CSE101: Design and Analysis of Algorithms

Ragesh Jaiswal, CSE, UCSD
Greedy Algorithms
Greedy Algorithms
Shortest path

Claim 2: Let S be a subset of vertices containing s such that we know the shortest path length $l(s, u)$ from s to any vertex in $u \in S$. Let $e = (u, v)$ be an edge such that

1. $u \in S, v \in V \setminus S$,
2. $(l(s, u) + W_e)$ is the least among all such cut edges.

Then $l(s, v) = l(s, u) + W_e$.

Algorithm

Dijkstra’s Algorithm(G, s)
- $S \leftarrow \{s\}$
- $d(s) \leftarrow 0$
- While S does not contain all vertices in G
 - Let $e = (u, v)$ be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$
 - $d(v) \leftarrow d(u) + W_e$
 - $S \leftarrow S \cup \{v\}$

What is the running time of the above algorithm?
- Same as that of the Prim’s algorithm. $O(|E| \cdot \log |V|)$.
Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G, s)
- \(S \leftarrow \{s\} \)
- \(d(s) \leftarrow 0 \)
- While \(S \) does not contain all vertices in \(G \)
 - Let \(e = (u, v) \) be a cut edge across \((S, V \setminus S) \) with minimum value of \(d(u) + W_e \)
 - \(d(v) \leftarrow d(u) + W_e \)
 - \(S \leftarrow S \cup \{v\} \)

Figure: \(d(s) = 0 \)
Algorithm

Dijkstra’s Algorithm \((G, s)\)
- \(S \leftarrow \{s\}\)
- \(d(s) \leftarrow 0\)
- While \(S\) does not contain all vertices in \(G\)
 - Let \(e = (u, v)\) be a cut edge across \((S, V \setminus S)\) with minimum value of \(d(u) + W_e\)
 - \(d(v) \leftarrow d(u) + W_e\)
 - \(S \leftarrow S \cup \{v\}\)

Figure: \(d(s) = 0; d(A) = 1\)
Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G, s)
- $S ← \{s\}$
- $d(s) ← 0$
- While S does not contain all vertices in G
 - Let $e = (u, v)$ be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$
 - $d(v) ← d(u) + W_e$
 - $S ← S \cup \{v\}$

Figure: $d(s) = 0; d(A) = 1; d(E) = 9$
Greedy Algorithms

Shortest path

Algorithm

Dijkstra’s Algorithm(G,s)
- \(S \leftarrow \{s\} \)
- \(d(s) \leftarrow 0 \)
- While \(S \) does not contain all vertices in \(G \)
 - Let \(e = (u, v) \) be a cut edge across \((S, V \setminus S) \) with minimum value of \(d(u) + W_e \)
 - \(d(v) \leftarrow d(u) + W_e \)
 - \(S \leftarrow S \cup \{v\} \)

Figure: \(d(s) = 0; d(A) = 1; d(E) = 9; d(D) = 15 \)
Greedy Algorithms
Shortest path

Algorithm
Dijkstra’s Algorithm(G, s)
- $S \leftarrow \{s\}$
- $d(s) \leftarrow 0$
- While S does not contain all vertices in G
 - Let $e = (u, v)$ be a cut edge across $(S, V \setminus S)$ with minimum value of $d(u) + W_e$
 - $d(v) \leftarrow d(u) + W_e$
 - $S \leftarrow S \cup \{v\}$

Figure: $d(s) = 0; d(A) = 1; d(E) = 9; d(D) = 15; d(C) = 17$
Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm\((G, s)\)
- \(S \leftarrow \{s\}\)
- \(d(s) \leftarrow 0\)
- While \(S\) does not contain all vertices in \(G\)
 - Let \(e = (u, v)\) be a cut edge across \((S, V \setminus S)\) with minimum
 value of \(d(u) + W_e\)
 - \(d(v) \leftarrow d(u) + W_e\)
 - \(S \leftarrow S \cup \{v\}\)

Figure: \(d(s) = 0; d(A) = 1; d(E) = 9; d(D) = 15; d(C) = 17; d(B) = 21\)
Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm \((G,s)\)
- \(S \leftarrow \{s\}\)
- \(d(s) \leftarrow 0\)
- While \(S\) does not contain all vertices in \(G\)
 - Let \(e = (u,v)\) be a cut edge across \((S, V \setminus S)\) with minimum value of \(d(u) + W_e\)
 - \(d(v) \leftarrow d(u) + W_e\)
 - \(S \leftarrow S \cup \{v\}\)

