J · Kpht

— )4,5 hyper

Weak robust speculative non-interference (RSNI−) [61]
NI (J · Kseq

arch ⇒ J · Kpht
ct )

hyper
Trace property-dependent observational determinism (TPOD) [17] hyper
Weak robust speculative safety (RSS−) [61] taint

Execution models (Section III-C) Precision of the defined security property

J · Kseq Sequential execution hyper Non-interference hyperproperty, requires two π-equivalent executions
J · Kpht Captures Spectre-PHT taint Sound approximation using taint tracking, requires only one execution
J · Kpht-stl Captures Spectre-PHT/-STL
J · Kpbrs Captures Spectre-PHT/-BTB/-RSB/-STL

Fig. 3. Speculative security properties in prior works and their equivalent non-interference statements. We write ≈NI (· · ·) for unsound approximations of
non-interference properties. 1[81] tracks taint of attacker influence rather than value sensitivity. 2These works all derive their property from the definition given
in [15] and share the same property name despite differences in execution mode. 3The analysis tool of [15], Pitchfork, only verifies the weaker property
NI (J · Kpht-stl

ct ). 4The definitions of SNI and wSNI are parameterized over the target leakage model. 5The definition of wSNI in [29] does not require that the
initial states be π-equivalent.

absence of additional constraints, they allow for a load to draw
data from any prior store to the same address.

Other control-flow mechanisms are significantly more com-
plex: Return instructions and indirect jumps can be spec-
ulatively hijacked to send execution to arbitrary (attacker-
controlled) points in the program.2 An attacker can trivially
hijack a victim program if they can control (mis)prediction of
the RSB (for returns) [45, 51] or BTB (for indirect jumps) [44].
Even without this ability, an attacker can hijack control-
flow if they speculatively overwrite the target address of a
return or jump (e.g., by exploiting a prior PHT mispredic-
tion) [42, 53, 73]. Formally, these attacks still fit within our
non-interference framework—if a program can be arbitrarily
hijacked, then it will be unable to satisfy any non-interference
property. However, to formally verify that this is the case, a
semantics must model these behaviors.

Although capturing all speculative behaviors in a semantics
is possible, the resulting analysis is neither practical nor useful;
in practice, developers need to make tradeoffs. For example,

2Including, on x86-family processors, into the middle of an instruction [9].

the semantics proposed by Cauligi et al. [15] can simulate all of
the aforementioned speculative attacks, but their analysis tool
Pitchfork only detects PHT- and STL-based vulnerabilities. On
the other hand, tools like oo7 (with the “v1.1” pattern) [81] and
SpecTaint [63] conservatively assume that writes to transient
addresses can overwrite anything, and thus immediately flag
this behavior as vulnerable.

The InSpectre semantics [27] proceeds in the opposite
direction—it allows the processor to predict arbitrary values,
even the values of constants. InSpectre also allows more out-of-
order behavior than most other semantics (see Section III-F)—
in particular, it allows the processor to commit writes to
memory out-of-order. As a result, InSpectre is very expressive:
It is capable of describing a wide variety of Spectre variants
both known and unrealized. But, as a result, InSpectre cannot
feasibly be used to verify programs; instead, the authors pose
InSpectre as a framework for reasoning about and analyzing
microarchitectural features themselves.
Speculation windows. Several semantics and tools in Figure 2
limit speculative execution by way of a speculation window.
This models how hardware has finite resources for speculation,



and can only speculate through a certain number of instructions
or branches at a time.

Explicitly modeling a speculation window serves two pur-
poses for detection tools. One, it reduces false positives:
a mispredicted branch will not lead to a speculative leak
thousands of instructions later. Two, it bounds the complexity
of the semantics and thus the analysis. Since the abstract
processor can only speculate up to a certain depth, an analysis
tool need only consider the latest window of instructions
under speculative execution. Some semantics refine this idea
even further: Binsec/Haunted [20], for example, uses different
speculation windows for load-store forwarding than it uses for
branch speculation.

Speculation windows are also valuable for mitigation tools:
although tools like Blade [77] and Jasmin [7] are able to
prove security without reasoning about speculation windows,
modeling a speculation window reduces the number of fences
(or other mitigations) these tools need to insert, improving the
performance of the compiled code.

Eliminating variants. Instead of modeling all speculative
behaviors, compilers and mitigation tools can use clever
techniques to sidestep particularly problematic Spectre variants.
For example, even though Jasmin [7] does not model the RSB,
Jasmin programs do not suffer from Spectre-RSB attacks: The
Jasmin compiler inlines all functions, so there are no returns to
mispredict. Mitigation tools can also disable certain classes of
speculation with hardware flags [33]. After eliminating complex
or otherwise troublesome speculative behavior, a tool need only
consider those that remain.

