1 Hash functions

The goal of hash functions is to map elements from a large domain to a small one. Typically, to obtain the required guarantees, we would need not just one function, but a family of functions, where we would use randomness to sample a hash function from this family. Let \(H = \{ h : U \rightarrow R \} \) be a family of functions, mapping elements from a (large) universe to a (small) range. Ideally, we would like to obtain certain “random-like” properties of this family, while keeping its size small. This will be important for applications in data structures and streaming algorithms, where we would need to keep a “seed” which tells us which hash function we chose, as well as in de-randomization, where we can replace true random with pseudo-randomness, obtained via enumerating all the hash functions in a family.

We start with describing one of the more basic but very useful properties we can require from hash functions, that of being pairwise-independent.

Definition 1.1 (Pairwise independent hash functions). A family \(H = \{ h : U \rightarrow R \} \) is said to be pairwise independent, if for any two distinct elements \(x_1 \neq x_2 \in U \), and any two (possibly equal) values \(y_1, y_2 \in R \),

\[
\Pr_{h \in H} [h(x_1) = y_1 \text{ and } h(x_2) = y_2] = \frac{1}{|R|^2}.
\]

2 Pairwise independent bits

We will construct a family of hash functions \(\mathcal{H} = \{ h : U \rightarrow R \} \) where \(R = \{0,1\} \). We will assume that \(|U| = 2^k\), by possible increasing the universe size, and identify \(U = \{0,1\}^k \). Define the following family of hash functions:

\[
\mathcal{H} = \{ h_{a,b}(x) = \langle a, x \rangle + b \pmod{2} : a \in \{0,1\}^k, b \in \{0,1\} \}.
\]

It is easy to see that \(|\mathcal{H}| = 2^{k+1} = 2|U|\). In order to show that \(\mathcal{H} \) is pairwise independent, we would need the following simple claim.
Claim 2.1. Let $x \in \{0, 1\}^k$, $x \neq 0$. Then

$$\Pr_{a \in \{0, 1\}^k} [\langle a, x \rangle \pmod{2} = 0] = \frac{1}{2}.$$

Proof. Assume $x_i = 1$ for some $i \in [k]$. Then

$$\Pr_{a \in \{0, 1\}^k} [\langle a, x \rangle \pmod{2} = 0] = \Pr [a_i = \sum_{j \neq i} a_j x_j \pmod{2}] = \frac{1}{2}.$$

\[\square \]

Lemma 2.2. \mathcal{H} as described above is pairwise independent.

Proof. Fix $x_1 \neq x_2 \in \{0, 1\}^k$ and $y_1, y_2 \in \{0, 1\}$. All the calculations below of $\langle a, x \rangle + b$ are modulo 2. We need to prove

$$\Pr_{a \in \{0, 1\}^k, b \in \{0, 1\}} [\langle a, x_1 \rangle + b = y_1 \text{ and } \langle a, x_2 \rangle + b = y_2] = \frac{1}{4}.$$

If we just randomized over a then by the claim, then for any $y \in \{0, 1\}$ by the claim,

$$\Pr_a [\langle a, x_1 \rangle + \langle a, x_2 \rangle = y] = \Pr_a [\langle a, x_1 \rangle = y] = \frac{1}{2}.$$

Randomizing also over b gives us the desired result.

$$\Pr_{a, b} [\langle a, x_1 \rangle + b = y_1 \text{ and } \langle a, x_2 \rangle + b = y_2] = \Pr_{a, b} [\langle a, x_1 \rangle + \langle a, x_2 \rangle = y_1 \oplus y_2 \text{ and } b = \langle a, x_1 \rangle + y_1] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

\[\square \]

An equivalent way to view this is as follows. We can generate a joint distribution over $n = |U|$ bits, such that any pair of bits is uniform. Let $U = \{u_1, \ldots, u_n\}$. To generate a random binary string x_1, \ldots, x_n, we sample $h \in \mathcal{H}$ uniformly and set $x_i = h(u_i)$. Our distribution has support of size at most $|\mathcal{H}| = O(n)$. That is, only $O(n)$ binary strings are possible. This is much fewer than the uniform distribution over n bits, which is supported on all 2^n binary strings. In particular, we can represent a string by specifying the hash function which generated it, which only takes $\log |\mathcal{H}| = \log n + O(1)$ bits.

