Problem Set 5 Solutions

In all problems the languages are over the alphabet $\Sigma = \{0, 1\}$. You may use without proof the NP-completeness of the following problems, but no others:

- SAT, 3-SAT, INDEPENDENT-SET, CLIQUE, VERTEX-COVER, 3-COLORING,
- HAMILTONIAN-PATH, HAMILTONIAN-CYCLE, SUBSET-SUM, INTEGER-PROGRAMMING, SET-COVER.

Problem 1. [30 points] Recall that graph $G = (V, E)$ is k-colorable if there exists a map $c: V \to \{1, \ldots, k\}$ such that $c(i) \neq c(j)$ for every edge $\{i, j\} \in E$. Prove that the following 4-COLORING problem is NP-complete:

Input: $\langle G \rangle$ where G is a graph
Question: Is G 4-colorable?

The following is a verifier for 4-COLORING, showing the latter is in NP:

Verifier $V((G), (c))$, where $G = (V, E)$
- Accept iff
 - c is a map from V to $\{1, 2, 3, 4\}$
 - $c(i) \neq c(j)$ for all $i, j \in E$

We now show that 3-COLORING \leq_p 4-COLORING. The reduction function f takes input a graph $G = (V, E)$ and produces another graph $G' = (V', E')$ as follows. Introduce a vertex w that is new (meaning not in V) and let $V' = V \cup \{w\}$. Let $E' = E \cup \{\{v, w\} : v \in V\}$.

If $c: V \to \{1, 2, 3\}$ is a 3-coloring of G then define $c': V' \to \{1, 2, 3, 4\}$ by $c'(v) = c(v)$ for $v \in V$ and $c'(w) = 4$. This is a 4-coloring of G'. This shows that if G is 3-colorable then G' is 4-colorable.

Conversely, suppose $c': V' \to \{1, 2, 3, 4\}$ is a 4-coloring of G'. Without loss of generality, the color assigned to w is 4. But since w is connected to all vertices in V, no vertex in v has $c'(v) = 4$. So the map $c: V \to \{1, 2, 3\}$ defined by $c(v) = c'(v)$ for all $v \in V$ is a 3-coloring of G. This shows that if G' is 4-colorable then G is 3-colorable.

Problem 2. [30 points] Let $G = (V, E)$ be a graph and $I, W \subseteq V$. We say that I covers W if for every $w \in W$ there exists $i \in I$ such that $\{i, w\} \in E$. Prove that the following IS-COVER problem is NP-complete:
Input: \(\langle G, U, W \rangle \) where \(G = (V, E) \) is a graph and \(U, W \) are disjoint subsets of \(V \)

Question: Does there exist an independent set \(I \) in \(G \) such that \(I \subseteq U \) and \(I \) covers \(W \)?

The following is a verifier for IS-Cover, showing the latter is in \(\text{NP} \):

Verifier \(V((G, U, W), \langle I \rangle) \) where \(G = (V, E) \) and \(U, W \) are disjoint subsets of \(V \)

Accept iff all the following are true:
- \(I \subseteq U \)
- \(i, j \notin E \) for all \(i, j \in I \)
- For all \(w \in W \) there exists \(i \in I \) such that \(\{i, w\} \in E \).

We now show that 3-SAT \(\leq_p \) IS-Cover. The reduction function \(f \) takes input a 3-CNF formula \(\varphi = C_1 \land \cdots \land C_m \) over variables \(x_1, \ldots, x_k \), and outputs \(\langle G, U, W \rangle \) where \(G = (V, E) \), these quantities being defined as follows:

\[
U = \{ x_1, \overline{x}_1, \ldots, x_k, \overline{x}_k \}
\]

\[
W = \{ C_1, \ldots, C_m \}
\]

\[
V = U \cup W
\]

\[
E_1 = \{ \{ x_i, \overline{x}_i \} : 1 \leq i \leq k \}
\]

\[
E_2 = \{ \{ \ell, C_j \} : 1 \leq j \leq m \text{ and literal } \ell \text{ is in clause } C_j \}
\]

\[
E = E_1 \cup E_2
\]

Let \(a = a[1] \ldots a[k] \in \{0, 1\}^k \) be a satisfying assignment to \(\varphi \). Let \(I = \{ x_i : a[i] = 1 \}\} \cup\{ \overline{x}_i : a[i] = 0 \}. \) Then \(I \subseteq U \) is an independent set in \(G \) that covers \(W \).

Conversely let \(I \subseteq U \) be an independent set in \(G \) that covers \(W \). Let \(a[i] = 1 \) if \(x_i \in I \) and 0 otherwise. Then \(a = a[1] \ldots a[k] \in \{0, 1\}^k \) is a satisfying assignment to \(\varphi \).