Cross-address-space attacks. Previous systematizations of
Spectre attacks [13] differentiate between same-address-space
and cross-address-space attacks. Same-address-space attacks
rely on repeatedly causing the victim code to execute in order
to train a microarchitectural predictor. Cross-address-space
attacks are more powerful, as they allow an attacker to perform
the training step on a branch within the attacker’s own code.

Most of the semantics and tools in Figure 2 make no
distinction between same-address-space and cross-address-
space attacks, as they ignore the mechanics of training
and consider all predictions to be potentially malicious. A
notable exception is oo7 [81], which explicitly tracks attacker
influence. Specifically, oo7 only considers mispredictions for
conditional branches which can be influenced by attacker input.
Thus, oo7 effectively models only same-address-space attacks.
Unfortunately, as a result, oo7 misses Spectre vulnerabilities
in real code, as demonstrated by Wang et al. [80].

D. Nondeterminism

Speculative execution is inherently nondeterministic: Any
given branch in a program may proceed either correctly or
incorrectly, regardless of the actual condition value. More
generally, speculative hijack attacks can send execution to
entirely indeterminate locations. All of the semantics in Figure 2
allow these nondeterministic choices to be actively adversarial—
for instance, given by attacker-specified directives [15, 77] or by

consulting an abstract oracle [17, 28, 29, 54]. These semantics
all (conservatively) assume that the attacker has full control of
microarchitectural prediction and scheduling; we explore the
different techniques they use to verify or enforce security in
the face of adversarial nondeterminism.

Exploring nondeterminism. Several Spectre analysis tools
are built on some form of abstract execution: They simulate
speculative execution of the program by tracking ranges or
properties of different values. By checking these properties
throughout the program, these tools determine if sensitive
data can be leaked. Standard tools for (non-speculative)
abstract execution are designed only to consider concrete
execution paths; they must be adapted to handle the many
possible nondeterministic execution paths from speculation.
SpecuSym [30], KLEESpectre [80], and AISE [83] handle this
nondeterminism by following an always-mispredict strategy.
When they encounter a conditional branch, they first explore
the execution path which mispredicts this branch, up to a
given speculation depth. Then, when they exhaust this path,
they return to the correct branch. This technique, though, only
handles the conditional branch predictor; i.e., Spectre-PHT
attacks. Pitchfork [15] and Binsec/Haunted [20] adapt the
always-mispredict strategy to account for out-of-order exe-
cution and Spectre-STL. Although it may not be immediately
clear that always-mispredict strategies are sufficient to prove
security—especially when the attacker can make any number of
antagonistic choices—these strategies do indeed form a sound
analysis [15, 20, 28].

Unfortunately, simulating execution only works for semantics
where nondeterminism is relatively constrained: Conditional
branches are a simple boolean choice, and store-to-load
predictions are limited by the speculation window. If we pursue
other Spectre variants, we will quickly become overwhelmed—
again, an unconstrained hijack gadget can redirect control to
almost anywhere in a program. The always-mispredict strategy
here is nonsensical at best; abstract execution is thus necessarily
limited in what it can soundly explore.

Abstracting out nondeterminism. Mitigation tools have more
flexibility dealing with nondeterminism: Tools like Blade [77]
and oo7 [81] apply dataflow analysis to determine which values
may be leaked along any path, instead of reasoning about
each path individually. Then, these tools insert speculation
barriers to preemptively block potential leaks of sensitive
data. This style of analysis comes at the cost of some
precision: Blade, for example, conservatively treats all memory
accesses as if they may speculatively load sensitive values,
as its analysis cannot reason about the contents of memory.
Similarly, oo7’s “v1.1” pattern detection conservatively flags
all (attacker-controlled) transient stores, as they may lead to
speculative hijack. However, Blade and oo7—and mitigation
tools in general—can afford to be less precise than verification
or detection tools; these, conversely, must maintain higher
precision to avoid floods of false positives.

Restricting nondeterminism. Compilers such as Swivel [59],
Venkman [72], and ELFbac [39] restructure programs entirely,



imposing their own restricted set of speculative behavior at
the software layer. ELFbac allocates sensitive data in separate
memory regions and uses page permission bits to disallow
untrusted code from accessing these regions—regardless of how
a program may misspeculate, it will not be able to read (and
thus cannot leak) sensitive data. Swivel and Venkman compile
code into carefully aligned blocks so that control flow always
land at the tops of protected code blocks, even speculatively;
Swivel accomplishes this by clearing the BTB state after
untrusted execution, while Venkman recompiles all programs
on the system to mask addresses before jumping. Both systems
also enforce speculative control-flow integrity (CFI) checks to
prevent speculative hijacking, whether by relying on hardware
features [37] or by implementing custom CFI checks with
branchless assembly instructions. Developers that use these
compilers can then reason about their programs much more
simply, as the set of speculative behaviors is restricted enough to
make the analysis tractable. Of the techniques discussed in this
section, this line of work seems the most promising: It produces
mitigation tools with strong security guarantees, without relying
on an abundance of speculation barriers (as often results from
dataflow analysis) or resorting to heavyweight simulation (e.g.,
symbolic execution).

