Lecture 12
Stencil methods
Atomics
Announcements

• Midterm scores have been posted to Moodle
 Mean/Median: 63/64 ~79% (B-/C+)

• The midterm will be returned in section on Friday
Today’s lecture

• OpenMP – some finer points on language law
• Stencil Methods
• Programming Assignment #4
• Atomics
What does the fine print of a specification tell us?

- OpenMP 3.1 spec@ [gcc 4.7 & 4.8]

A compliant implementation of the static schedule must ensure that the same assignment of logical iteration numbers to threads will be used in two loop regions if the following conditions are satisfied for both loop regions:
1) have the same number of loop iterations,
2) have the same value of chunk_size specified, or have no chunk_size specified,
3) bind to the same parallel region. A data dependence between the same logical iterations in two such loops is guaranteed to be satisfied allowing safe use of the nowait clause.

```
#pragma omp parallel
{
  #pragma omp for schedule static nowait
  for (int i=1; i< N-1; i++)
    a[i] = i;
  #pragma omp schedule static for
  for (int i=1; i<N-1; i++)
    b[i] = (a[i+1] - a[i-1])/2h
}
```
Will this code run correctly?

A. Yes, they have the same number of iterations
B. Yes, they bind to the same parallel region
C. Yes, there is no data dependence between the same logical iterations in the two such loops
D. All of A, B and C
E. No, one or more of A, B, C doesn’t hold

```c
#pragma omp parallel
{
    #pragma omp for schedule static nowait
    for (int i=1; i< N-1; i++)
        a[i] = i;

    #pragma omp schedule static for
    for (int i=1; i<N-1; i++)
        b[i] = (a[i+1] - a[i-1])/2h
}
```
Will this code run correctly?

A. Yes, they have the same number of iterations
B. Yes, they bind to the same parallel region
C. Yes, there is no data dependence between the same logical iterations in the two such loops
D. All of A, B and C
E. No, one or more of A, B, C doesn’t hold

```c
#pragma omp parallel
{
    # pragma omp for schedule
    static nowait
    for (int i=1; i< N-1; i++)
        a[i] = i;

#pragma omp schedule static for
    for (int i=1; i<N-1; i++)
        b[i] = (a[i+1] - a[i-1])/2;
}

$ ./assign 8
N = 8
# of openMP threads: 4
A: 0 1 2 3 4 5 6 7
B: 0 1 0.5 3 1.5 2 6 0

$ ./assign 8
A: 0 1 2 3 4 5 6 7
B: 0 1 0.5 3 4 0 6 0
```
Will this code run correctly?

A. Yes, they have the same number of iterations
B. Yes, they bind to the same parallel region
C. Yes, there is no data dependence between the same logical iterations in the two such loops
D. All of A, B and C
E. No, one or more of A, B, C doesn’t hold

```c
#pragma omp parallel
{
#pragma omp for schedule static nowait
    for (int i=1; i< N-1; i++)
        a[i] = i;
#pragma omp schedule static for
    for (int i=1; i< N-1; i++)
        b[i] = a[i];
}
```
What does the fine print of a specification tell us?

- OpenMP 3.1 spec@ [gcc 4.7 & 4.8]

A compliant implementation of the static schedule must ensure that the same assignment of logical iteration numbers to threads will be used in two loop regions if the following conditions are satisfied for both loop regions:

1) have the same number of loop iterations,
2) have the same value of chunk_size specified, or have no chunk_size specified,
3) bind to the same parallel region. A data dependence between the same logical iterations in two such loops is guaranteed to be satisfied allowing safe use of the nowait clause.

```bash
$ ./assign 8
N = 8
# of openMP threads: 4
A: 0 1 2 3 4 5 6 7
B: 0 1 2 3 4 5 6 7
$ ./assign 8
A: 0 1 2 3 4 5 6 7
B: 0 1 2 3 4 5 6 7
```

```c
#pragma omp parallel
{
#pragma omp for schedule static nowait
    for (int i=1; i< N-1; i++)
        a[i] = i;
#pragma omp schedule static for
    for (int i=1; i< N-1; i++)
        b[i] = a[i];
}
```
The nowait clause with static scheduling

• If we specify a static schedule, the `nowait` clause will preserve correctness unless there are data dependencies across the loops
• The left code block will fail, the right will succeed

```c
#pragma omp parallel
{
  #pragma omp for schedule static nowait
  for (int i=1; i<N-1; i++)
    a[i] = i;
  #pragma omp schedule static for
  for (int i=1; i<N-1; i++)
    b[i] = (a[i+1] - a[i-1])/2h
}
```

```c
#pragma omp parallel
{
  #pragma omp for schedule static nowait
  for (int i=1; i<N-1; i++)
    a[i] = i;
  #pragma omp schedule static for
  for (int i=1; i<N-1; i++)
    b[i] = a[i];
}
```
Implementation dependent details

• Set up when the compiler is built
• For example, what schedule do we get if we don’t specify it?

