A Library for Removing Cache-Based Attacks
in Concurrent Information Flow Systems

Pablo Buiras' ™) Amit Levy?, Deian Stefan?,
Alejandro Russo', and David Mazieres?

! Chalmers University of Technology, Goteborg, Sweden
buiras@chalmers.se
2 Stanford University, Stanford, USA

Abstract. Information-flow control (IFC) is a security mechanism con-
ceived to allow untrusted code to manipulate sensitive data without com-
promising confidentiality. Unfortunately, untrusted code might exploit
some covert channels in order to reveal information. In this paper, we
focus on the LIO concurrent IFC system. By leveraging the effects of
hardware caches (e.g., the CPU cache), LIO is susceptible to attacks that
leak information through the internal timing covert channel. We present
a resumption-based approach to address such attacks. Resumptions pro-
vide fine-grained control over the interleaving of thread computations at
the library level. Specifically, we remove cache-based attacks by enforc-
ing that every thread yield after executing an “instruction,” i.e., atomic
action. Importantly, our library allows for porting the full LIO library—
our resumption approach handles local state and exceptions, both fea-
tures present in LIO. To amend for performance degradations due to the
library-level thread scheduling, we provide two novel primitives. First,
we supply a primitive for securely executing pure code in parallel. Sec-
ond, we provide developers a primitive for controlling the granularity of
“instructions”; this allows developers to adjust the frequency of context
switching to suit application demands.

1 Introduction

Popular website platforms, such as Facebook, run third-party applications (apps)
to enhance the user experience. Unfortunately, in most of today’s platforms,
once an app is installed it is usually granted full or partial access to the user’s
sensitive data—the users have no guarantees that their data is not arbitrarily
ex-filtrated once apps are granted access to it [18]. As demonstrated by Hails [9],
information-flow control (IFC) addresses many of these limitations by restrict-
ing how sensitive data is disseminated. While promising, IFC systems are not
impervious to attacks; the presence of covert channels allows attackers to leak
sensitive information.

Covert channels are mediums not intended for communication, which never-
theless can be used to carry and, thus, reveal information [19]. In this work, we
focus on the internal timing covert channel [33]. This channel emanates from the

M. Abadi and A. Lluch Lafuente (Eds.): TGC 2013, LNCS 8358, pp. 199-216, 2014.
DOI: 10.1007/978-3-319-05119-2_12, (© Springer International Publishing Switzerland 2014

200 P. Buiras et al.

mere presence of concurrency and shared resources. A system is said to have an
internal timing covert channel when an attacker, as to reveal sensitive data, can
alter the order of public events by affecting the timing behavior of threads. To
avoid such attacks, several authors propose decoupling computations manipulat-
ing sensitive data from those writing into public resources (e.g., [4,5,27,30,35]).

Decoupling computations by security levels only works when all shared
resources are modeled. Similar to most IFC systems, the concurrent IFC sys-
tem LIO [35] only models shared resources at the programming language level
and does not explicitly consider the effects of hardware. As shown in [37], LIO
threads can exploit the underlying CPU cache to leak information through the
internal timing covert channel.

We propose using resumptions to model interleaved computations. (We refer
the interested reader to [10] for an excellent survey of resumptions.) A resump-
tion is either a (computed) value or an atomic action which, when executed,
returns a new resumption. By expressing thread computations as a series of
resumptions, we can leverage resumptions for controlling concurrency. Specifi-
cally, we can interleave atomic actions, or “instructions,” from different threads,
effectively forcing each thread to yield at deterministic points. This ensures that
scheduling is not influenced by underlying caches and thus cannot be used to leak
secret data. We address the attacks on the recent version of LIO [35] by imple-
menting a Haskell library which ports the LIO API to use resumptions. Since
LIO threads possess local state and handle exceptions, we extend resumptions
to account for these features.

In principle, it is possible to force deterministic interleaving by means
other than resumptions; in [37] we show an instruction-based scheduler that
achieves this goal. However, Haskell’s monad abstraction allows us to easily
model resumptions as a library. This has two consequences. First, and differ-
ent from [37], it allows us to deploy a version of LIO that does not rely on
changes to the Haskell compiler. Importantly, LIO’s concurrency primitives can
be modularly redefined, with little effort, to operate on resumptions. Second, by
effectively implementing “instruction based-scheduling” at the level of library
primitives, we can address cache attacks not covered by the approach described
in [37] (see Sect.5).

In practice, a library-level interleaved model of computations imposes perfor-
mance penalties. With this in mind, we provide primitives that allow developers
to execute code in parallel, and means for securely controlling the granularity of
atomic actions (which directly affects performance).

Although our approach addresses internal timing attacks in the presence
of shared hardware, the library suffers from leaks that exploit the termination
channel, i.e., programs can leak information by not terminating. However, this
channel can only be exploited by brute-force attacks that leak data external to
the program—an attacker cannot leak data within the program, as can be done
with the internal timing covert channel.

A Library for Removing Cache-Based Attacks 201

fillCache(lowArray)

Thread A

Y
| fillCache(highArray) |

| accessArray(lowArray) |

Thread B Thread C

Fig. 1. Cache attack

2 Cache Attacks on Concurrent IFC Systems

Figure1l shows an attack that leverages the timing effects of the underlying
cache in order to leak information through the internal timing covert channel.
In isolation, all three threads are secure. However, when executed concurrently,
threads B and C race to write to a public, shared variable 1. Importantly, the
race outcome depends on the state of the secret variable h, by changing the
contents of underlying CPU cache according to its value (e.g., by creating and
traversing a large array as to fill the cache with new data).