Open problems: Rigorous performance comparison. To the
best of our knowledge, no work has rigorously compared the
performance of all the tools in Figure 2. Perhaps the most
complete comparison is by Daniel et al. [20], who compare the
detection tools KLEESpectre, Pitchfork, and Binsec/Haunted
in terms of the analysis time required to detect known
violations in a few chosen targets. A general and objective
performance comparison is difficult, if not impossible: The tools
in Figure 2 operate on different types of programs (general-
purpose, cryptographic, sandboxing) and different languages
(x86, LLVM, WebAssembly). They also provide different
security guarantees, as we discuss above. An intermediate step
towards an expanded performance comparison, which would be
a valuable contribution on its own, would be to develop a larger
corpus of known attacks on realistic (medium-to-large-size)
programs. This corpus would help evaluate both the security
and performance of existing or newly-proposed tools.

E. Higher-level abstractions

Spectre attacks—and speculative execution—fundamentally
break our intuitive assumptions about how programs should
execute. Higher-level guarantees about programs no longer
apply: Type systems or module systems are meaningless when
even basic control flow can go awry. In order to rebuild higher-
level security guarantees, we first need to repair our model
of how programs execute, starting from low-level semantics.
Once these foundations are firmly in place, only then can we
rebuild higher-level abstractions.

Semantics for assembly or IRs. The majority of formal
semantics in Figure 2 operate on abstract assembly-like
languages, with commands that map to simple architectural
instructions. Semantics at this level implement control flow

directly in terms of jumps to program points—usually in-
dices into memory or an array of program instructions—and
treat memory as largely unstructured. Since these low-level
semantics closely correspond to the behavior of real hardware,
they capture speculative behaviors in a straightforward manner,
and provide a foundational model for higher-level reasoning.
Similarly, many concrete analysis tools for constant-time or
Spectre operate directly on binaries or compiler intermediate
representations (IRs) [15, 19, 20, 28, 80]. These tools operate
at this lowest level so that their analysis will be valid for
the program unaltered—compiler optimizations for higher-
level languages can end up transforming programs in insecure
ways [8, 19, 20]. As a result however, these tools necessarily
lose access to higher-level information such as control flow
structure or how variables are mapped in memory.

Semantics for structured languages. The semantics proposed
by Jasmin [7], Patrignani and Guarnieri [61], and Blade [77]
build on top of these lower-level ideas to describe what we term
“medium-level” languages—those with structured control flow
and memory, e.g., explicit loops and arrays. For these medium-
level semantics, it is less straightforward to express speculative
behavior: For instance, instead of modeling speculation directly,
Vassena et al. [77] first translate programs in their source
language to lower-level commands, then apply speculative
execution at that lower level.

In exchange, the structure in a medium-level semantics lends
itself well to program analysis. For example, Vassena et al. are
able to use a simple type system to prove security properties
about a program. Barthe et al. [7] also take advantage of
structured semantics: They prove that if a sequentially constant-
time program is speculatively (memory) safe—i.e., all memory
operations are in-bounds array accesses—then the program is
also speculatively constant-time. Since their source semantics
only accesses memory through array operations, they can
statically verify whether a program is speculatively safe—and
thus speculatively secure. An interesting question for future
work is whether their concept of speculative (memory) safety
combines with other sequential security properties to give
corresponding guarantees, such as for sandboxing, information
flow, or rich type systems.

Weak-memory-style semantics. Weak-memory-style semantics
present a fundamentally different approach, lifting the concept
of speculative execution directly to a higher level. As these
models are abstracted away from microarchitectural details, they
are well-suited for analyzing Spectre variants in terms of data
flow: Indeed, both Colvin and Winter [18] and Disselkoen et
al. [21] treat Spectre-PHT as a constrained form of instruction
reordering, while Ponce de León and Kinder [62] analyze
dependency relations between instructions.

However, it remains challenging to translate a flexible
semantics of this style into a concrete analysis tool: Of the
three works discussed here, only Ponce de León and Kinder
present a tool which can automatically perform a security