Example 2.3. For $n = 4$, we get that sampling a uniform string from the following set of $8 = 2^3$ strings is pairwise independent:

$$\{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111\}.$$

2
2.1 Application: de-randomized MAXCUT

Let $G = (V, E)$ be a simple undirected graph. For $S \subset V$ let $E(S, S^c) = \{(u, v) \in E : u \in S, v \in S^c\}$ be the number of edges which cross the cut S. The MAXCUT problem asks to find the maximal number of edges in a cut.

$$\text{MAXCUT}(G) = \max_{S \subset V} |E(S, S^c)|$$

Computing the MAXCUT of a graph is known to be NP-hard. Still, there is a simple randomized algorithm which approximates it within factor 2. Let $n = |V|$ and $|V| = \{v_1, \ldots, v_n\}$.

Lemma 2.4. Let $x_1, \ldots, x_n \in \{0, 1\}$ be uniformly and independently chosen. Set $S = \{v_i : x_i = 1\}$. Then

$$\mathbb{E}_S [|E(S, S^c)|] \geq \frac{|E(G)|}{2} \geq \frac{\text{MAXCUT}(G)}{2}.$$

Proof. For any choice of S we have

$$|E(S, S^c)| = \sum_{(v_i, v_j) \in E} 1_{v_i \in S} 1_{v_j \in S^c}$$

Note that every undirected edge $\{u, v\}$ in G is actually counted twice in the calculation above, once as (u, v) and once as (v, u). However, clearly at most one of these is in $E(S, S^c)$.

By linearity of expectation, the expected size of the cut is

$$\mathbb{E}_S [|E(S, S^c)|] = \sum_{(v_i, v_j) \in E} \mathbb{E}[1_{v_i \in S} 1_{v_j \notin S}] = \sum_{(v_i, v_j) \in E} \mathbb{E}[1_{x_i = 1} 1_{x_j = 0}] = \sum_{(v_i, v_j) \in E} \mathbb{P}[x_i = 1 \text{ and } x_j = 0] = 2|E(G)| \cdot \frac{1}{4} = \frac{|E(G)|}{2}.$$

This implies that a random choice of S has a non-negligible probability of giving a 2-approximation.

Corollary 2.5. $\Pr_S \left[|E(S, S^c)| \geq \frac{|E(G)|}{2} \right] \geq \frac{1}{2|E(G)|} \geq \frac{1}{n^2}.$

Proof. Let $X = |E(S, S^c)|$ be a random variable counting the number of edges in a random cut. Let $\mu = |E(G)|/2$, where we know that $\mathbb{E}[X] \geq \mu$. Note that whenever $X < \mu$, we in fact have that $X \leq \mu - 1/2$, since X is an integer and μ a half-integer. Also, note that always $X \leq |E(G)| \leq 2\mu$. Let $p = \Pr[X \geq \mu]$. Then

$$\mathbb{E}[X] = \mathbb{E}[X | X \geq \mu] \Pr[X \geq \mu] + \mathbb{E}[X | X \leq \mu - 1/2] \Pr[X \leq \mu - 1/2] \leq 2\mu \cdot p + (\mu - 1/2) \cdot (1 - p) \leq \mu - 1/2 + 2\mu p.$$

So we must have $2\mu p \geq 1/2$, which means that $p \geq 1/(4\mu) \geq 1/(2|E(G)|)$.

So in particular, we can sample $O(n^2)$ sets S, compute for each one its cut size, and we are guaranteed that with high probability, the maximum will be at least $|E(G)|/2$. We can derandomize randomized algorithm this using pairwise independent bits. As a side benefit, it will reduce the computation time from testing $O(n^2)$ sets to testing only $O(n)$ sets.

Lemma 2.6. Let $x_1, \ldots, x_n \in \{0, 1\}$ be pairwise independent bits. Set

$$S = \{v_i : x_i = 1\}.$$

Then

$$\mathbb{E}_S[|E(S, S^c)|] \geq \frac{|E(G)|}{2}.$$

Proof. The only place where we used the fact that the bits were uniform, where in the calculation that

$$\Pr[x_i = 1 \text{ and } x_j = 0] = \frac{1}{4}$$

for all distinct i, j. However, this is also true for pairwise independent bits. \square

In particular, for one of the $O(n)$ sets S that we generate in the algorithm, we must have that $|E(S, S^c)|$ exceeds the average, and hence $|E(S, S^c)| \geq |E(G)|/2$.

2.2 Optimal sample size for pairwise independent bits

The previous application showed the usefulness of having small sample spaces for pairwise independent bits. We saw that we can generate $O(n)$ binary strings of length n, such that choosing one of them uniformly gives us pairwise independent bits. We next show that this is optimal.

Lemma 2.7. Let $X \subset \{0, 1\}^n$. Assume that for any distinct $i, j \in [n]$ and any $b', b'' \in \{0, 1\}$ we have

$$\Pr_{x \in X}[x_i = b' \text{ and } x_j = b''] = \frac{1}{4}.$$

Then $|X| \geq n$.