The attack proceeds as follows. First, thread A fills the cache with the con-
tents of a public array lowArray. Then, depending on the secret variable h, it
evicts data from the cache (by filling it with arbitrary data) or leaves it intact.
Concurrently, public threads B and C delay execution long enough for A to fin-
ish. Subsequently, thread B accesses elements of the public array lowArray, and
writes 0 to public variable 1; if the array has been evicted from the cache (h==0),
the amount of time it takes to perform the read, and thus the write to 1, will
be much longer than if the array is still in the cache. Hence, to leak the value
of h, thread C simply needs to delay writing 1 to 1 long enough so that it is
above the case where the cache is full (with the public array), but shorter than
it take to refill the cache with the (public) array. Observing the contents of 1,
the attacker directly learns the value of h.

202 P. Buiras et al.

This simple attack has previously been demonstrated in [37], where con-
fidential data from the GitStar system [9], build atop LIO, was leaked. Such
attacks are not limited to LIO or IFC systems; cache-based attacks against
many system, including cryptographic primitives (e.g., RSA and AES), are well
known [1,23,26,40].

The next section details the use of resumptions in modeling concurrency at
the programming language level by defining atomic steps, which are used as
the thread scheduling quantum unit. By scheduling threads according to the
number of executed atoms, the attack in Fig. 1 is eliminated. As in [37], this is
the case because an atomic step runs till completion, regardless of the state of
the cache. Hence, the timing behavior of thread B, which was previously leaked
to thread C by the time of preemption, is no longer disclosed. Specifically, the
scheduling of thread C’s 1:=1 does not depend on the time it takes thread B to
read the public array from the cache; rather it depends on the atomic actions,
which do not depend on the cache state. In addition, our use of resumptions
also eliminates attacks that exploit other timing perturbations produced by the
underlying hardware, e.g., TLB misses, CPU bus contention, etc.

3 Modeling Concurrency with Resumptions

In pure functional languages, computations with side-effects are encoded as val-
ues of abstract data types called monads [22]. We use the type m a to denote
computations that produce results of type a and may perform side-effects in
monad m. Different side-effects are often handled by different monads. In Haskell,
there are monads for performing inputs and outputs (monad I0), handling errors
(monad Error), etc. The IFC system LIO simply exposes a monad, LI0, in which
security checks are performed before any IO side-effecting action.

Resumptions are a simple approach to modeling interleaved computations of
concurrent programs. A resumption, which has the form res :: = x | a >res, is
either a computed value x or an atomic action « followed by a new resumption
res. Using this notion, we can break down a program that is composed of a series
of instructions into a program that executes an atomic action and yields control
to a scheduler by giving it its subsequent resumption. For example, program
P :=i1;i2;13, which performs three side-effecting instructions in sequence, can
be written as resp :=i1;i2 > i3> (), where () is a value of a type with just one
element, known as unit. Here, an atomic action « is any sequence of instructions.
When executing resp, instructions i; and is execute atomically, after which it
yields control back to the scheduler by supplying it the resumption res’s := izt>().
At this point, the scheduler may schedule atomic actions from other threads
or execute res’s to resume the execution of P. Suppose program @ := ji;jo2,
rewritten as j; > jo > (), runs concurrently with P. Our concurrent execution of
P and @ can be modeled with resumptions, under a round-robin scheduler, by
writing it as P||Q :=i1;i2>j1 i3> j2> () > (). In other words, resumptions allow
us to implement a scheduler that executes i1; 42, postponing the execution of i3,
and executing atomic actions from @ in the interim.

A Library for Removing Cache-Based Attacks 203

data Thread m a where
Done :: a — Thread m a
Atom :: m (Thread m a) — Thread m a
Fork ::Thread m () — Thread m a
— Thread m a

Fig. 2. Threads as Resumptions

Implementing threads as resumptions. As previously done in [10,11], Fig.2
defines threads as resumptions at the programming language level. The thread
type (Thread m a) is parametric in the resumption computation value type (a)
and the monad in which atomic actions execute (m)'. (Symbol :: introduces
type declarations and — denotes function types.) The definition has several
value constructors for a thread. Constructor Done captures computed values;
a value Done a represents the computed value a. Constructor Atom captures
a resumption of the form a > res. Specifically, Atom takes a monadic action of
type m (Thread m a), which denotes an atomic computation in monad m that
returns a new resumption as a result. In other words, Atom captures both the
atomic action that is being executed («) and the subsequent resumption (res).
Finally, constructor Fork captures the action of spawning new threads; value
Fork res res’ encodes a computation wherein a new thread runs resumption res
and the original thread continues as res’.? As in the standard Haskell libraries,
we assume that a fork does not return the new thread’s final value and thus the
type of the new thread/resumption is simply Thread m ().

Programming with resumptions. Users do not build programs based on resump-
tions by directly using the constructors of Thread m a. Instead, they use
the interface provided by Haskell monads: return :: a — Thread m a and
(>=) = Thread m a — (a — Thread m b) — Thread m b. The expression
return o creates a resumption which consists of the computed value a, i.e., it
corresponds to Done a. The operator (=), called bind, is used to sequence
atomic computations. Specifically, the expression res >= f returns a resumption
that consists of the execution of the atomic actions in res followed by the atomic
actions obtained from applying f to the result produced by res. We sometimes
use Haskell’s do-notation to write such monadic computations. For example, the
expression res>=(Aa — return (a+1)), i.e., actions described by the resumption
res followed by return (a + 1) where a is the result produced by res, is written
as do a < res; return (a + 1).

Scheduling computations. We use round-robin to schedule atomic actions of dif-
ferent threads. Fig. 3 shows our scheduler implemented as a function from a list of
threads into an interleaved computation in the monad m. The scheduler behaves

! In our implementation, atomic actions a (as referred as in « > res) are actions
described by the monad m.