analysis of a target program,3 though even they admit that it is
slower than comparative tools based on operational semantics.
That said, this high-level approach to speculative semantics is
certainly underexplored compared to the larger body of work
on operational semantics, and is worthy of further investigation.
Compiler mitigations. With adequate foundations in place,
one avenue to regaining higher-level abstractions is to modify
compilers of higher-level languages to produce speculatively
secure low-level programs. Many compilers already include op-
tions to conservatively insert speculation barriers or hardening
into programs, which (when done properly) provides strong
security guarantees. Although some such hardening passes have
been verified [61], they are overly conservative and incur a
significant performance cost. Other compiler mitigations been
shown unsound [60]—or worse, even introduce new Spectre
vulnerabilities [20]—further reinforcing that these techniques
must be grounded in a formal semantics.
Open problems: Formalization of new compilation techniques.
Swivel [59], Venkman [72], and ELFbac [39] show how the
structure of code itself can provide security guarantees at a
reduced performance cost. For instance, both Venkman and
Swivel demonstrate that organizing instructions into bundles
or linear blocks (respectively) can mitigate speculative hijacks,
making these transient attacks tractable to analyze and prevent.
However, none of these compiler-based approaches are yet
grounded in a formal semantics. Formalizing these systems
would increase our confidence in the strong guarantees they
claim to provide.
Open problems: New languages. Another promising approach
is to design new languages which are inherently safe from
Spectre attacks. Prior work has produced secure languages
like FaCT [16], which is (sequentially) constant-time by
construction. An extension of FaCT, or a new language built
on its ideas, could prevent Spectre attacks as well. Vassena
et al. [77] have already taken a first step in this direction:
They construct a simple while-language which is guaranteed
safe from Spectre-PHT attacks when compiled with their
fence insertion algorithm. It would be valuable to extend
this further, both to more realistic (higher-level) languages,
and to more Spectre variants. The key question is whether
dedicated language support can provide a path to secure code
that outperforms the de-facto approach—that is, compiling
standard C code and inserting Spectre mitigations.

F. Expressivity and microarchitectural features

One theme of this paper is that a good (practical) semantics
needs to have an appropriate amount of expressivity: On one
hand, we want a semantics which is expressive—able to model
a wide range of possible behaviors (e.g., Spectre variants).
This allows us to model powerful attackers. On the other
hand, a semantics which allows too many possible behaviors
makes many analyses intractable. Indeed, a fundamental
purpose of semantics is to provide a reasonable abstraction or

3Colvin and Winter do present a tool, but it is only used to mechanically
explore manually translated programs.

simplification of hardware to ease analysis; a semantics which
is too expressive simply punts this problem to the analysis
writer. Thus, choosing how much expressivity to include in a
semantics represents an interesting tradeoff.

By far the most important choice for the expressivity
of a semantics is which misprediction behaviors to allow—
i.e., which Spectre variants to reason about (discussed in
Section III-C). But beyond speculative execution itself, there
are many other microarchitectural features which are relevant
for a security analysis, and which have been—or could be—
modeled in a speculative semantics. These features also affect
the expressivity of the semantics, which means that choosing
whether to include them results in similar tradeoffs.

Out-of-order execution. Many speculative semantics simulate
a processor feature called out-of-order execution: They allow
instructions to be executed in any order, as long as those
instructions’ dependencies (operands) are ready. Out-of-order
execution is mostly orthogonal to speculative execution; in
fact, out-of-order execution is not required to model Spectre-
PHT, -BTB, or -RSB—speculative execution alone is sufficient.
However, out-of-order execution is included in most modern
processors, and for that reason,4 many speculative semantics
also model it. Modeling out-of-order execution may provide
an easier or more elegant way to express a variety of Spectre
attacks, as opposed to modeling speculative execution alone.
Furthermore, Disselkoen et al. [21] and Guanciale et al. [27]
demonstrate how to abuse out-of-order execution to conduct
(at least theoretical) novel side-channel attacks.5

Although modeling out-of-order execution might make
a semantics simpler, the additional expressivity makes the
resulting analysis more complex. Fully modeling out-of-order
execution leads to an explosion in the number of possible
executions of a program; naively incorporating out-of-order
execution into a detection or mitigation tool results in an
intractable analysis. Indeed, while Guarnieri et al. [29] and
Colvin and Winter [18] present analysis tools based on their
respective out-of-order semantics, they only analyze very simple
Spectre gadgets and not code used in real programs. Instead,
for analysis tools based on out-of-order semantics to scale
to real programs, developers need to use lemmas to reduce
the number of possibilities the analysis needs to consider. As
one example, Pitchfork [15] operates on a set of “worst-case
schedules” which represent a small subset of all possible out-
of-order schedules—the developers formally show that this
reduction does not affect the soundness of Pitchfork’s analysis.

Caches and TLBs. Some speculative semantics and tools [30,
54, 80, 83] include abstract models of caches, tracking which
addresses may be in the cache at a given time. One could
imagine also including detailed models of TLBs. As discussed
in Section III-A, modeling caches or TLBs is probably not
helpful, at least for mitigation or verification tools—not only

4Or perhaps, because out-of-order execution is often discussed alongside
(or even confused with) speculative execution.

5Disselkoen et al. [21] propose to abuse compile-time instruction reordering,
which is different from microarchitectural out-of-order execution, but related.



does it make the semantics more complicated, but it potentially
leads to non-portable guarantees. In particular, including a
model of the cache usually leads to the J · Kcache leakage model,
rather than the J · Kct or J · Karch leakage models which provide
stronger defensive guarantees. Following in the tradition of
constant-time programming in the non-speculative world, it
seems wiser for our analyses and mitigations to be based on
microarchitecture-agnostic principles as much as possible, and
not depend on details of the cache or TLB structure.

