This homework is due on gradescope Friday May 19th at 11:59pm. Remember to justify your work even if the problem does not explicitly say so. Writing your solutions in \LaTeX is recommend though not required.

Recommended practice problems: Chapter 5, problems 15, 20, 26, 32.

Question 1 (Optimal Caching Exchange Argument, 25 points). In our optimal caching problem, suppose that we have a cache of size $k = 3$. Suppose that the schedule given below is used to execute the given sequences of accesses. What are the intermediate schedules produced by the exchange argument discussed in class?

Accesses: ABCDCBACEDABED

Register 1: A E A E
Register 2: B C D
Register 3: CD B

Question 2 (Rearrangement, 25 points). Given two lists S and T of n numbers each, find a way to sort each of them $S = \{s_1, s_2, \ldots, s_n\}$ and $T = \{t_1, t_2, \ldots, t_n\}$ so that $\sum_{i=1}^n s_i t_i$ is as large as possible. For example, of $S = T = \{1, 2\}$, we could get either $1 \cdot 1 + 2 \cdot 2 = 5$ or $1 \cdot 2 + 2 \cdot 1 = 4$, and would prefer to find the former.

Question 3 (Mining for Maximum Value, 25 points). Dirk is going to make money as a miner today. He has N minutes of time that he can spend on this operation and several veins of ore that he can work on. The ith vein would take t_i minutes to mine out completely, but the ore would be worth a total value of v_i. Of course if Dirk spends only a fraction αt_i time mining that ore (for some $0 \leq \alpha \leq 1$) he will get ore worth αv_i. Give an efficient algorithm for finding a schedule for Dirk that gets him as much total value in ore as possible and prove that it is correct.

Question 4 (Greedy Algorithms for Shortest Paths in DAGs, 25 points). Let G be a DAG with vertex set v_1, v_2, \ldots, v_n with edges going from v_i to v_j only for $j > i$. Suppose that the edges of G are weighted with weights $\ell(v_i, v_j)$, and that we want to find the shortest path from v_1 to v_n. For each of the proposed greedy algorithms for this problem provide a counter-example. In particular, give an explicit graph G and edge weights so that the greedy algorithm does not produce the optimal path. Show both the path produced by the greedy algorithm and the optimal one.

(a) Starting from v_1 build the path one vertex at a time. From vertex v_i, take the edge to v_j with j as large as possible. [5 points]

(b) Starting from v_1 build the path one vertex at a time. From vertex v_i, take the edge to v_j with $\ell(v_i, v_j)$ as small as possible. [5 points]

(c) Starting from v_1 build the path one vertex at a time. From vertex v_i, take the edge to v_j with $\ell(v_i, v_j)/(j - i)$ as small as possible. [5 points]

(d) Let S be a set of vertices, initially $\{v_1\}$ and T a set of edges initially 0. Repeatedly find the edge in G from a vertex in S to a vertex not in S that has the smallest weight among such edges. Add this edge to T and add the vertex on the other end of this edge to S. Repeat until v_n has been added to S and then take the unique path from v_1 to v_n using only edges of T. [10 points]

Question 5 (Extra credit, 1 point). Approximately how much time did you spend working on this homework?