Image analogies

• **Goal:** Transform an image by example

A : A' :: B : B'

Specify Analogy : Apply Analogy
Why do analogy making?

- Image Processing is full of BAD interfaces. Analogies are a natural way of specifying a task.
- Some transformations are hard to describe explicitly.
- Analogy making could possibly provide a single general purpose mechanism for a broad variety of effects.

Previous Work

No Previous work on Image Analogy Making exists.

The new tool presented is similar to the Clone Brush in Photoshop and Image Hose in Fractal Designer

Builds upon recent work on Texture Synthesis by

Ashikmin [2001]
Wei and Levoy [2000]
Efros and Leung [1999]
Contributions of this paper

1. A new framework for transforming images by example

2. Generalizes the task of texture synthesis to making image analogies.

3. Demonstrates how a variety of image processing tasks can be accomplished within this framework.

How do you make analogies?

A → A' → B' → B

Find corresponding pixel

Find similar piece

Copy pixel

Apply analogy
So where is the learning?

• The figure implicitly assumes a nearest neighbor learner.
• Pixels in A’ serve as labels for neighborhoods in A.
• An alternate algorithm can learn a function that maps the image A to A’ and then use image B as input to produce B’.
• e.g. a Neural network trained to map 3x3 pieces from A to the pixel intensity of the center pixel in A’.

Principal Task

Given a structure in B find similar structure in A

Two subtasks

1. Measure similarity of two structures
 1. Choose the feature space
 2. Choose a distance metric

2. Perform search for similar structures in A
Organization of the rest of the talk

- Underlying assumptions of the algorithm
- Design of the algorithm
 - Gaussian Pyramids
 - Similarity measures
 - Search algorithm
 - Multi-scale rendering
- Applications

Assumption

The image can be modeled as a Markov Random Field

Markov Chain: A random process which defines a random variable X_t for each value of a discrete parameter t (usually corresponding to time), in which the value of X_{t+1} depends only on X_t and is independent of all the earlier values.

Markov Random Field (MRF): A two-dimensional version of a Markov chain. It is a conditional probability model where the probability of a pixel depends on its neighborhood. (The shape and size of the neighborhood is fixed across the image).

Any particular ordering of the pixels (e.g. scanline) can serve as time t.

Markov Random Fields

- **Problem:** Model probability $p(A'|A)$
- **Locality assumption**

Pixel’s value depends only on neighbors

Density modeling tractable but complicated and slow

Gaussian Pyramids

The Gaussian Pyramid is a hierarchy of low-pass filtered (high frequency removed) versions of the original image, such that successive levels correspond to lower frequencies.
Notation

A, A’, B and B’ are arrays of the form

Array : level x point \(\rightarrow\) feature

\(A[l,p]\) denotes the feature vector associated with pixel \(p\) at level \(l\).

\(s\) is an array of the form

Array : level x point \(\rightarrow\) point

\(s[l,p]\) denotes the pixel in the image \(B\) at level \(l\) that is copied into the image \(B’\) at position \(p\) at the same level.

CreateImageAnalogy(A,A’,B)

Computer Gaussian Pyramids for \(A, A’, B\)

Compute features for \(A, A’\) and \(B\)

Initialize the search structures (Approx. NN)

For \(l = 1\) to \(L\) do:

For each pixel \(q \in B\), in scanline order do:

\(p = \text{BestMatchingPixel}(A,A’,B,B’,s,l,q)\)

\(B'[l,q] = A'[l,p]\)

\(s[l,q] = p\)

Return \(B'\)
BestMatchingPixel(A, A', B, A', s, l, q)

$a = \text{BestApproxMatchingPixel}(A, A', B, B', l, q)$
$c = \text{MostCoherentPixel}(A, A', B, B', s, l, q)$
$da = |F[l,a] - F[l,q]|^2$
$dc = |F[l,c] - F[l,q]|^2$

if $dc \leq da \times (1+k \times 2^{l-l})$ return c else return a

- $F[l,q]$ is the feature vector associated with the pixel q at level l.
- L is the total number of layers in the image pyramid.
- k is scaling factor to compensate for the distance between neighboring pixels at different levels.
- The norm $|F[l,a] - F[l,q]|^2$ is calculated using a weighted distance over the feature vectors to emphasize nearer pixels.

Best Approximate Match

- **PCA** for reducing the dimension of the feature vectors (99% variance retained)
- **Naïve method** - Ordinary Nearest Neighbor
 - Complexity $O(\text{size of } A = N)$
- **Use Approximate Nearest Neighbor (ANN)**
 - Complexity $O(C \times \log^3 N)$ where C is large
- **Tree Structured Vector Quantization (tree of clusters of similar points)**
 - Complexity $O(\log N)$
Coherence Matching

Based on Ashikhmin (2000)

Intuition:
Pixels from the input sample that are appropriately “forward shifted” with respect to pixels already used in synthesis are well suited to fill in the current pixel.

\[r = \arg \min_{r \in N(q)} \left| F[l, s[l, r] + (q - r)] - F[l, q] \right|^2 \]

Features

- **RGB Channel information**
 - Suffers from the curse of dimensionality.
- **Luminance channel information** (Channel Y from the YIQ colorspace) is used when the colors of the source and target images are very different.
 - Color dependencies are lost.
 - Requires histogram matching.
- **Pyramids of filter responses** corresponding to the image pyramids. Useful for providing derivative information which used in synthesizing lineart exampled.
Neighborhood size

- Larger neighborhoods give better results, but are slower

Images from Wei-Levoy 2000

5x5 7x7 9x9

Multiresolution Synthesis

- Single resolution captures textures by using adequately sized neighborhoods.

- Large neighborhood = More computation

- Multi-scale synthesis works because we can represent large scale structures by a few pixels in a low resolution image.

- A neighborhood in level $l-1$ (previous) is attached with each pixel at level l as additional feature vector components. The point (x,y) at level l is associated with the 3×3 neighborhood centered at $(x/2, y/2)$ in the level $l-1$ image.

- This insures that as the synthesis proceeds, the high frequency details added in each layer are consistent with the already synthesized low frequency structures.
Scanline Neighborhood Matching

Coarse-to-fine

- Neighborhood includes coarser image
- Wei and Levoy, SIGGRAPH 2000

5x5 L-shape

3x3 square
Application: Blur

A

A’

B

B’

Application: Superresolution

Training Pairs
Application: Superresolution

Application: Texture Synthesis

- Image analogy: constant A and B

\[
\begin{array}{c}
A \\
A' \\
B \\
B'
\end{array}
\]
Improved Synthesis

Example texture

Wei-Levoy

Ashikhmin

Our algorithm

Application: Texture transfer

A A' (same texture)

B B's

Closer to texture Closer to photo
Application: Painting and Drawing
Application : Texture- by- Numbers

A

Result (B')

Application : Texture- by- Numbers

B

Result (B')
Limitations and Future Work

• Speed
• Better perceptual matching and feature selection
• Color Handling – Many of the images analogies only used the luminosity channel.
• Image registration
• Extension to 3D and other domains.
• Estimation of alternate image statistics e.g. brush stroke structure.
Conclusions

• A new method for example based rendering is introduced.
• A texture similarity measure that considers feature similarity as well as coherence is presented.
• Many image filters and synthesis tasks can be performed within this framework.

Acknowledgements

• Aaron Hertzman for sharing his slides, and pointing to sources of explanation
• Active Web for lending a laptop
• The music of Vitalij Kuprij for keeping me company.
Thank You 😊