2 Spawning threads could also be represented by a equivalent constructor Fork’ ::
Thread m () — Thread m a, we choose Fork for pedagogical reasons.

204 P. Buiras et al.

sch:: [Thread m ()] — m ()
sch [] = return ()
sch ((Done _) : thrds) = sch thrds
sch ((Atom m) : thrds) =

do res < m;sch (thrds H [res])
sch ((Fork res res’) : thrds) =

sch ((res : thrds) + [res’])

Fig. 3. Simple round-robin scheduler

as follows. If there is an empty list of resumptions, the scheduler, and thus the
program, terminates. If the resumption at the head of the list is a computed
value (Done _), the scheduler removes it and continues scheduling the remaining
threads (sch thrds). (Recall that we are primarily concerned with the side-effects
produced by threads and not about their final values.) When the head of the list
is an atomic step (Atom m), sch runs it (res < m), takes the resulting resump-
tion (res), and appends it to the end of the thread list (sch (thrds H [res])).
Finally, when a thread is forked, i.e., the head of the list is a Fork res res’, the
spawned resumption is placed at the front of the list (res : thrds). Observe that
in both of the latter cases the scheduler is invoked recursively—hence we keep
evaluating the program until there are no more threads to schedule. We note
that although we choose a particular, simple scheduling approach, our results
naturally extend for a wide class of deterministic schedulers [28,38].

4 Extending Resumptions with State and Exceptions

LIO provides general programming language abstrations (e.g., state and excep-
tions), which our library must preserve to retain expressiveness. To this end,
we extend the notion of resumptions and modify the scheduler to handle thread
local state and exceptions.

Thread local state. As described in [34], the LIO monad keeps track of a current
label, L¢y.. This label is an upper bound on the labels of all data in lexical scope.
When a computation C, with current label L¢, observes an object labeled Lo,
C’s label is raised to the least upper bound or join of the two labels, written
Lo U Lo. Importantly, the current label governs where the current computation
can write, what labels may be used when creating new channels or threads,
etc. For example, after reading an object O, the computation should not be
able to write to a channel K if Lo is more confidential than L x—this would
potentially leak sensitive information (about O) into a less sensitive channel.
We write Lo C L when Lg at least as confidential as Lo and information is
allowed to flow from the computation to the channel.

Using our resumption definition of Sect.3, we can model concurrent LIO
programs as values of type Thread LIO. Unfortunately, such programs are overly
restrictive—since LIO threads would be sharing a single current label-—and do

A Library for Removing Cache-Based Attacks 205

sch ((Atom m) : thrds) =
do res <— m
st <« get
sch (thrds - [put st = res])

sch ((Fork res res’) : thrds) =
do st «— get
sch ((res : thrds) H [put st = res’])

Fig. 4. Context-switch of local state

not allow for the implementation of many important applications. Instead, and
as done in the concurrent version of LIO [35], we track the state of each thread,
independently, by modifying resumptions, and the scheduler, with the ability to
context-switch threads with state.

Figure 4 shows these changes to sch. The context-switching mechanism relies
on the fact that monad m is a state monad, i.e., provides operations to retrieve
(get) and set (put) its state. LIO is a state monad,® where the state contains
(among other things) Le,,. Operation () :: m b — Thread m a — Thread m a
modifies a resumption in such a way that its first atomic step (Atom) is extended
with m b as the first action. Here, Atom consists of executing the atomic step
(res « m), taking a snapshot of the state (st < get), and restoring it when
executing the thread again (put st > res). Similarly, the case for Fork saves the
state before creating the child thread and restores it when the parent thread
executes again (put st = res’).

Ezception handling. As described in [36], LIO provides a secure way to throw
and catch exceptions—a feature crucial to many real-world applications. Unfor-
tunately, simply using LIO’s throw and catch as atomic actions, as in the case
of local state, results in non-standard behavior. In particular, in the interleaved
computation produced by sch, an atomic action from a thread may throw an
exception that would propagate outside the thread group and crash the program.
Since we do not consider leaks due to termination, this does not impact security;
however, it would have non-standard and restricted semantics. Hence, we first
extend our scheduler to introduce a top-level catch for every spawned thread.

Besides such an extension, our approach still remains quite limiting. Specif-
ically, LIO’s catch is defined at the level of the monad LIO, i.e., it can only
be used inside atomic steps. Therefore, catch-blocks are prevented from being
extended beyond atomic actions. To address this limitation, we lift exception
handling to work at the level of resumptions.

To this end, we consider a monad m that handles exceptions, i.e., a monad
for which throw :: e — m a and catch : m a — (e — m a) — m a, where e

3 For simplicity of exposition, we use get and set. However, LIO only provides such
functions to trusted code. In fact, the monad LIO is not an instance of MonadState
since this would allow untrusted code to arbitrarily modify the current label—a clear
security violation.

206 P. Buiras et al.

throw e = Atom (LIO.throw e)

catch (Done a) — = Done a
catch (Atom a) handler =
Atom (LIO.catch
(do res «— a
return (catch res handler))
(Ae — return (handler €)))
catch (Fork res res’) handler =
Fork res (catch res’ handler)

Fig. 5. Exception handling for resumptions

is a type denoting exceptions, are accordingly defined. Function throw throws
the exception supplied as an argument. Function catch runs the action supplied
as the first argument (m a), and if an exception is thrown, then executes the
handler (e — m a) with the value of the exception passed as an argument. If
no exceptions are raised, the result of the computation (of type a) is simply
returned.