Other leakage channels. There are a variety of specific microar-
chitectural mechanisms which can result in leakages beyond
the ones we directly focus on in this paper. For instance, in the
presence of multithreading, port contention in the processor’s
execution units can reveal sensitive information [10]; and many
processor instructions, e.g., floating-point or SIMD instructions,
can reveal information about their operands through timing
side channels [4]. Most existing semantics do not model
these specific effects. However, the commonly-used J · Kct
and J · Karch leakage models are already strong enough to
capture leakages from most of these sources: For instance,
port contention can only reveal sensitive data if the sensitive
data influenced which instructions are being executed—and
the J · Kct leakage model already considers the sensitive data
to be leaked once it influences control flow. For variable-
time instructions, most definitions of J · Kct do not capture this
leakage—but extending those definitions is straightforward [2].
In both of these examples, the J · Karch leakage model captures
all leaks, as it (even more conservatively) already considers the
sensitive data as leaked once it reaches a register—long before
the data can influence control-flow or be used in an instruction.
Although modeling any of these effects more precisely can
increase the precision with which an analysis detects potential
vulnerabilities, the tradeoff in analysis complexity is probably
not worth it, and for mitigation and verification tools, the
J · Kct and J · Karch leakage models provide stronger and more
generalizable guarantees.

In a similar vein, most semantics and tools do not explicitly
model parallelism or concurrency: They reason only about
single-threaded programs and processors. Instead, they abstract
away these details by giving attackers broad powers in their
models—e.g., complete power over all microarchitectural
predictions, and the capability to observe the full cache state
after every execution step. The notable exceptions are the weak-
memory-style semantics [18, 21, 62]—multiple threads are an
inherent feature for this style, making them a promising vehicle
for further exploring the interaction between speculation and
concurrency.

Open problems: Process isolation. In practice, a common
response to Spectre attacks has been to move all secret data
into a separate process—e.g., Chrome isolates different sites in
separate processes [64]. This shifts the burden from application
and runtime system engineers to OS engineers. Developing
Spectre foundations to model the process abstraction will
elucidate the security guarantees of such systems. This is
especially useful, as the process boundary does not keep

an attacker from performing out-of-place training of the
conditional branch predictor, nor from leaking secrets via the
cache state [13].

IV. RELATED WORK

Both in industry and in academia, there has been a lot
of interest in Spectre and other transient execution attacks.
We discuss other systematization papers that address Spectre
attacks and defenses, and we briefly survey related work which
otherwise falls outside the scope of this paper.

A. Systematization of Spectre attacks and defenses

Canella et al. [13] present a comprehensive systematization
and analysis of Spectre and Meltdown attacks and defenses.
They first classify transient execution attacks by whether they
are a result of misprediction (Spectre) or an execution fault
(Meltdown); and further classify the attacks by their root
microarchitectural cause, yielding the nomenclature we use in
this paper (e.g., Spectre-PHT is named for the Pattern History
Table). They then categorize previously known Spectre attacks,
revealing several new variants and exploitation techniques.
Canella et al. also propose a sequence of “phases” for a
successful Spectre or Meltdown attack, and group published
defenses by the phase they target. A followup survey by Canella
et al. [12] expands on the idea of attack phases, categorizing
both hardware and software Spectre defenses according to
which attack phase they prevent: Preparation, misspeculation,
data access, data encoding, leakage, or decoding. Separately,
Xiong et al. [85] also survey transient execution attacks, with a
specific focus on the mechanics of exploits for these attacks. In
contrast, our systematization focuses on the formal semantics
behind Spectre analysis and mitigation tools rather than the
specifics of attack variants or types of defenses.

B. Hardware-based Spectre defenses

In this paper, we focus only on software-based techniques
for existing hardware. The research community has also
proposed several hardware-based Spectre defenses based on
cache partitioning [41], cleaning up the cache state after
misprediction [67], or making the cache invisible to speculation
by incorporating some separate internal state [1, 40, 86].
Unfortunately, attackers can still use side channels other than
the cache to exploit speculative execution [10, 70]. NDA [82],
DOLMA [49], and Speculative Taint Tracking (STT) [87]
block additional speculative covert channels by analyzing and
classifying instructions that can leak information.

Fadiheh et al. [22] define a property for hardware execution
that they term UPEC: A hardware that satisfies UPEC will
not leak speculatively anything more than it would leak
sequentially. In other words, UPEC is equivalent to the relative
non-interference property NI (π, J · Kseq

arch ⇒ J · Kpht
arch).

The insights and recommendations from our work can guide
future hardware mitigations; properties like J · Kct or J · Karch can
serve as contracts of what software expects from hardware [29].