According to the specification for OpenMP3.1

2.3. An OpenMP implementation must act as if there were internal control variables (ICVs) that control the behavior of an OpenMP program. These ICVs store information such as the number of threads to use for future parallel regions, the schedule to use for worksharing loops and whether nested parallelism is enabled or not. The ICVs are given values at various times (described below) during the execution of the program. They are initialized by the implementation itself and may be given values through OpenMP environment variables and through calls to OpenMP API routines. The program can retrieve the values of these ICVs only through OpenMP API routines. For purposes of exposition, this document refers to the ICVs by certain names, but an implementation is not required to use these names or to offer any way to access the variables other than through the ways shown in Section 2.3.2 on page 29.

2.5.1.1. When execution encounters a loop directive, the schedule clause (if any) on the directive, and the run-sched-var and def-sched-var ICVs are used to determine how loop iterations are assigned to threads. See Section 2.3 on page 28 for details of how the values of the ICVs are determined. If the loop directive does not have a schedule clause then the current value of the def-sched-var ICV determines the schedule.
Modifying and Retrieving ICV Values

- According to the specification for OpenMP3.1

<table>
<thead>
<tr>
<th>ICV</th>
<th>Ways to modify</th>
<th>Ways to retrieve</th>
<th>Initial value</th>
</tr>
</thead>
</table>
| run-sched-var | OMP_SCHEDULE
omp_set_schedule() | omp_get_schedule() | Implementation defined
(On Bang, g++4.8.4: Dynamic) |
| nest-var | OMP_NESTED
omp_set_nested() | omp_get_nested() | False
(On Bang: False) |
Why might the results be incorrect?

- When we don’t specify the schedule, the schedule is implementation dependent; it could be dynamic.
- On Bamboo, gcc4.8.4 specifies dynamic, but on the Stampede system @ TACC, Intel’s compiler chooses static.
- But with dynamic, OpenMP doesn’t define the order in which the loop iterations will execute.
- The code may or may not run correctly unless we specify static!
- I could not get this code to fail on Bang with N=1M, NT = 8.

2.5.1. Binding. When schedule(dynamic, chunk_size) is specified, the iterations are distributed to threads in the team in chunks as the threads request them. Each thread executes a chunk of iterations, then requests another chunk, until no chunks remain to be distributed.

```c
#pragma omp parallel shared(N,a,b) private(i) 
{
    #pragma omp for schedule(dynamic) nowait
    for (i=0; i< N; i++)
        a[i] = i;
    #pragma omp for schedule(dynamic) nowait
    for (i=0; i< N-1; i++)
        b[i] = a[i];
} 
```
Testing for race conditions

• This code failed on Bang, and also on 16 cores of the Stampede cluster (located at TACC) with v15 of Intel C++ compiler: \(c[i] \neq \sqrt{i}\) for at least 1 value of \(i\)

• This code “wouldn’t” fail if the middle loop followed the same order as the others, or with the 3rd loop removed

```c
#pragma omp parallel shared(N,a,b) private(i)
{
#pragma omp for schedule(dynamic) nowait
    for (i=0; i< N; i++)
        a[i] = i;
#pragma omp for schedule(dynamic) nowait
    for (i=0; i< N-1; i++)
        b[i] = sqrt(a[i]);
#pragma omp for schedule(dynamic) nowait
    for (N-1; i>-1; i--)
        c[i] = b[i];
}
```
Exercise: removing data dependencies

• How can we split into this loop into 2 loops so that each loop parallelizes, the result is correct?

 ▶ B initially: 0 1 2 3 4 5 6 7
 ▶ B on 1 thread: 7 7 7 7 11 12 13 14

for i = 0 to N-1

 B[i] += B[N-1-i];
Splitting a loop: attempt 1

• For iterations i=N/2+1 to N, B[N-i] reference newly computed data
• All others reference “old” data
• B initially: 0 1 2 3 4 5 6 7
• Correct result: 7 7 7 7 11 12 13 14

```c
#pragma omp parallel
for … nowait
for i = 0 to N/2-1
    B[i] += B[N-1-i];
for i = N/2+1 to N-1
    B[i] += B[N-1-i];
for i = 0 to N-1
    B[i] += B[N-i];
```

Scott B. Baden / CSE 160 / Wi '16
Why will the new loops run correctly?