Figure5 shows the definition of exception handling for resumptions. Since
LIO defines throw and catch [36], we qualify these underlying functions with LIO
to distinguish them from our resumption-level throw and catch. When throwing
an exception, the resumption simply executes an atomic step that throws the
exception in LIO (LIO.throw e).

The definitions of catch for Done and Fork are self explanatory. The most
interesting case for catch is when the resumption is an Atom. Here, catch applies
LIO.catch step by step to each atomic action in the sequence; this is necessary
because exceptions can only be caught in the LIO monad. As shown in Fig. 5,
if no exception is thrown, we simply return the resumption produced by m.
Conversely, if an exception is raised, LIO.catch will trigger the exception handler
which will return a resumption by applying the top-level handler to the exception
e. To clarify, consider catching an exception in the resumption a; > as > x.
Here, catch executes a; as the first atomic step, and if no exception is raised, it
executes as as the next atomic step; on the other hand, if an exception is raised,
the resumption as >z is discarded and catch, instead, executes the resumption
produced when applying the exception handler to the exception.

5 Performance Tuning

Unsurprisingly, interleaving computations at the library-level introduces perfor-
mance degradation. To alleviate this, we provide primitives that allow devel-
opers to control the granularity of atomic steps—fine-grained atoms allow for
more flexible programs, but also lead to more context switches and thus perfor-
mance degradation (as we spend more time context switching). Additionally, we
provide a primitive for the parallel execution of pure code. We describe these
features—which do not affect our security guarantees—below.

A Library for Removing Cache-Based Attacks 207

Granularity of atomic steps. To decrease the frequency of context switches, pro-
grammers can treat a complex set of atoms (which are composed using monadic
bind) as a single atom using singleAtom :: Thread m a — Thread m a. This
function takes a resumption and “compresses” all its atomic steps into one.
Although singleAtom may seem unsafe, e.g., because we do not restrict threads
from adjust the granularity of atomic steps according to secrets, in Sect.6 we
show that this is not the case—it is the atomic execution of atoms, regardless of
their granularity, that ensures security.

Parallelism. As in [37], we cannot run one scheduler sch per core to gain perfor-
mance through parallelism. Threads running in parallel can still race to public
resources, and thus vulnerable to internal timing attacks (that may, for exam-
ple, rely on the L3 CPU cache). In principle, it is possible to securely parallelize
arbitrary side-effecting computations if races (or their outcomes) to shared pub-
lic resource are eliminated. Similar to observational low-determinism [41], our
library could allow parallel computations to compute on disjoint portions of the
memory. However, whenever side-effecting computations follow parallel code, we
would need to impose synchronization barriers to enforce that all side-effects
are performed in a pre-determined order. It is precisely this order, and LIO’s
safe side-effecting primitives for shared-resources, that hides the outcome of any
potential dangerous parallel race. In this paper, we focus on executing pure code
in parallel; we leave side-effecting code to future work.

Pure computations, by definition, cannot introduce races to shared resources
since they do not produce side effects.* To consider such computations, we simply
extend the definition of Thread with a new constructor: Parallel::pure b — (b —
Thread m a) — Thread m a. Here, pure is a monad that characterizes pure
expressions, providing the primitive runPure :: pure b — b to obtain the value
denoted by the code given as argument. The monad pure could be instantiated to
Par, a monad that parallelizes pure computations in Haskell [21], with runPure
set to runPar. In a resumption, Parallel p f specifies that p is to be executed
in a separate Haskell thread—potentially running on a different core than the
interleaved computation. Once p produces a value z, f is applied to z to produce
the next resumption to execute.

Figure 6 defines sch for pure computations, where interaction between re-
sumptions and Haskell-threads gets regulated. The scheduler relies on well-
established synchronization primitives called MVars [13]. A value of type MVar
is a mutable location that is either empty or contains a value. Function putM Var
fills the MVar with a value if it is empty and blocks otherwise. Dually, takeM Var
empties an MVar if it is full and returns the value; otherwise it blocks. Our
scheduler implementation sch simply takes the resumption produced by the
sync function and schedules it at the end of the thread pool. Function sync,
internally creates a fresh MVar v and spawns a new Haskell-thread to execute

4 In the case of Haskell, lazy evaluation may pose a challenge since whether or not a
thunk has been evaluate is indeed an effect on a cache [24]. Though our resumption-
based approach handles this for the single-core case, handling this in general is part
of our ongoing work.

208 P. Buiras et al.

sch (Parallel p f : thrds) =
do res — sync (Av — putMVar v (runPure p))
(M — takeMVar v)

f
sch (thrds + [res])

Fig. 6. Scheduler for parallel computations

putMVar v (runPure p). This action will store the result of the parallel com-
putation in the provided MVar. Subsequently, sync returns the resumption res,
whose first atomic action is to read the parallel computation’s result from the
MVar (takeMVar v). At the time of reading, if a value is not yet ready, the
atomic action will block the whole interleaved computation. However, once a
value z is produced (in the separate thread), f is applied to it and the execution
proceeds with the produced resumption (f).

6 Soundness

In this section, we extend the previous formalization of LIO [34] to model the
semantics of our concurrency library. We present the syntax extensions that we
require to model the behavior of the Thread monad:

Expression: e:: = ... | sches | Atome | Donee | Forkee | Parallel ee

where e, is a list of expressions. For brevity, we omit a full presentation of the
syntax and semantics, since we rely on previous results in order to prove the
security property of our approach. The interested reader is referred to [6].

Expressions are the usual A-calculus expressions with special syntax for
monadic effects and LIO operations. The syntax node sch e, denotes the sched-
uler running with the list of threads e, as its thread pool. The nodes Atom e,
Done e, Fork e e and Parallel e e correspond to the constructors of the Thread
data type. In what follows, we will use metavariables x, m,p,t,v and f for dif-
ferent kinds of expressions, namely values, monadic computations, pure compu-
tations, threads, MVars and functions, respectively.

