Problems

1) The Bellman-Ford algorithm finds the shortest path from a source to all the vertices in the graph (if there are negative edges but no negative cycles present). The algorithm takes time $O(mn)$. But if we have a graph that’s a DAG, then we can do much better. Find a linear time algorithm for the following problem and prove that it works.

Input: A DAG $G = (V, E)$ with possibly negative edge lengths and vertex $s \in V$.
Output: An array $dist(\cdot)$, where $dist(u)$ is set to the shortest path length from s to u.
(Hint: First use topological sort)

2) Suppose that in addition to having edge lengths, a graph also has vertex costs. The price of a path is defined as the sum of all the edge length and the vertex costs on the path (including the endpoints). Give an efficient algorithm for the following problem:

Input: A directed graph $G = (V, E)$ with positive edge lengths and vertex costs and a starting vertex s.
Output: An array $cost(\cdot)$ such that for every vertex u, $cost(u)$ is the cost of the cheapest path from s to u.
Notice that $cost(s) = c_s$ where c_s is the cost of vertex s.

3) Same as problem 2, except now assume that G is an undirected graph.