A. We’ve eliminated the dependencies in both loops
B. The second loop runs on 1 core
C. Both
D. Not sure

for i = 0 to N-1
 B[i] += B[N-i];

#pragma omp parallel for ... nowait
for i = 0 to N/2-1
 B[i] += B[N-1-i];
for i = N/2+1 to N-1
 B[i] += B[N-1-i];
Is the nowait clause required?

A. Yes

B. No

```
#pragma omp parallel
for ... nowait
for i = 0 to N/2-1
  B[i] += B[N-1-i];
for i = N/2+1 to N-1
  B[i] += B[N-1-i];
```

for i = 0 to N-1
 B[i] += B[N-i];

```
#pragma omp parallel
for ... nowait
for i = 0 to N/2-1
  B[i] += B[N-1-i];
for i = N/2+1 to N-1
  B[i] += B[N-1-i];
```
Splitting a loop: attempt 2

• For iterations $i = N/2 + 1$ to N, $B[N-i]$ reference newly computed data
• All others reference “old” data
• B initially: $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$
• Correct result: $7 \ 7 \ 7 \ 7 \ 11 \ 12 \ 13 \ 14$

```c
#pragma omp parallel for
for i = 0 to N/2-1
B[i] += B[N-1-i];

#pragma omp parallel for
for i = N/2+1 to N-1
B[i] += B[N-1-i];
```

```c
for i = 0 to N-1
B[i] += B[N-i];
```
Why will the 2 parallel loops run correctly?

A. The barrier after loop 1 ensures correctness
B. We’ve eliminated all dependencies by splitting the loop and no barrier is needed
C. The loops won’t run correctly
D. Not sure

```c
for i = 0 to N-1
    B[i] += B[N-i];
```

```c
#pragma omp parallel for
    for i = 0 to N/2-1
        B[i] += B[N-1-i];

#pragma omp parallel for
    for i = N/2+1 to N-1
        B[i] += B[N-1-i];
```
Today’s lecture

• OpenMP – some finer points on language law

• Stencil Methods

• Programming Assignment #4

• Atomics
Stencil methods

- Many physical problems are simulated on a uniform mesh in 1, 2 or 3 dimensions
- Field variables defined on a discrete set of points
- A mesh is a mapping from ordered pairs to physical observables like temperature
- Important applications
 - Weather forecasting
 - Image processing
Motivating Application: Digital Image Processing

- We represent the image in terms of *pixels*
- In color image, each pixel can contain 3 colors: RGB

![RGB representation](wikipedia)

Photos by Martin Juell
One important operations is called image smoothing.

We replace each pixel by the average of its neighbors.

Repeat as many times as necessary.

\[
\text{while not smooth enough do:} \\
\quad \text{for } (i,j) \text{ in } 0:N-1 \times 0:N-1 \\
\quad \quad I_{\text{new}}[i,j] = \frac{(I[i-1,j] + I[i+1,j] + I[i,j-1] + I[i, j+1])/4}{I = I_{\text{new}}}
\]
Multidimensional arrays

- Accessing an array by columns is more expensive than accessing by rows
Another motivating application: biomedical computing

- Improve our understanding of disease of the heart
- Model electrical signal propagation in cardiac tissue
 - Demonstrates complex behavior of spiral waves that are known to cause life-threatening situations

- **Reaction-diffusion system**
 - Reactions are the cellular exchanges of certain ions across the cell membrane during the cellular electrical impulse

- Our simulation model has two state variables
 - Transmembrane potential: \(e \)
 - Recovery of the tissue: \(r \)
The Aliev-Panfilov Model

• Our model has two parts
 ‣ 2 Ordinary Differential Equations:
 Kinetics of reactions occurring at every point in space
 ‣ Partial Differential Equation: spatial diffusion of reactants

• A differential equation is a set of equations involving derivatives of a function (or functions), and specifies a solution to be determined under certain constraints

• Constraints often specify boundary conditions or initial values that the solution must satisfy

\[
\begin{align*}
\frac{\partial e}{\partial t} &= \delta \nabla^2 e - ke(e - a)(e - 1) - er, \quad \text{on } \Omega_T, \\
\frac{\partial r}{\partial t} &= - \left[\varepsilon + \frac{\mu_1 r}{\mu_2 + e} \right] [r + ke(e - b - 1)], \quad \text{on } \Omega_T, \\
\bar{n} \cdot \delta \nabla e &= 0 \text{ on } \partial \Omega, \quad \text{and} \quad (e, r)_{t=0} = (e(\cdot, 0), r(\cdot, 0)),
\end{align*}
\]