We consider a global environment X' which contains the current label of
the computation (X.1bl), and also represents the resources shared among all
threads, such as mutable references. We start from the one-step reduction rela-
tion® (X, e) — (X', ¢'), which has already been defined for LIO [34]. This
relation represents a single evaluation step from e to €/, with X as the initial
environment and X’ as the final one. Presented as an extension to the — rela-
tion, Figure 7 shows the reduction rules for concurrent execution using sch. The
configurations for this relation are of the form (X, sch t;), where X' is a runtime

5 As in [35], we consider a version of — which does not include the operation
toLabeled, since it is susceptible to internal timing attacks.

A Library for Removing Cache-Based Attacks 209

(DoNE)

(¥,sch (Done z : t5)) — (X, sch t)

(ATowm)
(Z,m) —" (X, (e)™)
(X, sch (Atom (put X161 > m): &;)) — (X' sch (t; H [put .1b1 = ¢]))

(FORK)

(X, sch (Fork mi ma : t5)) — (X, sch ((ma : ts) H [put X.1bl > ma2]))

Fig. 7. Semantics for sch expressions.
(SEQ)
(X,e) — (X' €) P=PF
(Ze | Py (¢ | P)

(PURE)
P=r vs fresh MVar s = 2X.1bl
(¥,sch (Parallel p f : t,) || P) —
(¥, sch (ts H [Atom (takeM Var vs >=f)]) || P’ || (putMVar vs (runPure p))s)

(Syne)
pP=P

(X, sch (Atom (takeMVar vs >=f) : ts) || (putMVar vs z)s || P) —
(Z,sch (f 2 t.) || P)

Fig. 8. Semantics for sch expressions with parallel processes.

environment and t, is a list of Thread computations. Note that the computation
in an Atom always begins with either put X .1bl for some label X.1bl, or with
takeMVar v for some MVar v. Rules (DONE), (ATOM), and (FORK) basically
behave like the corresponding equations in the definition of sch (see Figs. 3 and
4). In rule (ATOM), the syntax node (e)"° represents an LIO computation that
has produced expression e as its result. Although sch applications should expand
to their definitions, for brevity we show the unfolding of the resulting expressions
into the next recursive call. This unfolding follows from repeated application of
basic A-calculus reductions.

Figure 8 extends relation — into < to express pure parallel computations.
The configurations for this relation are of the form (X, sch ;|| P), where P is an
abstract process representing a pure computation that is performed in parallel.
These abstract processes would be reified as native Haskell threads. The operator
(I]), representing parallel process composition, is commutative and associative.

As described in the previous section, when a Thread evaluates a Parallel
computation, a new native Haskell thread should be spawned in order to run it.

210 P. Buiras et al.

Rule (PURE) captures this intuition. A fresh MVar vs (where s is the current
label) is used for synchronization between the parent and the spawned thread.
A process is denoted by putM Var vs followed by a pure expression, and it is also
tagged with the security level of the thread that spawned it.

Pure processes are evaluated in parallel with the main threads managed by
sch. The relation = nondeterministically evaluates one process in a parallel
composition and is defined as follows.

runPure p —* x
(putMVar vs (runPure p))s||P = (putMVar vs z)4|| P

For simplicity, we consider the full evaluation of one process until it yields a
value as just one step, since the computations involved are pure and therefore
cannot leak data. Rule (SEQ) in Fig. 8 represents steps where no parallel forking
or synchronization is performed, so it executes one — step alongside a = step.

Rule (SyNC) models the synchronization barrier technique from Sect. 5. When
an Atom of the form (takeM Var v, >=f) is evaluated, execution blocks until the
pure process with the corresponding MVar v; completes its computation. After
that, the process is removed and the scheduler resumes execution.

Security guarantees. We show that programs written using our library sat-
isfy termination-insensitive non-interference, i.e., an attacker at level L cannot
distinguish the results of programs that run with indistinguishable inputs. This
result has been previously established for the sequential version of LIO [34]. As
in [20,31,34], we prove this property by using the term erasure technique.

In this proof technique, we define function £, in such a way that e (e) con-
tains only information below or equal to level L, i.e., the function e, replaces
all the information more sensitive than L or incomparable to L in e with a hole
(o). We adapt the previous definition of €7, to handle the new constructs in the
library. In most of the cases, the erasure function is simply applied homomorphi-
cally (e.g., er(e1 e2) = er(e1) er(ea)). For sch expressions, the erasure function
is mapped into the list; all threads with a current label above L are removed
from the pool (filter (£ o) (map €y, t,)), where = denotes syntactic equivalence).
Analogously, erasure for a parallel composition consists of removing all processes
using an MVar tagged with a level not strictly below or equal to L. The compu-
tation performed in a certain Atom is erased if the label is not strictly below or
equal than L. This is given by

o L] y S «Z L
er(Atom (put s > m)) = {put s> e (m), otherwise

A similar rule exists for expressions of the form Atom (takeMVar vs >= f).
Note that this relies on the fact that an atom must be of the form Atom (put s>
m) or Atom (takeMVar vs >= f) by construction. For expressions of the form
Parallel p f, erasure behaves homomorphically, i.e. ef,(Parallel p f) = Parallel

erL(p) (eLof).

A Library for Removing Cache-Based Attacks 211

Following the definition of the erasure function, we introduce the a new
evaluation relation <, as follows: (X, t||P) — e ((X', ¢'||P’)) if (X, t|P) —
(X', t'||P"). The relation <, guarantees that confidential data, i.e., data not
below or equal-to level L, is erased as soon as it is created. We write <7 for the
reflexive and transitive closure of <.

