CSE 101 Homework 5

Fall 2018

This homework is due on gradescope Friday December 7th at 11:59pm. Remember to justify your work even if the problem does not explicitly say so. Writing your solutions in \LaTeX is recommend though not required.

Question 1 (Date Planning, 50 points). Debbie is trying to find a spouse. Over the next n calendar days she has m suitors to consider. For each suitor, she has the option of dating them for a fixed interval of days (from day s_i to day e_i). Each suitor has a known probability p_i of proving to be a good match for Debbie, and probabilities $p_{i,d}$ that Debbie will find out on day d of dating them that they will not be a good match.

Debbie does not want to date more than one suitor at a time and once she starts dating one of them will continue to do so until she determines one way or the other whether or not they are a match.

Provide a polynomial time algorithm to determine the best probability Debbie can obtain of finding a match during this time period.

Question 2 (Longest Common Substring on a Budget, 50 points). Give an algorithm that given three strings $a_1a_2\ldots a_n$, $b_1b_2\ldots b_n$, and $c_1c_2\ldots c_n$, a cost assigned to each character and a real number V computes the length of the longest sequence $x_1x_2\ldots x_k$ that is a common subsequence of each of the three sequences and so that the total cost of all the characters in our sequence is at most V. Your algorithm should run in polynomial time. Note that the costs are not necessarily integers, and so algorithms that produce a table with an entry for every possible value of the cost will be too slow.

Question 3 (Extra credit, 1 point). Where have I been getting character names for homework problems from this quarter?