Proof. Let $m = |X|$ and suppose $X = \{x^1, \ldots, x^m\}$. For any $i \in [n]$, construct a real vector $v_i \in \{-1, 1\}^m$ as follows:

$$(v_i)_t = (-1)^{(x^t)_i}.$$

We will show that the set of vectors $\{v_1, \ldots, v_m\}$ are linearly independent over the reals, and hence span a subspace of dimension n. Hence, $m \geq n$. To do that, we first show that $\langle v_i, v_j \rangle = 0$ for all $i \neq j$. To see that, note that

$$\langle v_i, v_j \rangle = \sum_{x \in X} (-1)^{x_i}(-1)^{x_j} = \sum_{x \in X} (-1)^{x_i+x_j} = |\{x \in X : x_i = x_j\}| - |\{x \in X : x_i \neq x_j\}|.$$
By our assumption however, $|\{x \in X : x_i = x_j\}| = |\{x \in X : x_i \neq x_j\}| = 1/2$ and hence $\langle v_i, v_j \rangle = 0$. Now, assume towards contradiction that v_1, \ldots, v_n are linearly independent. Then there exist coefficients $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, not all zero, such that

$$\sum \alpha_i v_i = 0.$$

However, for any $j \in [n]$, we have

$$0 = \left\langle \sum \alpha_i v_i, v_j \right\rangle = \sum \alpha_i \langle v_i, v_j \rangle = \alpha_j \|v_j\|^2 = |X| \alpha_j.$$

So we must have $\alpha_j = 0$ for all j, a contradiction.

3 Hash functions with large ranges

We now consider the problem of constructing a family of hash functions $H = \{h : U \to R\}$ for large R. For simplicity, we will assume that $|R|$ is prime, although this requirement can be somewhat removed. So, let's identify $R = \mathbb{F}_p$ for a prime p. We may assume that $|U| = p^k$, by possibly increase the size of the universe by p. So, we can identify $U = \mathbb{F}_p^k$. Define the following family of hash functions:

$$H = \{h_{a,b}(x) = \langle a, x \rangle + b : a \in \mathbb{F}_p^k, b \in \mathbb{F}_p\}.$$

Note that $|H| = p^{k+1} = |U| \cdot |R|$. In order to show that H is pairwise independent, we need the following generalized claim.

Claim 3.1. Let $x \in \mathbb{F}_p^k, x \neq 0$. Then for any $y \in \mathbb{F}_p$,

$$\Pr_{a \in \mathbb{F}_p^k} [\langle a, x \rangle = y] = \frac{1}{p}.$$

Proof. Assume $x_i \neq 0$ for some $i \in [k]$. Then

$$\Pr_{a \in \mathbb{F}_p^k} [\langle a, x \rangle = y] = \Pr \left[a_i x_i = y - \sum_{j \neq i} a_j x_j \right].$$

Now, for every fixing of $\{a_j : j \neq i\}$, we have that $a_i x_i$ is uniformly distributed in \mathbb{F}_p, hence the probability that it equals any value is exactly $1/p$.

Lemma 3.2. H as described above is pairwise independent.

Proof of lemma. Fix $x_1 \neq x_2 \in \mathbb{F}_p^k$ and $y_1, y_2 \in \mathbb{F}_p$. All the calculations below of $\langle a, x \rangle + b$ are in \mathbb{F}_p. We need to prove

$$\Pr_{a \in \mathbb{F}_p^k, b \in \mathbb{F}_p} [\langle a, x_1 \rangle + b = y_1 \text{ and } \langle a, x_2 \rangle + b = y_2] = \frac{1}{p^2}.$$
If we just randomized over \(a\) then by the claim, then for any \(y \in \mathbb{F}_p\) by the claim,
\[
\Pr_a[\langle a, x_1 \rangle - \langle a, x_2 \rangle = y] = \Pr_a[\langle a, x_1 \rangle - x_2 = y] = \frac{1}{p}.
\]

Randomizing also over \(b\) gives us the desired result.
\[
\Pr_{a,b}[\langle a, x_1 \rangle + b = y_1 \text{ and } \langle a, x_2 \rangle + b = y_2] = \Pr_{a,b}[\langle a, x_1 \rangle - \langle a, x_2 \rangle = y_1 - y_2 \text{ and } b = \langle a, x_1 \rangle + y_1] = \frac{1}{p} \cdot \frac{1}{p} = \frac{1}{p^2}.
\]

\(\square\)

3.1 Application: collision free hashing

Let \(S \subseteq U\) be a set of objects. A hash function \(h : U \to R\) is said to be collision free for \(S\) if it is injective on \(S\). That is, \(h(x) \neq h(y)\) for all distinct \(x, y \in S\). We will show that if \(R\) is large enough, then any pairwise independent hash family contains many collision free hash functions for any small set \(S\). This is extremely useful: it allows to give lossless compression of elements from a large universe to a small range.

