Greedy Algorithms
Problem

Interval scheduling: Given a set of \(n \) intervals of the form \((S(i), F(i))\), find the largest subset of non-overlapping intervals.

Algorithm

GreedySchedule
- Initialize \(R \) to contain all intervals
- While \(R \) is not empty
 - Choose an interval \((S(i), F(i))\) from \(R \) that has the smallest value of \(F(i) \)
 - Delete all intervals in \(R \) that overlaps with \((S(i), F(i))\)

- Running time?
Greedy Algorithms

Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form $(S(i), F(i))$, find the largest subset of non-overlapping intervals.

Algorithm

GreedySchedule
- While R is not empty
- Choose an interval $(S(i), F(i))$ from R that has the smallest value of $F(i)$
- Delete all intervals in R that overlaps with $(S(i), F(i))$

- Running time? $O(n \log n)$
Problem

Job scheduling: You are given n jobs and you are supposed to schedule these jobs on a machine. Each job i consists of a duration $T(i)$ and a deadline $D(i)$. The lateness of a job w.r.t. a schedule is defined as $\max(0, F(i) - D(i))$, where $F(i)$ is the finishing time of job i as per the schedule. The goal is to minimise the maximum lateness.
Greedy Algorithms

Job scheduling

Problem

Job scheduling: You are given n jobs and you are supposed to schedule these jobs on a machine. Each job i consists of a duration $T(i)$ and a deadline $D(i)$. The *lateness* of a job w.r.t. a schedule is defined as $\max(0, F(i) - D(i))$, where $F(i)$ is the finishing time of job i as per the schedule. The goal is to minimise the maximum lateness.

- Greedy strategies
 - Smallest jobs first.
Problem

Job scheduling: You are given \(n \) jobs and you are supposed to schedule these jobs on a machine. Each job \(i \) consists of a duration \(T(i) \) and a deadline \(D(i) \). The lateness of a job w.r.t. a schedule is defined as \(\max(0, F(i) - D(i)) \), where \(F(i) \) is the finishing time of job \(i \) as per the schedule. The goal is to minimise the maximum lateness.

- Greedy strategies
 - Smallest jobs first.
 - Earliest deadline first.

Algorithm

GreedyJobSchedule

- Sort the jobs in non-decreasing order of deadlines and schedule the jobs on the machine in this order.
Algorithm

GreedyJobSchedule

- Sort the jobs in non-decreasing order of deadlines and schedule the jobs on the machine in this order.

Claim 1: There is an optimal schedule with no idle time (time when the machine is idle).

Definition

A schedule is said to have inversion if there are a pair of jobs \((i, j)\) such that

1. \(D(i) < D(j)\), and
2. Job \(j\) is performed before job \(i\) as per the schedule.

Claim 2: There is an optimal schedule with no idle time and no inversion.
Claim 2: There is an optimal schedule with no idle time and no inversion.

Proof sketch of Claim 2

- Consider an optimal schedule O. First, if there is any idle time, we obtain another optimal schedule O_1 without the idle time.
- Suppose O_1 has inversions. Consider one such inversion (i, j).

Claim 2.1: If an inversion exists, then there exists a pair of adjacently scheduled jobs (m, n) such that the schedule has an inversion w.r.t. (m, n).
Claim 2: There is an optimal schedule with no idle time and no inversion.

Proof sketch of Claim 2

- Consider an optimal schedule O. First, if there is any idle time, we obtain another optimal schedule O_1 without the idle time.
- Suppose O_1 has inversions. Consider one such inversion (i, j).
- Claim 2.1: If an inversion exists, then there exists a pair of adjacently scheduled jobs (m, n) such that the schedule has an inversion w.r.t. (m, n).

Claim 2.2: If a schedule has an inversion w.r.t. adjacently scheduled jobs (m, n), then exchanging m and n does not increase the maximum lateness.
End