In order to prove non-interference, we will establish a simulation relation
between —* and —7 through the erasure function: erasing all secret data and
then taking evaluation steps in <, is equivalent to taking steps in < first, and
then erasing all secret values in the resulting configuration. In the rest of this
section, we consider well-typed terms to avoid stuck configurations.

Proposition 1 (Many-step simulation). If (¥, sch t||P) —*
(X', sch tl|P"), then it holds that e, ({(X,sch t4||P)) <% e ((X’,sch .|| P")).

The L-equivalence relation ~j, is an equivalence relation between configura-
tions and their parts, defined as the equivalence kernel of the erasure function ey,:
(X, sch t,||P) ~ (X,sch rs]| Q) iff e, ({(X,sch t,||P)) = e ((X', sch 4] Q)).

If two configurations are L-equivalent, they agree on all data below or at
level L, i.e., an attacker at level L is not able to distinguish them.

The next theorem shows the non-interference property. The configuration
(X, sch []) represents a final configuration, where the thread pool is empty and
there are no more threads to run.

Theorem 1 (Termination-insensitive non-interference). Given a compu-
tation e, inputs e; and ey, an attacker at level L, runtime environments X
and Yg, then for all inputs ey, ex such that e; =y ea, if (¥1,sch [e e;]) —*
(X7,sch []) and (X2,sch [e eg]) —* (X}, sch []), then (X ,sch []) = (X}, sch []).

This theorem essentially states that if we take two executions from configu-
rations (X;,sch [e e;]) and (Xo,sch [e eg]), which are indistinguishable to
an attacker at level L (e; =~y e2), then the final configurations for the exe-
cutions (X,sch []) and (X},sch []) are also indistinguishable to the attacker
((X7,sch []) =1 (X},sch [])). This result generalizes when constructors Done,
Atom, and Fork involve exception handling (see Fig.5). The reason for this lies
in the fact that catch and throw defer all exception handling to LIO.throw and
LIO.catch, which have been proved secure in [36].

7 Case Study: Classifying Location Data

We evaluated the trade-offs between performance, expressiveness and security
through an LIO case study. We implemented an untrusted application that per-
forms K-means clustering on sensitive user location data, in order to classify
GPS-enabled cell phone into locations on a map, e.g., home, work, gym, etc.
Importantly, this app is untrusted yet computes clusters for users without leak-
ing their location (e.g., the fact that Alice frequents the local chapter of the
Rebel Alliance). K-means is a particularly interesting application for evaluating

212 P. Buiras et al.

our scheduler as the classification phase is highly parallelizable—each data point
can be evaluated independently.

We implemented and benchmarked three versions of this app: (i) A baseline
implementation that does not use our scheduler and parallelizes the computa-
tion using Haskell’s Par Monad [21]. Since in this implementation, the sched-
uler is not modeled using resumptions, it leverages the parallelism features of
Par. (ii) An implementation in the resumption based scheduler, but pinned to
a single core (therefore not taking advantage of parallelizing pure computations).
(iii) A parallel implementation using the resumption-based scheduler. This imple-
mentation expresses the exact same computation as the first one, but is not vul-
nerable to cache-based leaks, even in the face of parallel execution on multiple
cores.

We ran each implementation against one month of randomly generated data,
where data points are collected each minute (so, 43200 data points in total). All
experiments were run ten times on a machine with two 4-core (with hyperthread-
ing) 2.4 Ghz Intel Xeon processors and 48 GB of RAM. The secure, but non-
parallel implementation using resumptions performed extremely poorly. With
mean 204.55s (standard deviation 7.19s), it performed over eight times slower
than the baseline at 17.17s (standard deviation 1.16s). This was expected since
K-means is highly parallelizable. Conversely, the parallel implementation in the
resumption based scheduler performed more comparably to the baseline, at
17.83 s (standard deviation 1.15s).

To state any conclusive facts on the overhead introduce by our library, it is
necessary to perform a more exhaustive analysis involving more than a single
case study.

8 Related work

Cryptosystems. Attacks exploiting the CPU cache have been considered by the
cryptographic community [16]. Our attacker model is weaker than the one typi-
cally considered in cryptosystems, i.e., attackers with access to a stopwatch. As a
countermeasure, several authors propose partitioning the cache (e.g., [25]), which
often requires special hardware. Other countermeasures (e.g. [23]) are mainly
implementation-specific and, while applicable to cryptographic primitives, they
do not easily generalize to arbitrary code (as required in our scenario).

Resumptions. While CPS can be used to model concurrency in a functional set-
ting [7], resumptions are often simpler to reason about when considering security
guarantees [10,11]. The closest related work is that of Harrison and Hook [11];
inspired by a secure multi-level operating system, the authors utilize resump-
tions to model interleaving and layered state monads to represent threads. Every
layer corresponds to an individual thread, thereby providing a notion of local
state. Since we do not require such generality, we simply adapt the scheduler
to context-switch the local state underlying the LIO monad. We believe that
authors overlooked the power of resumptions to deal with timing perturbations
produced by the underlying hardware. In [10], Harrison hints that resumptions

A Library for Removing Cache-Based Attacks 213

could handle exceptions; in this work, we consummate his claim by describing
precisely how to implement throw and catch.

Language-based IF'C. There is been considerable amount of literature on applying
programming languages techniques to address the internal timing covert chan-
nel (e.g. [28,33,35,39,41]). Many of these works assume that the execution of a
single step, i.e., a reduction step in some transition system, is performed in a
single unit of time. This assumption is often made so that security guarantees
can be easily shown using programming language semantics. Unfortunately, the
presence of the CPU cache (or other hardware shared state) breaks this corre-
spondence, making cache attacks viable. Our resumption approach establishes
a correspondence between atomic steps at the implementation-level and reduc-
tion step in a transition system. Previous approaches can leverage this technique
when implementing systems, as to avoid the reappearance of the internal timing
channel.