Lemma 3.3. Let \(\mathcal{H} : \{h : U \to R\}\) be a pairwise independent hash family. Let \(S \subseteq U\) be a set of size \(|S|^2 \leq |R|\). Then
\[
\Pr_{h \in \mathcal{H}}[h \text{ is collision free for } S] \geq \frac{1}{2}.
\]

Proof. Let \(h \in \mathcal{H}\) be uniformly chosen, and let \(X\) be a random variable that counts the number of collisions in \(S\). That is,
\[
X = \sum_{x \neq y \in S} 1_{h(x) = h(y)}.
\]

The expected value of \(X\) is
\[
E[X] = \sum_{x \neq y \in S} \Pr_{h \in \mathcal{H}}[h(x) = h(y)] = \left(\frac{|S|}{2}\right) \frac{1}{|R|} \leq \frac{|S|^2}{2|R|} \leq \frac{1}{2}.
\]

Let \(p = \Pr[X \geq 1]\) be the probability that there is at least one collision. Then
\[
E[X] = E[X|X = 0] \Pr[X = 0] + E[X|X \geq 1] \Pr[X \geq 1] \geq p.
\]

So, \(p \leq 1/2\), and hence at least half the functions \(h \in \mathcal{H}\) are collision free for \(S\). \(\square\)
We now show how to use pairwise independent hash functions, in order to design efficient dictionaries. Fix a universe U. For simplicity, we will assume that for any R we have a family of pairwise independent hash functions $\mathcal{H} = \{h : U \rightarrow R\}$, and note that while our previous constructions required R to be prime (or in fact, a prime power), this will at most double the size of the range, which at the end will only change our space requirements by a constant factor.

Given a set $S \subset U$ of size $|S| = n$, we would like to design a data structure which supports queries of the form “is $x \in S$?” Our goal will be to do so, while minimizing both the space requirements and the time it takes to answer a query. If we simply store the set as a list of n elements, this takes space $O(n \log |U|)$, and queries take time $O(n \log |U|)$. We will see that this can be improved via hashing.

First, consider the following simple hashing scheme. Fix a range $R = \{1, \ldots, n^2\}$. Let $\mathcal{H} = \{h : U \rightarrow \mathbb{Z}_{n^2}\}$ be a pairwise independent hash function. We showed that a randomly chosen $h \in \mathcal{H}$ will be collisions free on S with probability at least $1/2$. So, we can sample $h \in \mathcal{H}$ until we find such an h, and we will find one on average after two samples. Let A be an array of length n^2. It will be mostly empty, except that we set $A[h(x)] = x$ for all $x \in S$.

Now, to check whether $x \in S$, we compute $h(x)$ and check whether $A[h(x)] = x$ or not. Thus, the query time is only $O(\log |U|)$. However, the space requirements are big: to store n elements, we maintain an array of size n^2, which requires at least n^2 bits (and maybe even $O(n^2 \log |U|)$, depends on how clever is your implementation for storing the empty cells).

We now describe a two-step hashing scheme due to Ajtai, Komlos and Szemerédi which avoids this large waste of space. It will use only $O(n \log n + \log |U|)$ space, but would still allow for query time of $O(\log |U|)$. As a preliminary step, we apply the collision free hash scheme we just described. So, will assume from now on that $U = O(n^2)$ and that $S \subset U$ of size $|S| = n$.

Step 1. We first find a hash function $h : U \rightarrow [n]$ which has only n collisions. Define

$$\text{Coll}(h, S) = |\{x, y \in S : x \neq y, h(x) = h(y)\}|.$$

If $\mathcal{H} = \{h : U \rightarrow [n]\}$ is a family of pairwise independent hash functions, then

$$\mathbb{E}_{h \in \mathcal{H}}[\text{Coll}(h, S)] = \sum_{\{x, y\} \subset S} \Pr[h(x) = h(y)] = \binom{|S|}{2} \frac{1}{n} \leq \frac{|S|^2}{2n} \leq \frac{n}{2}.$$