Scott B. Baden / CSE 160 / Wi '16
Discrete approximations

- The functions in the differential equations are continuous.
- On the computer, we can represent discrete values only.
- We will approximate the solution on the mesh a method known as finite differences.
- First-order explicit numerical scheme which we will approximate on the mesh: the functions are continuous, but our representation is discrete.
- For example, we represent a 2nd derivative

\[
u'' \approx \frac{u(x+h) - 2u(x) + u(x-h)}{h^2}
\]
Computational loop of the cardiac simulator

- **ODE solver:**
 - No data dependency, trivially parallelizable
 - Requires a lot of registers to hold temporary variables

- **PDE solver:**
 - Jacobi update for the 5-point Laplacian operator.
 - Sweeps over a uniformly spaced mesh
 - Updates voltage to weighted contributions from the 4 nearest neighbors

For a specified number of iterations, using supplied initial conditions:

```c
for (j=1; j<=m+1; j++) {
    double *RR = &R[j][1], *EE = &E[j][1];
    for (i=1; i<=n+1; i++, EE++, RR++) {
        // PDE SOLVER
        EE[0] = E_p[j][i]+α*(E_p[j][i+1]+E_p[j][i-1]-4*E_p[j][i]+E_p[j+1][i]+E_p[j-1][i]);
        // ODE SOLVER
        EE[0] += -dt*(kk*EE[0]*(EE[0]-a)*(EE[0]-1)+EE[0]*RR[0]);
        RR[0] += dt*(ε+M1* RR[0]/( EE[0]+M2))*(-RR[0]-kk*EE[0]*(EE[0]-b-1));
    }
}
```
Performance of the simulator

- Use valgrind to obtain cache performance, down to the source line (see Getting Started with Bang for instructions)

 make –j N runs parallelizes the make on N threads

- Program runs very slowly so be sure to use a qlogin node

 valgrind --tool=cachegrind ./apf -n 255 -i 2000
cg_annotate --auto=yes cachegrind.out.18164 > Report.txt

For a specified number of iterations, using supplied initial conditions:

==18164== D refs: 1,777,880,755 (1,382,193,805 rd + 395,686,950 wr)
==18164== D1 misses: 67,385,322 (50,592,395 rd + 16,792,927 wr)
==18164== D1 miss rate: 3.7% (3.6% + 4.2%)
...
Where is the time spent?

- Memory accesses are costly

I1 cache: 32768 B, 64 B, 8-way associative
D1 cache: 32768 B, 64 B, 8-way associative
LL cache: 4194304 B, 64 B, 16-way associative
Command: ./apf -n 255 -i 2000
Data file: cachegrind.out.18164

Dr D1mr

1,382,193,805 50,592,395 PROGRAM TOTALS
1,381,488,017 50,566,005 solve.cpp:solve(...)
 . . . // Fills in the TOP Ghost Cells
 10,000 1,999 for (i = 0; i < (n+3); i++)
516,000 66,000 E_prev[i] = E_prev[i + (n+3)*2];
 . . . // Fills in the RIGHT Ghost Cells
 10,000 0 for i = (n+2); i < (m+3)*(n+3); i+=(m+3))
516,000 504,003 E_prev[i] = E_prev[i-2];
 . . . // Solve for the excitation, a PDE
 1,064,000 8,000 for(j =innerBlkRowStartIndx; j <=innerBlkRowEndIndx; j+=(m+3)){
 1,024,000 2,000 for(i = 0; i <= n; i++) {

 721,920,001 16,630,000 E_tmp[i] = E_prev_tmp[i]+alpha*(E_prev_tmp[i+1]...)
 } // Solve the ODEs
 4,000 4,000 for(j=innerBlkRowStartIndx; j <= innerBlkRowEndIndx; j+=(m+3)){
 for(i = 0; i <= n; i++) {

 262,144,000 33,028,000 E_tmp[i] += -dt*(kk*E_tmp[i]*(E_tmp[i]-a)..)*R_tmp[i]);
Where is the time spent? [Provided Code]

• Loops are unfused

I1 cache:
- 32768 B, 64 B, 8-way associative

D1 cache:
- 32768 B, 64 B, 8-way associative

LL cache:
- 20971520 B, 64 B, 20-way associative

Command:
```shell
./apf -n 256 -i 2000
```

<table>
<thead>
<tr>
<th>Ir</th>
<th>I1mr</th>
<th>ILmr</th>
<th>Dr</th>
<th>D1mr</th>
<th>DLmr</th>
<th>Dw</th>
<th>D1mw</th>
<th>DLmw</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.451B</td>
<td>2,639</td>
<td>2,043</td>
<td>1,381,173,237</td>
<td>50,592,465</td>
<td>7,051</td>
<td>3957M</td>
<td>16,794,937</td>
<td>26,115</td>
</tr>
</tbody>
</table>