C. Software-hardware co-design

Although hardware-only approaches are promising for future
designs, they require significant modifications and introduce
non-negligible performance overhead for all workloads. Several
works instead propose a software-hardware co-design approach.
Taram et al. [74] propose context-sensitive fencing, making
various speculative barriers available to software. Li et al. [47]
propose memory instructions with a conditional speculation flag.
Context [68] and SpectreGuard [24] allow software to mark
secrets in memory. This information is propagated through the
microarchitecture to block speculative access to the marked
regions. SpecCFI [46] suggests a hardware extension similar
to Intel CET [37] that provides target label instructions with
speculative guarantees. Finally, several recent proposals allow
partitioning branch predictors based on context provided by the
software [78, 89]. As these approaches require both software
and hardware changes, should develop a formal semantics to
apply them correctly.

D. Other transient execution attacks

We focus exclusively on Spectre, as other transient execution
attacks are better addressed in hardware. For completeness, we
briefly discuss these other attacks.

Meltdown variants. The Meltdown attack [48] bypasses implicit
memory permission checks within the CPU during transient
execution. Unlike Spectre, Meltdown does not rely on executing
instructions in the victim domain, so it cannot be mitigated
purely by changes to the victim’s code. Foreshadow [75] and
microarchitectural data sampling (MDS) [11, 34] demonstrate
that transient faults and microcode assists can still leak data
from other security domains, even on CPUs that are resistant
to Meltdown. Researchers have extensively evaluated these
Meltdown-style attacks leading to new vulnerabilities [56, 57,
69], but most recent Intel CPUs have hardware-level mitigations
for all these vulnerabilities in the form of microcode patches
or proprietary hardware fixes [36].

Load value injection. Load value injection (LVI) [76] exploits
the same root cause as Meltdown, Foreshadow, and MDS, but
reverses these attacks: The attacker induces the transient fault
into the victim domain instead of crafting arbitrary gadgets
in their own code space. This inverse effect is subject to an
exploitation technique similar to Spectre-BTB for transiently
hijacking control flow. Although there are software-based
mitigations proposed against LVI [35, 76], Intel only suggests
applying them to legacy enclave software. Like Meltdown, LVI
does not need software-based mitigation on recent Intel CPUs.

V. CONCLUSION

Spectre attacks break the abstractions afforded to us by
conventional execution models, fundamentally changing how
we must reason about security. We systematize the community’s
work towards rebuilding foundations for formal analysis atop
the loose earth of speculative execution, evaluating current
efforts in a shared formal framework and pointing out open
areas for future work in this field.

We find that, as with previous work in the sequential
domain, solid foundations for speculative analyses require
proper choices for semantics and attacker models. Most
importantly, developers must consider leakage models no
weaker than J · Karch or J · Kct. Weaker models—those that only
capture leaks via memory or the data cache—lead to weaker
security guarantees with no clear benefit. Next, though many
frameworks focus on Spectre-PHT, sound tools must consider
all Spectre variants. Although this increases the complexity
of analysis, developers can combine analyses with structured
compilation techniques to restrict or remove entire categories
of Spectre attacks by construction. Finally, we recommend
against modeling unnecessary (micro)architectural details in
favor of the simpler J · Karch and J · Kct models; details like
cache structures or port contention introduce complexity and
reduce portability.

When properly rooted in formal guarantees, software Spectre
defenses provide a firm foundation on which to rebuild
secure systems. We intend this systematization to serve as
a reference and guide for those seeking to build or employ
formal frameworks and to develop sound Spectre defenses with
strong, precise security guarantees.
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J. Renner, B. Grégoire, G. Barthe, R. Jhala, and D. Stefan. FaCT:
a DSL for timing-sensitive computation. In PLDI, 2019.

[17] K. Cheang, C. Rasmussen, S. Seshia, and P. Subramanyan. A
formal approach to secure speculation. In CSF, 2019.

[18] R. J. Colvin and K. Winter. An abstract semantics of speculative
execution for reasoning about security vulnerabilities. In FM,
2019.

[19] L.-A. Daniel, S. Bardin, and T. Rezk. Binsec/Rel: Efficient
relational symbolic execution for constant-time at binary-level.
In IEEE S&P, 2020.

[20] L.-A. Daniel, S. Bardin, and T. Rezk. Hunting the haunter —
efficient relational symbolic execution for Spectre with Haunted
RelSE. In NDSS, 2021.

[21] C. Disselkoen, R. Jagadeesan, A. Jeffrey, and J. Riely. The code
that never ran: Modeling attacks on speculative evaluation. In
IEEE S&P, 2019.

[22] M. R. Fadiheh, J. Müller, R. Brinkmann, S. Mitra, D. Stoffel,
and W. Kunz. A formal approach for detecting vulnerabilities to
transient execution attacks in out-of-order processors. In DAC,
2020.

[23] M. Fleming. A thorough introduction to eBPF. Linux Weekly
News, 2017.