By Markov’s inequality, we have

$$\Pr_{h \in \mathcal{H}}[\text{Coll}(h, S) \geq n] \leq 1/2.$$

So, after on average two iterations of randomly choosing $h \in \mathcal{H}$, we find such a function $h : U \rightarrow [n]$ such that $\text{Coll}(h, S) \leq n$. We fix it from now on. Note that it is represented using only $O(\log n)$ bits.
Step 2. Next, for any $i \in [n]$ let $S_i = \{ x \in S : h(x) = i \}$. Observe that $\sum S_i = n$ and

$$\sum_{i=1}^{n} \left(\frac{|S_i|}{2} \right) = \text{Coll}(h, S) \leq n.$$

Let $n_i = |S_i|^2$. Note that $\sum n_i = 2\text{Coll}(h, S) + \sum |S_i| \leq 3n$. We will find hash functions $h_i : U \rightarrow [n_i]$ which are collision free on S_i. Choosing a uniform hash function from a pairwise independent set of hash functions $\mathcal{H}_i = \{ h : U \rightarrow [n_i] \}$ succeeds on average after two samples. So, we only need $O(n)$ time to find these functions. As each h_i requires $O(\log n)$ bits to be represented, we need in total $O(n \log n)$ to represent all of them.

Let A be an array of size $3n$. Let $\text{offset}_i = \sum_{j<i} n_j$. The sub-array $A[\text{offset}_i : \text{offset}_i + n_i]$ will be used to store the elements of S_i. Initially A is empty. We set

$$A[\text{offset}_i + h_i(x)] = x \quad \forall x \in S_i.$$

Note that there are no collisions in A, as we are guaranteed that h_i are collision free on S_i. We will also keep all of $\{ \text{offset}_i : i \in [n] \}$ in a separate array.

Query. To check whether $x \in S$, we do the following:

- Compute $i = h(x)$.
- Read offset_i.
- Check if $A[\text{offset}_i + h_i(x)] = x$ or not.

This can be computed using $O(\log n)$ bit operations.

Space requirements. The hash functions h requires $O(\log n)$ bits. The hash functions $\{ h_i : i \in [n] \}$ require $O(n \log n)$ bits. The array A requires $O(n \log n)$ bits.

Setup time. The setup algorithm is randomized, as it needs to find good hash functions. It has expected running time is $O(n \log n)$ bit operations.

- To find h takes $O(n \log n)$ time, as this is how long it takes to verify that it is collision free.
- To find each h_i takes $O(|S_i| \log n)$ time, and in total it is $O(n \log n)$ time.
- To set up the arrays of $\{ \text{offset}_i : i \in [n] \}$ and A takes $O(n \log n)$ time.

RAM model vs bit model. Up until now, we counted bit operations. However, computers can operate on words efficiently. A model for that is the RAM model, where we can perform basic operations on $\log n$-bit words. In this model, it can be verified that the query time is $O(1)$ word operations, space requirements are $O(n)$ words and setup time is $O(n)$ word operations.
5 Bloom filters

Bloom filters allow for even more efficient data structures for set membership, if some errors are allowed. Let \(U \) be a universe, \(S \subset U \) a subset of size \(|S| = n\). Let \(h : U \to [m] \) be a uniform hash function, for \(m \) to be determined later. The data structure maintains a bit array \(A \) of length \(m \), initially set to zero. Then, for every \(x \in S \), we set \(A[h(x)] = 1 \). To check if \(x \in S \) we answer “yes” if \(A[h(x)] = 1 \). This has the following guarantees:

- No false negative: if \(x \in S \) we will always say “yes”.
- Few false positives: if \(x \notin S \), we will say “yes” with probability \(\frac{|\{i : A[i] = 1\}|}{m} \), assuming \(h \) is a uniform hash function.

So, if we set for example \(m = 2n \), then the probability for \(x \notin S \) that we say ”no” it at least \(1/2 \). It is in fact more, since when hashing \(n \) elements to \(2n \) values there will be collisions, so the number of 1’s in the array will be less than \(n \). In fact, to get probability \(1/2 \) we only need \(m \approx 1.44n \). This is since the probability that \(A[i] = 1 \), over the choice of \(h \), is

\[
\Pr_h[A[i] = 0] = \Pr[h(x) \neq i, \forall x \in S] = \left(1 - \frac{1}{m}\right)^n \approx \exp(-n/m).
\]

So, for \(m = n/\ln(2) \approx 1.44n \), the expected number of 0’s in \(A \) is \(m/2 \).

Note that a bloom filter uses \(O(n) \) bits, which is much less than the \(O(n \log |U|) \) bits we needed for no errors. It can be shown that we don’t need \(h \) to be uniform, a \(O(\log n) \)-wise independent hash function gives the same guarantees, and it can be stored very efficiently (concretely, using only \(O(\log^2 n) \) bits).