This lecture investigates the circuit-SAT problem. We will see that improved algorithms for circuit-SAT can yield lower-bounds.

Definition 1. Circuit-SAT: Given a circuit C, is there any input x such that $C(x) = 1$?

If Circuit-SAT is in P, then $P = NP$, since Circuit-SAT is NP-hard. This implies that the polynomial hierarchy collapses to P. To see why this is true, consider this statement from the 3rd level of the polynomial hierarchy, where R is polynomially decidable and x is fixed:

$$x \in L \iff \exists y_1 \forall y_2 \exists y_3 R(x, y_1, y_2, y_3)$$

So, given y_1 and y_2, we can see that

$$\exists y_3 R(x, y_1, y_2, y_3) \in NP = P$$

We then find a polynomially computable relation S, such that

$$\exists y_3 R(x, y_1, y_2, y_3) = S(x, y_1, y_2)$$

Therefore

$$x \in L \iff \exists y_1 \forall y_2 S(x, y_1, y_2, y_3)$$
So, given y_1, we can see that

$$\forall y_2 S(x, y_1, y_2) \in \text{Co-NP} = \text{NP} = P$$

We then find a polynomially-computable relation T such that

$$S(x, y_1, y_2) = \exists y_2 T(x, y_2)$$

Thus, the language L is in P. Looking this example, we can see that if $P = \text{NP}$ then the polynomial hierarchy collapses. So, by contraposition, we need only prove that two layers of the hierarchy are distinct in order to show that $P \neq \text{NP}$.

We will now review Meyer’s Theorem, which states that if $\text{EXP} \subseteq P/\text{Poly}$, then $\text{EXP} \subseteq \Sigma_2^P$.

Definition 2. A Circuit is **locally computable** if, given n inputs bits, the name i of a gate, and the names $k(i)$ and $j(i)$ of input gates, we can compute $op_i(k(i), j(i))$ (the output of gate i) in time $\text{poly}(\text{len}(i) + n)$.

Theorem 1 (Hennie, Stearns). For any time $T(n)$ algorithm on a turing machine, there is a size $O(T(n)\log(T(n)))$ locally computable circuit simulating the algorithm.

We are now ready to proof Meyer’s theorem.

Theorem 2 (Meyers). If $\text{EXP} \subseteq P/\text{Poly}$, then $\text{EXP} \subseteq \Sigma_2^P$.

Proof. Assume $\text{EXP} \subseteq P/\text{Poly}$. Take $L \in \text{EXP}$. Let C_n be a locally computable circuit that decides L on n-bit inputs. Let L' be the language that maps a given gate i of C_n and input x to the value of gate i on x. Since $L \in \text{EXP}$, we know $L' \in \text{EXP}$, so $L' \in P/\text{Poly}$. So there exists a circuit $C''(x, i)$ deciding L'. Therefore

$$x \in L \iff \exists C'' \forall i [op_i(c''(x, j(i)), c''(x, k(i))) = c''(x, i) \land c''(x, \text{output_gate}) = 1]$$
Since this formula is of the form $\exists \forall \psi$, with polynomially-computable ψ, we know that $L \in \Sigma^P_2$.

Using Meyer’s theorem, we can investigate what happens if we just have a “pretty good” algorithm for circuit-SAT. We will explore this idea in the following theorem.

Theorem 3. If $\text{circuit-SAT} \in \text{Time}(2^{n^{o(1)}})$, then $\text{NEXP} \not\subseteq \text{P/Poly}$

Proof. Assume $\text{circuit-SAT} \in \text{Time}(2^{n^{o(1)}})$. We know either $\text{EXP} \subseteq \text{P/Poly}$ or $\text{EXP} \not\subseteq \text{P/Poly}$. If $\text{EXP} \not\subseteq \text{P/Poly}$, since $\text{EXP} \subseteq \text{NEXP}$, the statement holds.

If $\text{EXP} \subseteq \text{P/Poly}$, then $\text{EXP} = \Sigma^P_2$ (this is Meyer’s theorem).

So, if we choose and arbitrary $L \in \text{EXP}$, we get that there is some polynomially-computable relation S such that:

$$x \in L \leftrightarrow \exists y_1 \forall y_2 S(x, y_1, y_2)$$

Since circuit-SAT is in sub-exponential time, we can use the same algorithm for circuit-SAT to compute the complement of circuit-SAT. Therefore, the formula $\forall y_2 S(x, y_1, y_2)$ is in $\text{Time}(2^{n^{o(1)}})$. Therefore, $L \in \text{NTIME}(2^{n^{o(1)}})$. So $\Sigma^P_2 \subseteq \text{EXP} \subseteq \text{NTIME}(2^{n^{o(1)}})$. By a padding argument, we can see that $\exists T \in \text{Time}(n^{\omega(1)})$ such that $\Sigma^{T(n)}_3 \subseteq \text{NEXP}$. So since $\Sigma^{T(n)}_3 \not\subseteq \text{P/Poly}$, $\text{NEXP} \not\subseteq \text{P/Poly}$.