[24] J. Fustos, F. Farshchi, and H. Yun. SpectreGuard: An efficient
data-centric defense mechanism against Spectre attacks. In DAC,
2019.

[25] J. L. Gischer. The equational theory of pomsets. Theoretical
Computer Science, 1988.
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[29] M. Guarnieri, B. Köpf, J. Reineke, and P. Vila. Hardware-
software contracts for secure speculation. In IEEE S&P, 2021.

[30] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo.
SpecuSym: Speculative symbolic execution for cache timing
leak detection. In ICSE, 2020.

[31] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,

D. Gohman, L. Wagner, A. Zakai, and J. Bastien. Bringing the
web up to speed with WebAssembly. In PLDI, 2017.

[32] J. Horn. Speculative execution, variant 4: speculative store
bypass, 2018.

[33] Intel. Speculative store bypass / CVE-2018-3639 / INTEL-SA-
00115. https://software.intel.com/security-software-guidance/
software-guidance/speculative-store-bypass, 2018.

[34] Intel. Deep dive: Intel analysis of microarchitectural data
sampling, 2019.

[35] Intel. An Optimized Mitigation Approach for Load Value Injec-
tion. https://software.intel.com/security-software-guidance/best-
practices/optimized-mitigation-approach-load-value-injection,
2020.

[36] Intel. Side channel mitigation by product CPU
model. https://software.intel.com/security-software-
guidance/processors-affected-transient-execution-attack-
mitigation-product-cpu-model, 2020.

[37] Intel 64 and IA-32 architectures software developer’s manual,
2021.

[38] M. H. Islam Chowdhuryy, H. Liu, and F. Yao. BranchSpec: infor-
mation leakage attacks exploiting speculative branch instruction
executions. In ICCD, 2020.

[39] I. R. Jenkins, P. Anantharaman, R. Shapiro, J. P. Brady, S. Bratus,
and S. W. Smith. Ghostbusting: Mitigating Spectre with
intraprocess memory isolation. In HotSos, 2020.

[40] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin,
D. Ponomarev, and N. Abu-Ghazaleh. Safespec: Banishing the
Spectre of a Meltdown with leakage-free speculation. In DAC,
2019.

[41] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and
J. Emer. DAWG: A defense against cache timing attacks in
speculative execution processors. In MICRO, 2018.

[42] V. Kiriansky and C. Waldspurger. Speculative Buffer Overflows:
Attacks and Defenses. arXiv:1807.03757, 2018.

[43] O. Kirzner and A. Morrison. An analysis of speculative type
confusion vulnerabilities in the wild. In USENIX SEC, 2021.

[44] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom. Spectre attacks: Exploiting speculative execution.
In IEEE S&P, 2019.

[45] E. M. Koruyeh, K. Khasawneh, C. Song, and N. Abu-Ghazaleh.
Spectre returns! Speculation attacks using the return stack buffer.
In WOOT, 2018.

[46] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song,
and N. Abu-Ghazaleh. SPECCFI: Mitigating Spectre attacks
using CFI informed speculation. In IEEE S&P, 2020.

[47] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng. Conditional
speculation: An effective approach to safeguard out-of-order
execution against Spectre attacks. In HPCA, 2019.

[48] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg. Meltdown: Reading kernel memory from user
space. In USENIX SEC, 2018.

[49] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy,
and B. Kasikci. DOLMA: Securing speculation with the principle
of transient non-observability. In USENIX SEC, 2021.

[50] S. Maffeis, J. C. Mitchell, and A. Taly. Object capabilities and
isolation of untrusted web applications. In IEEE S&P, 2010.

[51] G. Maisuradze and C. Rossow. ret2spec: Speculative execution
using return stack buffers. In CCS, 2018.

[52] A. Mambretti, M. Neugschwandtner, A. Sorniotti, E. Kirda,
W. Robertson, and A. Kurmus. Speculator: a tool to analyze
speculative execution attacks and mitigations. In ACSAC, 2019.

[53] A. Mambretti, A. Sandulescu, A. Sorniotti, W. Robertson,
E. Kirda, and A. Kurmus. Bypassing memory safety mechanisms
through speculative control flow hijacks. In EuroS&P, 2021.

[54] R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and T. Verwaest.



Spectre is here to stay: An analysis of side-channels and
speculative execution. arXiv:1902.05178, 2019.

[55] Microsoft. Spectre mitigations in MSVC. https://devblogs.
microsoft.com/cppblog/spectre-mitigations-in-msvc/, 2018.

[56] D. Moghimi. Data sampling on MDS-resistant 10th Generation
Intel Core (Ice Lake). arXiv:2007.07428, 2020.

[57] D. Moghimi, M. Lipp, B. Sunar, and M. Schwarz. Medusa:
Microarchitectural data leakage via automated attack synthesis.
In USENIX SEC, 2020.

[58] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan.
RockSalt: better, faster, stronger SFI for the x86. In PLDI, 2012.