Figure: The algorithm also implicitly produces a shortest path tree that gives the shortest paths from \(s\) to all vertices.
Course Overview

- Basic graph algorithms
- Algorithm Design Techniques:
 - Greedy Algorithms
 - Divide and Conquer
 - Dynamic Programming
 - Network Flows
- Computational Intractability
Divide and Conquer
You have already seen multiple examples of Divide and Conquer algorithms:

- Binary Search
- Merge Sort
- Quick Sort
- Multiplying two n-bit numbers in $O(n^{\log_2 3})$ time.
Main Idea: *Divide the input into smaller parts. Solve the smaller parts and combine their solution.*
Problem
Given an array of unsorted integers, output a sorted array.

Algorithm

MergeSort (A)
- If $(|A| = 1)$ return (A)
- Divide A into two equal parts A_L and A_R
- $B_L \leftarrow \text{MergeSort}(A_L)$
- $B_R \leftarrow \text{MergeSort}(A_R)$
- $B \leftarrow \text{Merge}(B_L, B_R)$
- return (B)
Divide and Conquer

Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts A_L and A_R
- $B_L \leftarrow$ MergeSort(A_L)
- $B_R \leftarrow$ MergeSort(A_R)
- $B \leftarrow$ Merge(B_L, B_R)
- return(B)
Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)

- If (|A| = 1) return(A)
- Divide A into two equal parts \(A_L \) and \(A_R \)
- \(B_L \leftarrow \text{MergeSort}(A_L) \)
- \(B_R \leftarrow \text{MergeSort}(A_R) \)
- \(B \leftarrow \text{Merge}(B_L, B_R) \)
- return\((B) \)
Divide and Conquer

Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR
- BL ← MergeSort(AL)
- BR ← MergeSort(AR)
- B ← Merge(BL, BR)
- return(B)
Divide and Conquer

Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR
- BL ← MergeSort(AL)
- BR ← MergeSort(AR)
- B ← Merge(BL, BR)
- return(B)
Divide and Conquer

Merge Sort

Algorithm

mergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR
- BL ← mergeSort(AL)
- BR ← mergeSort(AR)
- B ← Merge(BL, BR)
- return(B)
Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR
- BL ← MergeSort(AL)
- BR ← MergeSort(AR)
- B ← Merge(BL, BR)
- return(B)

Ragesh Jaiswal, CSE, UCSD
Divide and Conquer

Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR
- BL ← MergeSort(AL)
- BR ← MergeSort(AR)
- B ← Merge(BL, BR)
- return(B)
Divide and Conquer

Merge Sort

Algorithm

MergeSort(A)
- If (\(|A| = 1\)) return(A)
- Divide A into two equal parts \(A_L\) and \(A_R\)
- \(B_L \leftarrow\) MergeSort\((A_L)\)
- \(B_R \leftarrow\) MergeSort\((A_R)\)
- \(B \leftarrow\) Merge\((B_L, B_R)\)
- return(B)
Divide and Conquer

Merge Sort

Algorithm

```
MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR
- BL ← MergeSort(AL)
- BR ← MergeSort(AR)
- B ← Merge(BL, BR)
- return(B)
```

```plaintext
A
5 8 1 4 7 2 6 3

AL
5 8 1 4

AR
7 2 6 3

BL
1 4 5 8

BR
2 3 6 7

B
1 2 3 4 5 6 7 8
```

Ragesh Jaiswal, CSE, UCSD
CSE101: Design and Analysis of Algorithms
Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts A_L and A_R
- $B_L \leftarrow$ MergeSort(A_L)
- $B_R \leftarrow$ MergeSort(A_R)
- $B \leftarrow$ Merge(B_L, B_R)
- return(B)

How do we argue correctness?
Divide and Conquer

Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR
- BL ← MergeSort(AL)
- BR ← MergeSort(AR)
- B ← Merge(BL, BR)
- return(B)

How do we argue correctness?

Proof of correctness of Divide and Conquer algorithms are usually by induction.