PROGRAM TOTALS

<table>
<thead>
<tr>
<th>Dr</th>
<th>D1mr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,380,464,019</td>
<td>50,566,007</td>
</tr>
</tbody>
</table>

```cpp
solve.cpp:solve(...)
```

```cpp
. . .
// Fills in the TOP Ghost Cells
10,000 1,999 for (i = 0; i < n+2; i++)
516,000 66,000 E_prev[i] = E_prev[i + (n+2)*2];
```

```cpp
// Fills in the RIGHT Ghost Cells
10,000 0 for i = (n+1); i < (m+2)*(n+2); i+=m+2)
516,000 504,003 E_prev[i] = E_prev[i-2];
```

```cpp
// Solve for the excitation, a PDE
1,064,000 8,000 for(j = innerBlkRowStartIndx; j <= innerBlkRowEndIndx; j += (m+3)){
```
```cpp
0 0 for(i = 0; i < n; i++) {
```
```cpp
721,408,002 16,630,001 E_tmp[i] = E_prevj[i] + alpha*(E_prevj[i+1]...)
```

```cpp
// Solve the ODEs
4,000 4,000 for(j = innerBlkRowStartIndx; j <= innerBlkRowEndIndx; j += (m+3)){
```
```cpp
262,144,000 33,028,000 E_tmp[i] += -dt*(kk*E_tmp[i] * (E_tmp[i]-a..)) * R_tmp[i];
```
```cpp
```
Fusing the loops

- Slows down the simulation by 20%
- # data references drops by 35%, total number of read misses drops by 48%
- What happened?

For a specified number of iterations, using supplied initial conditions repeat
for (j=1; j < m+1; j++){
 for (i=1; i < n+1; i++) {
 // PDE SOLVER
 E[j,i] = E_p[j,i]+α*(E_p[j,i+1]+E_p[j,i-1]-4*E_p[j,i]+E_p[j+1,i]+E_p[j-1,i]);
 // ODE SOLVER
 E[j,i] += -dt*(kk*E[j,i]*(E[j,i]-a)*(E[j,i]-1)+E[j,i]*R[j,i]);
 R[j,i] += dt*(ε+M1* R[j,i]/(E[j,i]+M2))*(-R[j,i]-kk*E[j,i]*(E[j,i]-b-1));
 }
}
swap E_p and E
End repeat
Parallel Implementation

- Partition data, assigning each partition to a unique thread
- Different partitionings according to the *processor geometry*
- Dependences on values found on neighboring threads
1D geometries

• Assumptions
 ‣ P divides N evenly
 ‣ N/P > 2
 ‣ 1 word = double precision floating point = 8 bytes

• For horizontal strips, data are contiguous along the boundaries
Today’s lecture

• OpenMP – some finer points on language law
• Stencil Methods
• Programming Assignment #4
• Atomics
C++ Atomic variables

- Atomic variables support *indivisible* operations that can be more efficient than mutexes.
- Often more efficient than accessing variables through synchronized code, but requires care to avoid memory consistency errors.

```cpp
#include <atomic>
Class AtomicCounter {
    private: std::atomic<int> value;
    public:
    void increment(){
        ++value;
    }
    int get(){
        return value.load();
    }
};
```
What does indivisibility mean?

A. The variable is incremented as if an indivisible operation
B. The variable is incremented as if in a critical section
C. The variable is incremented as if in a critical section followed by a barrier

D. A&B
E. A&C

std::atomic<int> value;
value++;
The interface

• C++ provides atomic variants of the major built in types
 ‣ Usual arithmetic operations
 ‣ Assignment operators such as +=, ++ where appropriate

• Assignment is different
 ‣ No copy or assignment constructors
 ‣ Instead, there are load() and store() operations
 ‣ We can assign or copy from or to a non-atomic type
    ```
    atomic<int> x=7;
    int y = x;
    atomic <int> z=x+2;
    ```

• We will use the sequentially consistent variant (default)
  ```
  memory_order_seq_cst
  ```
What can go wrong if the assignment returned a
reference?

A. Another thread could modify x before assigning
 its value

B. The modification of y could affect x

C. Both

```cpp
atomic<int> x = 3;
int y = x;
y++;```

Fin