Given a circuit C, the naive approach to circuit-SAT can try all possible inputs on the circuit in time $|C|^2^n$. The following theorem, due to Ryan Williams, shows that slight improvements to this naive approach yields the same circuit lower bound.

Theorem 4. If $\text{Circuit-SAT} \in \text{Time}(|C|^2^n/n^{\omega(1)})$, then $\text{NEXP} \not\subseteq \text{P/Poly}$.

Proof. Assume that $\text{Circuit-SAT} \in \text{Time}(|C|^2^n/n^{\omega(1)})$. We define can define the problem circuit-TAUT to determine whether a Circuit returns 1 on all inputs (i.e., is a tautology). Let $\neg C$ denote the circuit C with a negation gate applied to it’s final output.
Since \(\text{circuit-TAUT}(C) = \neg\text{circuit-SAT}(\neg C) \), our initial hypothesis implies that \(\text{circuit-TAUT} \in \text{TIME}(|C|2^n/n^{\omega(1)}) \). We will show that this implies that \(\text{NEXP} \not\subseteq \text{P/Poly} \).

Assume that \(\text{NEXP} \subseteq \text{P/Poly} \) and \(\text{circuit-TAUT} \in \text{TIME}(|C|2^n/n^{\omega(1)}) \). We will use these assumptions to contradict the nondeterministic hierarchy theorem. Let \(L \) be a language that is exactly in \(\text{NTIME}(2^n) \). In other words, there is a relation \(R \) computable in time \(2^n \) such that:

\[
x \in L \iff \exists y, |y| = 2^n \land R(x, y)
\]

By the theorem of Hennie and Stearns, there is a locally computable circuit, \(C_R \), which computes \(R \). We know \(|C_R| = O(2^n n) \). We can then write the formula:

\[
x \in L \iff \exists g_1 \ldots g_{2^n n} \text{s.t.} \text{“the value of each gate follows from it’s inputs”}
\]

So the values \(g_1 \ldots g_{2^n n} \) act as a transcript of \(C_R \). Last class, we saw the easy witness lemma. This states that \(\text{NEXP} \subseteq \text{P/Poly} \) if and only if every positive instance of an \(\text{NEXP} \) problem has a succinctly describable witness (i.e., describable as a poly-size circuit computing the \(i^{th} \) bit of the witness). We can see that the previous formula is in \(\text{NEXP} \) so there must be a succinct witness \(C'' \). In other words:

\[
x \in L \iff \exists C'' \forall i = 1 \ldots 2^n n, op_i(C''(j(i)), C''(k(i))) = C''(i) \land C''(x, output_gate) = True
\]

We define \(T_{C''} \) to be the circuit on \(n + \log(n) \) inputs that computes \(T_{C''}(i) = op_i(C''(k(i)), C''(j(i))) = C''(i) \). This gives the formula:

\[
x \in L \iff \exists C'', T_{C''} \text{is a tautology}
\]

By out initial assumption, this implies that \(L \in \text{NTIME}(2^{n+\log(n)+O(1)}/n^{\omega(1)}) = \text{NTIME}(2^n/n^{\omega(1)}) \).
So \(\text{NTIME}(2^n) = \text{NTIME}(o(2^n)) \). But this contradicts the non-deterministic time hierarchy theorem, completing the proof.

We will conclude by stating another theorem by Ryan Williams, along with some corollaries.

Theorem 5. For all depths \(\delta \) there is an \(\epsilon \) such that \(\text{ACC}_6\text{-SAT} \in \text{TIME}(2^{n-n^\epsilon}) \).

Lemma 1. If \(C \) is a class of circuits such that \(C\text{-TAUT} \in \text{NTIME}(2^n/n^{\omega(1)}) \), and \(P \in C \), then \(\text{circuit-TAUT} \in \text{NTIME}(2^n/n^{\omega(1)}) \).

Corollary 1. If \(C\text{-TAUT} \in \text{NTIME}(2^n/n^{\omega(1)}) \), then \(\text{NEXP} \not\subseteq C \).

Corollary 2. \(\text{NEXP} \not\subseteq \text{ACC}_6 \)