- **Base case:** This corresponds to the base cases of the algorithm. For the MergeSort, the base case is that the algorithm correctly sorts arrays of size 1.
- **Inductive step:** In general, this corresponds to correctly combining the solutions of smaller subproblems. For MergeSort, this is just proving that the Merge routine works correctly. This may again be done using induction and is left as an exercise.
Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR
- BL ← MergeSort(AL)
- BR ← MergeSort(AR)
- B ← Merge(BL, BR)
- return(B)

- Let n be a power of 2 (e.g., n = 256)
- Let T(n) denote the worst case running time for the algorithm.
- Claim 1: T(1) ≤ c for some constant c.
Divide and Conquer

Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts A_L and A_R
- $B_L \leftarrow$ MergeSort(A_L)
- $B_R \leftarrow$ MergeSort(A_R)
- $B \leftarrow$ Merge(B_L, B_R)
- return(B)

Let n be a power of 2 (e.g., $n = 256$)

Let $T(n)$ denote the worst case running time for the algorithm.

Claim 1: $T(1) \leq c$ for some constant c.

Claim 2: $T(n) \leq 2 \cdot T(n/2) + cn$ for all $n \geq 2$.
Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts \(A_L\) and \(A_R\)
- \(B_L \leftarrow \text{MergeSort}(A_L)\)
- \(B_R \leftarrow \text{MergeSort}(A_R)\)
- \(B \leftarrow \text{Merge}(B_L, B_R)\)
- return(B)

Let \(n\) be a power of 2 (e.g., \(n = 256\))
Let \(T(n)\) denote the worst case running time for the algorithm.
Claim 1: \(T(1) \leq c\) for some constant \(c\).
Claim 2: \(T(n) \leq 2 \cdot T(n/2) + cn\) for all \(n \geq 2\).
\(T(n) \leq 2 \cdot T(n/2) + cn\) for \(n \geq 2\) and \(T(1) \leq c\) is called a recurrence relation for the running time \(T(n)\).
How do we solve such recurrence relation to obtain the value of \(T(n)\) as a function of \(n\)?
Divide and Conquer

Merge Sort

- Let n be a power of 2 (e.g., $n = 256$)
- Let $T(n)$ denote the worst case running time for the algorithm.
- **Claim 1**: $T(1) \leq c$ for some constant c.
- **Claim 2**: $T(n) \leq 2 \cdot T(n/2) + cn$ for all $n \geq 2$.
- $T(n) \leq 2 \cdot T(n/2) + cn$ for $n \geq 2$ and $T(1) \leq c$ is called a recurrence relation for the running time $T(n)$.
- How do we solve such recurrence relation to obtain the value of $T(n)$ as a function of n?
 - **Unrolling the recursion**: Rewrite $T(n/2)$ in terms of $T(n/4)$ and so on until a pattern for the running time with respect to all levels of the recursion is observed. Then, combine these and get the value of $T(n)$.
Divide and Conquer

Merge Sort

- Recurrence relation for Merge Sort: \(T(n) \leq 2 \cdot T(n/2) + cn \) for \(n \geq 2 \) and \(T(1) \leq c \).
- How do we solve such recurrence relation to obtain the value of \(T(n) \) as a function of \(n \)?
 - Unrolling the recursion: Rewrite \(T(n/2) \) in terms of \(T(n/4) \) and so on until a pattern for the running time with respect to all levels of the recursion is observed. Then, combine these and get the value of \(T(n) \).
Divide and Conquer

Merge Sort

- Recurrence relation for Merge Sort: \(T(n) \leq 2 \cdot T(n/2) + cn \) for \(n \geq 2 \) and \(T(1) \leq c \).
- How do we solve such recurrence relation to obtain the value of \(T(n) \) as a function of \(n \)?
- So, the running time \(T(n) \leq cn \cdot \log n = O(n \log n) \).
Question: Suppose there is a divide and conquer algorithm where the recurrence relation for running time $T(n)$ is the following:

$$T(n) \leq 2T(n/2) + cn^2 \text{ for } n \geq 2, \text{ and } T(1) \leq c.$$

What is the solution of this recurrence relation in big-oh notation?
Master Theorem: Let

\[T(n) \leq a \cdot T \left(\frac{n}{b} \right) + c \cdot n^k \] and \[T(1) \leq c, \]

Then

\[T(n) = \begin{cases}
? & \text{if } a < b^k \\
? & \text{if } a = b^k \\
? & \text{if } a > b^k
\end{cases} \]
End