Problem 1

Examples of blackboard and calligraphic letters: \(\mathbb{R}^d \supseteq \mathbb{S}^{d-1}, \mathcal{C} \subset \mathcal{B} \). Examples of bold-faced letters (perhaps suitable for matrix and vectors):

\[
L(x, \lambda) = f(x) - \langle \lambda, Ax - b \rangle. \tag{1}
\]

Example of a custom-defined math operator:

\[
\text{var}(X) = \mathbb{E}X^2 - (\mathbb{E}X)^2.
\]

Example of references: the Lagrangian is given in Eq. (1), and Theorem 1 is interesting.

Example of adaptively-sized parentheses:

\[
\left(\prod_{i=1}^{n} x_i \right)^{1/n} + \left(\prod_{i=1}^{n} y_i \right)^{1/n} \leq \left(\prod_{i=1}^{n} (x_i + y_i) \right)^{1/n}.
\]

Example of aligned equations:

\[
\Pr(X = 1 \mid Y = 1) = \frac{\Pr(X = 1 \land Y = 1)}{\Pr(Y = 1)} = \frac{\Pr(Y = 1 \mid X = 1) \cdot \Pr(X = 1)}{\Pr(Y = 1)} \quad . \tag{2}
\]

Example of a theorem:

Theorem 1 (Euclid). There are infinitely many primes.

Euclid’s proof. There is at least one prime, namely 2. Now pick any finite list of primes \(p_1, p_2, \ldots, p_n \). It suffices to show that there is another prime not on the list. Let \(p := \prod_{i=1}^{n} p_i + 1 \), which is not any of the primes on the list. If \(p \) is prime, then we’re done. So suppose instead that \(p \) is not prime. Then there is prime \(q \) which divides \(p \). If \(q \) is one of the primes on the list, then it would divide \(p - \prod_{i=1}^{n} p_i = 1 \), which is impossible. Therefore \(q \) is not one of the \(n \) primes in the list, so we’re done. \(\square \)
Here is a centered table.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>entries</td>
<td>in</td>
<td>a</td>
<td>table</td>
</tr>
<tr>
<td>2</td>
<td>more</td>
<td>entries</td>
<td>more</td>
<td>entries</td>
</tr>
</tbody>
</table>
Problem 2
Problem 3
Problem 4
Problem 5