Agat [2] presents a code transformation for sequential programs such that
both code paths of a branch have the same memory access pattern. This trans-
formation has been adapted in different works (e.g., [32]). Agat’s approach, how-
ever, focuses on avoiding attacks relying on the data cache, while leaving the
instruction cache unattended.

Russo and Sabelfeld [29] consider non-interference for concurrent while-like-
programs under cooperative and deterministic scheduling. Similar to our work,
this approach eliminates cache-attacks by restricting the use of yields. Differently,
our library targets a richer programming languages, i.e., it supports parallelism,
exceptions, and dynamically adjusting the granularity of atomic actions.

Secure multi-execution [8] preserves confidentiality of data by executing the
same sequential program several times, one for each security level. In this sce-
nario, cache-based attacks can only be removed in specific configurations [14]
(e.g., when there are as many CPU cores as security levels).

Hedin and Sands [12] present a type-system for preventing external timing
attacks for bytecode. Their semantics is augmented to incorporate history, which
enables the modeling of cache effects. Zhang et al. [42] provide a method for
mitigating external events when their timing behavior could be affected by the
underlying hardware. Their semantics focusses on sequential programs, wherein
attacks due to the cache arise in the form of externally visible events. Their
solution is directly applicable to our system when considering external events.

System security. In order to achieve strong isolation, Barthe et al. [3] present a
model of virtualization which flushes the cache upon switching between guest
operating systems. Flushing the cache in such scenarios is common and does
not impact the already-costly context-switch. Although this technique addresses
attacks that leverage the CPU cache, it does not address the case where a shared
resource cannot be controlled (e.g., CPU bus).

Allowing some information leakage, Kopft et al. [17] combines abstract inter-
pretation and quantitative information-flow to analyze leakage bounds for cache
attacks. Kim et al. [15] propose StealthMem, a system level protection against
cache attacks. StealthMem allows programs to allocate memory that does not

214 P. Buiras et al.

get evicted from the cache. StealthMem is capable of enforcing confidentiality for
a stronger attacker model than ours, i.e., they consider programs with access to a
stopwatch and running on multiple cores. However, we suspect that StealthMem
is not adequate for scenarios with arbitrarily complex security lattices, wherein
not flushing the cache would be overly restricting.

9 Conclusion

We present a library for LIO that leverages resumptions to expose concurrency.
Our resumption-based approach and “instruction”- or atom-based scheduling
removes internal timing leaks induced by timing perturbations of the under-
lying hardware. We extend the notion of resumptions to support state and
exceptions and provide a scheduler that context-switches programs with such
features. Though our approach eliminates internal-timing attacks that lever-
age hardware caches, library-level threading imposes considerable performance
penalties. Addressing this, we provide programmers with a safe mean for con-
trolling the context-switching frequency, i.e., allowing for the adjustment of the
“size” of atomic actions. Moreover, we provide a primitive for spawning compu-
tations in parallel, a novel feature not previously available in IFC tools. We prove
soundness of our approach and implement a simple case study to demonstrate
its use. Our techniques can be adapted to other Haskell-like IFC systems beyond
LIO. The library, case study, and details of the proofs can be found at [6].

Acknowledgments. We would like to thank Josef Svenningsson and our colleagues in
the ProSec and Functional Programming group at Chalmers for useful comments. This
work was supported by the Swedish research agency VR, STINT, the Barbro Osher
foundation, DARPA CRASH under contract #N66001-10-2-4088, and multiple gifts
from Google. Deian Stefan is supported by the DoD through the NDSEG Fellowship
Program.

References

1. Aciigmez, O.: Yet another microarchitectural attack:: exploiting I-cache. In: Pro-
ceedings of the 2007 ACM workshop on Computer security architecture, CSAW
’07. ACM (2007)

2. Agat, J.: Transforming out timing leaks. In: Proceedings of the ACM Symposium
on Principles of Programming Languages, pp. 40-53, January 2000

3. Barthe, G., Betarte, G., Campo, J., Luna, C.: Cache-leakage resilient OS isolation
in an idealized model of virtualization. In: Proceedings of the IEEE Computer
Security Foundations Symposium. IEEE Computer Society, June 2012

4. Boudol, G., Castellani, I.: Noninterference for concurrent programs. In: Orejas, F.,
Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 382-395.
Springer, Heidelberg (2001)

5. Boudol, G., Castellani, I.: Non-interference for concurrent programs and thread
systems. Theor. Comput. Sci. 281(1), 109-130 (2002)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A Library for Removing Cache-Based Attacks 215

Buiras, P., Levy, A., Stefan, D., Russo, A., Mazieres, D.: A library for removing
cache-based attacks in concurrent information flow systems: Extended version.
http://www.cse.chalmers.se/~buiras/resLIO.html (2013)

Claessen, K.: A poor man’s concurrency monad. J. Funct. Program. 9(3), 313-323
(1999)

Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy, SP '10. IEEE
Computer Society (2010)

Giffin, D.B., Levy, A., Stefan, D., Terei, D., Maziéres, D., Mitchell, J., Russo, A.:
Hails: protecting data privacy in untrusted web applications. In: Proceedings of
the 10th Symposium on Operating Systems Design and Implementation, October
2012

Harrison, B.: Cheap (but functional) threads. J. Funct. Program. http://people.
cs.missouri.edu/~harrisonwl/drafts/CheapThreads.pdf (2004)