[59] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson,
Z. Gang, A. Vahldiek-Oberwagner, R. Sahita, H. Shacham,
D. Tullsen, and D. Stefan. Swivel: Hardening WebAssembly
against Spectre. In USENIX SEC, 2021.

[60] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer. SpecFuzz:
Bringing Spectre-type vulnerabilities to the surface. In USENIX
SEC, 2020.

[61] M. Patrignani and M. Guarnieri. Exorcising Spectres with secure
compilers. In CCS, 2021.

[62] H. Ponce de León and J. Kinder. Cats vs. Spectre: An axiomatic
approach to modeling speculative execution attacks. In IEEE
S&P, 2022.

[63] Z. Qi, Q. Feng, Y. Cheng, M. Yan, P. Li, H. Yin, and T. Wei.
SpecTaint: Speculative taint analysis for discovering Spectre
gadgets. In NDSS, 2021.

[64] C. Reis, A. Moshchuk, and N. Oskov. Site isolation: Process
separation for web sites within the browser. In USENIX SEC,
2019.

[65] X. Ren, L. Moody, M. Taram, M. Jordan, D. M. Tullsen, and
A. Venkat. I see dead µops: Leaking secrets via Intel/AMD
micro-op caches. In ISCA, 2021.

[66] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. Journal on Selected Areas in Communications, 21(1),
2003.

[67] G. Saileshwar and M. K. Qureshi. CleanupSpec: An “undo”
approach to safe speculation. In MICRO, 2019.

[68] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and
D. Gruss. ConTExT: A generic approach for mitigating Spectre.
In NDSS, 2020.

[69] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss. ZombieLoad: Cross-privilege-
boundary data sampling. In CCS, 2019.

[70] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss.
NetSpectre: Read arbitrary memory over network. In European
Symposium on Research in Computer Security, 2019.

[71] M. Schwarzl, C. Canella, D. Gruss, and M. Schwarz. Specfus-
cator: Evaluating branch removal as a Spectre mitigation. In
FC, 2021.

[72] Z. Shen, J. Zhou, D. Ojha, and J. Criswell. Restricting
control flow during speculative execution with Venkman.
arXiv:1903.10651, 2019.

[73] M. Sternberger. Spectre-ng: An avalanche of attacks. In Wies-
baden Workshop on Advanced Microkernel Operating Systems
(WAMOS), 2018.

[74] M. Taram, A. Venkat, and D. Tullsen. Context-sensitive fencing:
Securing speculative execution via microcode customization. In
ASPLOS, 2019.

[75] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx. Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution. In USENIX SEC,
2018.

[76] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens. LVI:
Hijacking transient execution through microarchitectural load
value injection. In IEEE S&P, 2020.

[77] M. Vassena, C. Disselkoen, K. V. Gleissenthall, S. Cauligi,
R. G. Kici, R. Jhala, D. Tullsen, and D. Stefan. Automatically
eliminating speculative leaks from cryptographic code with Blade.
In POPL, 2021.

[78] I. Vougioukas, N. Nikoleris, A. Sandberg, S. Diestelhorst, B. M.
Al-Hashimi, and G. V. Merrett. BRB: Mitigating branch predictor
side-channels. In HPCA, 2019.

[79] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In SOSP, 1993.

[80] G. Wang, S. Chattopadhyay, A. K. Biswas, T. Mitra, and
A. Roychoudhury. KLEESpectre: Detecting information leakage
through speculative cache attacks via symbolic execution. ACM
TOSEM, 2020.

[81] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and
A. Roychoudhury. oo7: Low-overhead defense against Spectre
attacks via program analysis. IEEE Transactions on Software
Engineering, 2019.

[82] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci.
NDA: Preventing speculative execution attacks at their source.
In MICRO, 2019.

[83] M. Wu and C. Wang. Abstract interpretation under speculative
execution. In PLDI, 2019.

[84] Y. Wu, S. Sathyanarayan, R. H. Yap, and Z. Liang. Codejail:
Application-transparent isolation of libraries with tight program
interactions. In European Symposium on Research in Computer
Security, 2012.

[85] W. Xiong and J. Szefer. Survey of transient execution attacks
and their mitigations. ACM Computing Surveys, 2021.

[86] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and
J. Torrellas. Invisispec: Making speculative execution invisible
in the cache hierarchy. In MICRO, 2018.

[87] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher. Speculative taint tracking (STT): A comprehensive
protection for speculatively accessed data. In MICRO, 2019.

[88] T. Zhang, K. Koltermann, and D. Evtyushkin. Exploring
branch predictors for constructing transient execution trojans. In
ASPLOS, 2020.

[89] L. Zhao, P. Li, R. Hou, J. Li, M. C. Huang, L. Zhang, X. Qian,
and D. Meng. A lightweight isolation mechanism for secure
branch predictors. In DAC, 2021.