Harrison, W.L., Hook, J.: Achieving information flow security through precise con-
trol of effects. In: Proceedings of the IEEE Computer Security Foundations Work-
shop. IEEE Computer Society (2005)

Hedin, D., Sands, D.: Timing aware information flow security for a JavaCard-like
bytecode. Electron. Notes Theor. Comput. Sci. 141(1), 163-182 (2005)

Jones, S.P., Gordon, A., Finne, S.: Concurrent Haskell. In: Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM (1996)

Kashyap, V., Wiedermann, B., Hardekopf, B.: Timing- and termination-sensitive
secure information flow: exploring a new approach. In: Proceedings of the IEEE
Symposium on Security and Privacy. IEEE (2011)

Kim, T., Peinado, M., Mainar-Ruiz, G.: STEALTHMEM: system-level protec-
tion against cache-based side channel attacks in the cloud. In: Proceedings of the
USENIX Conference on Security Symposium, Security’12. USENIX Association
(2012)

Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104-113. Springer, Heidelberg (1996)

Kopf, B., Mauborgne, L., Ochoa, M.: Automatic quantification of cache side-
channels. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358,
pp. 564-580. Springer, Heidelberg (2012)

Krohn, M., Yip, A., Brodsky, M., Morris, R., Walfish, M.: A world wide web
without walls. In: 6th ACM Workshop on Hot Topics in Networking (Hotnets),
Atlanta, November 2007

Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613—
615 (1973)

Li, P., Zdancewic, S.: Arrows for secure information flow. Theor. Comput. Sci.
411(19), 1974-1994 (2010)

Marlow, S., Newton, R., Jones, S.L.P.: A monad for deterministic parallelism. In:
Proceedings of the ACM SIGPLAN Symposium on Haskell (2011)

Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55-92 (1991)
Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1-20.
Springer, Heidelberg (2006)

Pablo, B., Russo, A.: Lazy programs leak secrets. In: The Pre-proceedings of the
18th Nordic Conference on Secure IT Systems (NordSec), October 2013

http://www.cse.chalmers.se/~buiras/resLIO.html
http://people.cs.missouri.edu/~harrisonwl/drafts/CheapThreads.pdf
http://people.cs.missouri.edu/~harrisonwl/drafts/CheapThreads.pdf

216

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

P. Buiras et al.

Page, D.: Partitioned cache architecture as a side-channel defence mechanism.
IACR Cryptology ePrint Archive 2005 (2005)

Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan 2005
(2005)

Pottier, F.: A simple view of type-secure information flow in the mw-calculus. In:
Proceedings of the 15th IEEE Computer Security Foundations Workshop (2002)

Russo, A., Sabelfeld, A.: Securing interaction between threads and the scheduler.
In: Proceedings of the IEEE Computer Security Foundations Workshop, July 2006
Russo, A., Sabelfeld, A.: Security for multithreaded programs under cooperative
scheduling. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp.
474-480. Springer, Heidelberg (2007)

Russo, A., Hughes, J., Naumann, D.A., Sabelfeld, A.: Closing internal timing chan-
nels by transformation. In: Okada, M., Satoh, I. (eds.) ASTAN 2006. LNCS, vol.
4435, pp. 120-135. Springer, Heidelberg (2007)

Russo, A., Claessen, K., Hughes, J.: A library for light-weight information-flow
security in Haskell. In: Proceedings of the ACM SIGPLAN Symposium on Haskell,
pp- 13-24. ACM Press, September 2008

Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs.
In: Proceedings of the IEEE Computer Security Foundations Workshop, July 2000
Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: Proceedings of the ACM Symposium on Principles of Programming
Languages, January 1998

Stefan, D., Russo, A., Mitchell, J.C., Mazieres, D.: Flexible dynamic information
flow control in Haskell. In: Haskell Symposium. ACM SIGPLAN, September 2011
Stefan, D., Russo, A., Buiras, P., Levy, A., Mitchell, J.C., Mazieres, D.: Addressing
covert termination and timing channels in concurrent information flow systems. In:
The 17th ACM SIGPLAN International Conference on Functional Programming
(ICFP), pp. 201-213. ACM, September 2012

Stefan, D., Russo, A., Mitchell, J.C., Mazieres, D.: Flexible dynamic information
flow control in the presence of exceptions. Arxiv preprint arXiv:1207.1457 (2012)

Stefan, D., Buiras, P., Yang, E.Z., Levy, A., Terei, D., Russo, A., Mazieres, D.:
Eliminating cache-based timing attacks with instruction-based scheduling. In: Pro-
ceedings of the European Symposium on Research in Computer Security, pp. 718—
735 (2013)

Swierstra, W.: A Functional specification of effects. Ph.D. thesis, University of
Nottingham, November 2008

Volpano, D., Smith, G.: Probabilistic noninterference in a concurrent language. J.
Comput. Secur. 7(2-3), 231-253 (1999)

Wong, W.H.: Timing attacks on RSA: revealing your secrets through the fourth
dimension. Crossroads 11(3), p. 5 (2005)

Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proceedings of the IEEE Computer Security Foundations Workshop,
June 2003

Zhang, D., Askarov, A., Myers, A.C.: Language-based control and mitigation of
timing channels. In: Proceedings of PLDI. ACM (2012)

	A Library for Removing Cache-Based Attacks in Concurrent Information Flow Systems
	1 Introduction
	2 Cache Attacks on Concurrent IFC Systems
	3 Modeling Concurrency with Resumptions
	4 Extending Resumptions with State and Exceptions
	5 Performance Tuning
	6 Soundness
	7 Case Study: Classifying Location Data
	8 Related work
	9 Conclusion
	References

